Testing the Energy of Random Signals in a Known Subspace: An Optimal Invariant Approach - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue IEEE Signal Processing Letters Année : 2014

Testing the Energy of Random Signals in a Known Subspace: An Optimal Invariant Approach

(1, 2) , (3, 4)
1
2
3
4

Résumé

We consider the problem of testing whether the energy of a random signal projected onto a known subspace exceeds some specified value \tau>=0. The probability distribution of the signal is assumed to be unknown and this signal is observed in additive and independent white Gaussian noise with known variance. The proposed theoretical framework relies on the invariance of the problem and the resulting test is shown to be uniformly most powerful invariant in an extended sense suitable for random signals. This work extends Scharf and Friedlander's matched subspace detector.
Fichier non déposé

Dates et versions

hal-01004806 , version 1 (11-06-2014)

Identifiants

  • HAL Id : hal-01004806 , version 1

Citer

François-Xavier Socheleau, Dominique Pastor. Testing the Energy of Random Signals in a Known Subspace: An Optimal Invariant Approach. IEEE Signal Processing Letters, 2014, 21 (10), pp.1182-1186. ⟨hal-01004806⟩
174 Consultations
0 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More