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Abstract

Title: Contributions to the development of Deep Reinforcement Learning-based controllers
for AUV

Abstract: The marine environment is a very hostile setting for robotics. It is strongly
unstructured, very uncertain and includes a lot of external disturbances which cannot be easily
predicted or modelled. In this work, we will try to control an Autonomous Underwater Vehicle
(AUV) in order to perform a waypoint tracking task, using a machine learning-based controller.
Machine learning allowed to make impressive progress in a lot of different domain in the recent
years, and the subfield of deep reinforcement learning managed to design several algorithms
very suitable for the continuous control of dynamical systems. We chose to implement the Soft
Actor-Critic (SAC) algorithm, an entropy-regularized deep reinforcement learning algorithm
allowing to fulfill a learning task and to encourage the exploration of the environment
simultaneously. We compared a SAC-based controller with a Proportional-Integral-Derivative
(PID) controller on a waypoint tracking task and using specific performance metrics. All the
tests were performed in simulation thanks to the use of the UUV Simulator. We decided
to apply these two controllers to the RexROV 2, a six degrees of freedom cube-shaped
Remotely Operated underwater Vehicle (ROV) converted in an AUV. Thanks to these tests,
we managed to propose several interesting contributions such as making the SAC achieve an
end-to-end control of the AUV, outperforming the PID controller in terms of energy saving,
and reducing the amount of information needed by the SAC algorithm. Moreover we propose
a methodology for the training of deep reinforcement learning algorithms on control tasks, as
well as a discussion about the absence of guidance algorithms for our end-to-end AUV controller.

Keywords: Autonomous Underwater Vehicle, Controller, Deep Reinforcement Learning, Way-
point Tracking, Soft Actor-Critic, Proportional–Integral–Derivative
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fait le déplacement jusqu’à Brest pour ma soutenance de thèse.
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Julie Dufrenne, Charlotte Poszwa, Dimitri Rouzo, Marion Lannuzel, Megan Quimbre, Morgane
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mes côtés. Je t’aime.

Plus la lumière est forte, plus les ténèbres se doivent d’être épaisses.
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Chapter 1

Introduction

Controlling a robotic platform in a marine environment is a particularly challenging task,
since it is a very hostile environment. It is strongly unstructured, meaning that the lack of
the structure makes the environment difficult to model. Moreover this environment includes
a lot of uncertainties and external disturbances that cannot be easily predicted or modelled:
the wind, the waves on the surface, the ocean currents, the seabed topography, the potential
presences of objects, fishes, or rocks, etc. Another specific problem found in marine robotics
is the lack of positioning in the sea or the ocean, since the GPS signals cannot be propagated
in the water. Without a valid or accurate model of the environment, the control task is more
difficult and the controllers become harder to tune. Finally, as in a lot of other control tasks,
all the input, output and state signals include random noises, due to the environment or the
robot itself.

1.1 Contextual elements

Robotics is a vast domain, and mobile robotics is one its subfield [158], where the studied robots
are able to move by themselves, either on the ground, in the air or in the water. Therefore
marine robotics [235] is itself a subfield of mobile robotics [305]. Various robotic platforms can
be the object of marine robotics [374]. Here is an exhaustive list of the marine robots which
can be found in the literature:

• Autonomous Underwater Vehicles (AUV) are small submarines able to act by them-
selves [282]. They are usually operated by thrusters and fins. Since this work focus ex-
clusively on the control of AUV, they will be discussed in details in section 4.1. They can
also be called Unmanned Underwater Vehicle (UUV) in the literature.

• Remotely Operated underwater Vehicles (ROV) are mini-submarines piloted re-
motely by a human, at the contrary of AUVs [372][74]. A cable is used in order to send
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the input signals and to supply energy.

• Unmanned Surface Vehicles (USV): are simply autonomous boat, controlled by an
algorithm and not a human [367][311].

