Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Informed Nonnegative Matrix Factorization Methods for Mobile Sensor Network Calibration

Clément Dorffer 1, 2 Matthieu Puigt 1 Gilles Delmaire 1 Gilles Roussel 1
2 Lab-STICC_ENSTAB_CID_TOMS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : In this paper, we consider the problem of blindly calibrating a mobile sensor network—i.e., determining the gain and the offset of each sensor—from heterogeneous observations on a defined spatial area over time. For that purpose, we propose to revisit blind sensor calibration as an informed Nonnegative Matrix Factorization (NMF) problem with missing entries. In the considered framework, one matrix factor contains the calibration structure of the sensors—and especially the values of the sensed phenomenon—while the other one contains the calibration parameters of the whole sensor network. The available information is taken into account by using a specific parameterization of the NMF problem. Moreover, we also consider additional NMF constraints which can be independently taken into account, i.e., an approximate constraint over the mean calibration parameters and a sparse approximation of the sensed phenomenon over a known dictionary. The enhancement of our proposed approaches is investigated through more than 5000 simulations and is shown to be accurate for the considered application and to outperform a multi-hop micro-calibration technique as well as a method based on low-rank matrix completion and nonnegative least squares.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [69 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01580604
Contributeur : Matthieu Puigt <>
Soumis le : mardi 20 février 2018 - 12:19:14
Dernière modification le : mercredi 24 juin 2020 - 16:19:51
Archivage à long terme le : : lundi 21 mai 2018 - 12:45:41

Fichier

Journal_post_review_fev2018(2)...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Clément Dorffer, Matthieu Puigt, Gilles Delmaire, Gilles Roussel. Informed Nonnegative Matrix Factorization Methods for Mobile Sensor Network Calibration. IEEE transactions on Signal and Information Processing over Networks, IEEE, 2018, 4 (4), pp.667-682. ⟨10.1109/TSIPN.2018.2811962⟩. ⟨hal-01580604v2⟩

Partager

Métriques

Consultations de la notice

459

Téléchargements de fichiers

1008