Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Estimation of Water Quality Parameters Using the Regression Model with Fuzzy K-Means Clustering

Muntadher A. Shareef 1 Abdelmalek Toumi 2 Ali Khenchaf 1
1 Lab-STICC_ENSTAB_MOM_PIM ; REMS
STIC - Pôle STIC [Brest], Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
2 Lab-STICC_ENSTAB_CID_TOMS ; REMS
STIC - Pôle STIC [Brest], Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : the traditional methods in remote sensing used for monitoring and estimating pollutants are generally relied on the spectral response or scattering reflected from water. In this work, a new method has been proposed to find contaminants and determine the Water Quality Parameters (WQPs) based on theories of the texture analysis. Empirical statistical models have been developed to estimate and classify contaminants in the water. Gray Level Co-occurrence Matrix (GLCM) is used to estimate six texture parameters: contrast, correlation, energy, homogeneity, entropy and variance. These parameters are used to estimate the regression model with three WQPs. Finally, the fuzzy K-means clustering was used to generalize the water quality estimation on all segmented image. Using the in situ measurements and IKONOS data, the obtained results show that texture parameters and high resolution remote sensing able to monitor and predicate the distribution of WQPs in large rivers.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01062373
Contributeur : Annick Billon-Coat <>
Soumis le : mardi 9 septembre 2014 - 16:43:46
Dernière modification le : mercredi 24 juin 2020 - 16:19:29

Lien texte intégral

Identifiants

Citation

Muntadher A. Shareef, Abdelmalek Toumi, Ali Khenchaf. Estimation of Water Quality Parameters Using the Regression Model with Fuzzy K-Means Clustering. International journal of advanced computer science and applications (IJACSA), The Science and Information Organization, 2014, 5,6, ⟨10.14569/IJACSA.2014.050624⟩. ⟨hal-01062373⟩

Partager

Métriques

Consultations de la notice

364