• Autonomous sailboats: are sailboat operated by an algorithm [315][160]. Servomotors
are usually used to control the rudder and the sail in order to benefit from the wind.
Sometimes an emergency propeller can be found.

• Underwater gliders: are marine devices propelled by variable-buoyancy propulsion
instead of real thrusters. The depth is controlled by ballasts, as in real submarine, and
then this vertical movement allow the glider to move forward thanks to its design based
on side wings [112][161].

We will focus on AUVs and we will not discuss the other marine robots. Their development
began in the 50’s and has not stop to evolve throughout the decades, by continuously improving
the mechanical design, the actuators, the sensors, the electronics, the communication, the
power supply and the control algorithms. Their uses have also diversified: from research
(hydrography, oceanography) and military applications (communication/navigation network
nodes, mine countermeasures), to commercial and hobby uses.

In this work, we chose to compare a machine learning-based controller and a classical con-
troller on a waypoint tracking task performed by an AUV. This control task is generalizable to
a large amount of marine robotics missions, since every path can be decomposed into successive
waypoints to follow. Every missions where trajectories need to be followed or specific targets
needs to be reached can be reduced to a waypoint tracking task composed of one or more
waypoints.

Machine learning

Machine learning is a subfield of the area of artificial intelligence. It is located at
the intersection of applied mathematics, neurobiology and computer science. This family of
algorithms was born in the late 50’s, with the term ”machine learning” created by Arthur
Samuel in 1959 [285]. The perceptron algorithm is one of the building block of machine
learning, and later deep learning, and was created in 1958 by Frank Rosenblatt [276]. Another
milestone was the creation of the backpropagation algorithm created in the 80’s [280], which
led to a second wave of interest in machine learning by researchers. The most impressive
achievements happened very recently with a third wave of interest starting in the 2010’s,
initiated in 2012 by the advances made by the Google Brain team [198] and the AlexNet
architecture [184]. This third wave of interest and its recent results have been made possible
thanks to the great improvements in computational power (especially with the use of Graphics
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Processing Units) coupled with the great availability of training data needed by the algorithms
(mainly thanks to the web and the democratization of the Internet of Things).
Throughout the decades, machine learning algorithms have been successfully applied to
various application domains: computer vision [296][345], speech recognition [69][68], robotics
[240][262], video games [41][300], biology [328][356], data mining [228][361], etc. The field of
machine learning is composed of three main subdomains: supervised learning, unsupervised
learning and reinforcement learning.

Supervised learning tasks [52][123] are based on a dataset containing vectors of data
called inputs x, and a scalar associated with each vector called the label y. The input x is
composed of descriptive features xi. The task is divided in two phases:

• The training phase: the goal of the algorithm is to learn to match the inputs x to their
corresponding label y.

• The test phase: the algorithm must retrieve the label y corresponding to new inputs x
that were not used during the training phase.

If the label is discrete, it corresponds to a number of classes and the supervised learning task
is a classification; if the label is continuous, it corresponds to the value of a given parameter
and the supervised learning task is a regression. Different metrics and error measurements are
used depending on the nature of the task.
An example of supervised learning task is the recognition of handwritten digits [201][178],
where the inputs x are vectors containing the pixel values of images representing handwritten
digits and the label is the digit that corresponds to this image, from 0 to 9. This is a
classification task of supervised learning where the algorithm has to identify digits that were
written by humans.

In unsupervised learning, the dataset is not labeled and the algorithm has to gather
similar data in order to build classes [23][54]. The degree of similarity of data is defined using
specific metrics for each task. This is often called as clustering [7].
An example of unsupervised learning use case is recommender systems [58][377], which learn
to recommend products that are similar to the websites visited by a user.

While supervised learning and unsupervised learning tasks make use of very similar
paradigms, Reinforcement Learning (RL) tasks [320] use a completely different paradigm
and should be considered separately from the two previous machine learning approaches. This
approach uses concepts from neuroscience.
RL tasks are based on the principle of ”trials and error” and on the Markov Decision Process
(MDP) paradigm: an agent evolves in an environment by taking actions and receives an
observation of the state of the environment and a reward signal. The received reward is
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positive if the action taken by the agent was a good choice at the moment, and is negative if
it was a bad choice. The reward signal and the state sent to the agent depends of each task.
The goal of the agent is to maximize the long-term sum of all rewards it receives over time. At
the beginning, the agent takes random actions in order to explore the environment, and then
exploits the knowledge gathered during its interactions with the environment.
An example of RL task is an agent controlling a video game character in order to obtain the
best score [334]. The state of the environment is the set of the pixels displayed by the video
game and the reward signal would be positive for each point obtained and negative for each
life lost by the character.

Moreover, other kinds of machine learning approaches can be found in the literature, de-
pending the nature of the problems, such as a semi-supervised learning [381][382] which deals
with partially labeled sets of data for example.
The type of predictions outputted by the machine learning algorithm can also be grouped into
two categories:

• Classification: The output is discrete and called a class. The algorithm has to predict
to which class each input belongs to. When the task involves only two classes of data,
it is called a binary classification task. When more than two classes are found, the term
multiclass classification is preferred. It is important to note that a multiclass classification
task can be transformed into several independent binary classification tasks [36].

• Regression: The output is continuous and the algorithm has to estimate the value of
one of more variables.

Figure 1.1 shows two simple examples of supervised learning tasks. The left plot shows a
binary classification task represented in the space of the descriptive features xi that compose
the input vector x. Here the inputs are only composed of two descriptive features x1 and
x2 which allow to show the entire task on a 2D plot. The black line represents the decision
boundary of the learning algorithm, which shows the seperation that the algorithm is making
between the two classes. From the algorithm’s point of view, all data found on the same side
of the decision boundary are labeled in order to belong to the same class.
The right plot shows a simple regression made where the input is composed of only one scalar
x. The horizontal axis represents the input x and the vertical axis represents the label y. The
black line shows the model that is computed by the learning algorithm in order to fit as closely
as possible the dataset. This model will allow the algorithm to predict labels y from any input
data x, coming from the dataset or not.
The distinction between a classification and a regression is independent from the subfield
needed by the the task: for example, a classification can be supervised or unsupervised.
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Figure 1.1. The difference between classification and regression tasks.

Figure 1.2. The links between Artificial Intelligence, Machine Learning and Deep Learning.
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Over the past few years, the growth of the field of machine learning has led to the
multiplication of technical terms: the distinction needs to be made between machine learning,
deep learning and reinforcement learning. The Figure 1.2 shows how these subfields are
connected to one another. It also cites names of famous algorithms (some of them will be
explained in this work).
First of all, machine learning is contained within the field of artificial intelligence, and deep
learning and reinforcement learning are contained within machine learning. Machine learning
can also be categorized as part of the data science field and the term data scientist can
be used in order to name the person deploying, experimenting or even improving machine
learning algorithms. In scientific papers, the term machine learning often refers to all
classical techniques used in data science that are not based on deep neural networks: logistic
regressions, decision trees, support vector machines, k-nearest neighbors, k-means, etc. The
term traditional machine learning can be used in order to distinguish these algorithms from
deep learning and reinforcement learning.
Deep learning refers to the supervised and unsupervised tasks that are solved using deep
neural networks. This subfield will be detailed in section 3.1.
RL encompassed all algorithms used to solve tasks modeled by MDPs. These techniques will
be described in section 3.2. However, the increasing complexity of reinforcement learning tasks
led reasearchers to implement deep learning tricks and tools inside reinforcement learning
algorithms, leading to the subfield of Deep Reinforcement Learning (Deep RL). Depending on
the case, specific terms can be added in order to emphasize the preponderant aspects of the
machine learning problem: safe learning, imitation learning, incremental learning, hierarchical
learning, etc.

Finally, we have to also make a distinction between the parameters and the hyperparame-
ters of a machine learning model. The parameters refer to the variables that will be updated
during the training phase in order to fit the data or to fulfill the task. Finding the right
parameters is the objective of all machine learning tasks, since they will defined the behaviour
of the trained model. They are often updated using optimization algorithms applied to a given
objective function.
The hyperparameters refer to all constants representing the design choices made for a model:
they allow to define the structure of the algorithm, to control the learning process and to
define the goals of the task. While the parameters are updated by the learning process during
the training phase, the hyperparameters are tuned manually during the implementation of
the machine learning algorithm. They can be chosen by either trials and error, or using
common rules found in the literature. It is also worth mentioning the recent works dealing
with the automatic selection of the hyperparameters, which led to the creation of the subfield
of Automated Machine Learning (AutoML) [146][325].

In this work, we choose to use a state-of-the-art deep reinforcement learning algorithm
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called the Soft Actor-Critic (SAC) [116] (described in section 3.2.3.3), in order to control an
Autonomous Underwater Vehicle (AUV) and to compare it with a PID controller, a classical
control theory algorithm.

Control theory

Control theory is an applied mathematical subfield studying the dynamical systems.
The term automation can also be found in the literature. A dynamical system is a mathemati-
cal object allowing to represent a concrete or abstract phenomenon. The goal of control theory
is to study the behaviour of dynamical systems and to eventually synthesize a controller. A
controller is an algorithm defined by several parameters and allowing to fulfill a control task.
The dynamical system is defined by a mathematical model called the plant and evolves in
a given environment. The plant model can be linear or nonlinear, and can include model
uncertainties. The plant and the controller form together a feedback system. More details
concerning all these definitions will be explained in chapter 2.
Various family of techniques appeared in the field of control theory throughout the history.
The development needs of control theory followed the trends dictated by the different historical
periods: the industrial revolutions, the wars, the Space Race, the economic globalization, etc.
The main control theory approaches are:

• Classical control theory is the first set of methods created in control theory and is the
basis of the next approaches [87]. The PID controller [162] is the most known algorithm
from this period (detailed in the section 2.2).

• In adaptive control, the parameters of the controller are tuned automatically, in order
to adapt the algorithm to the current situation of the plant or the environment [327][15].

• Stochastic control techniques have to deal with uncertainties found in the plant model
and with random noises included in different signals of the whole feedback systems. They
adapt probabilistic methods to the field of control theory [190][11].

• Like for stochastic control, robust control approaches have to deal with the model
uncertainties [120] and noises, but also with the rejection of external disturbances. They
make use of frequency domain analysis and stability, analysis [73][380]. Two well-known
robust control algorithms are the sliding mode control [77][261] and the H-infinity control
[337][366].

• In optimal control, the control problem is viewed as an optimization problem with a
criterion (called the cost) which must be minimized or maximized. Mathematical con-
straints can also be added to the optimization problem [342][209]. The most common
optimal control techniques are the Model Predictive Control (MPC) [91][236] and Linear-
Quadratic-Gaussian (LQG) control [16].
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• The fuzzy logic is an approach used in a lot of domains other than control theory [249].
It uses the concept of partial truth, and is opposed to the Boolean Logic in which the
variables can only be true or false. In fuzzy control systems, the input signals are analyzed
as having continuous values between 0 and 1 [194][19].

• Hierarchical Control Systems (HCS) are based on multiple devices and software
components which are sorted as a hierarchical tree [6][83].

• Some of the previous methods cannot be applied to nonlinear systems. Nonlinear con-
trol [307][151] refers to all the techniques allowing to deal with them, and can sometimes
include elements from the previous techniques. For example, a nonlinear controller can
be made with the use of feedback linearization [313][204].

Even if control theory is an older field than machine learning, some of these approaches are
still able to design state-of-the-art controllers. All machine-learning-based controllers should
be compared to these baselines on specific control tasks in order to be qualified as suitable to
control and robotics tasks.

1.2 Objectives of this work

The purpose of this work is the control of Autonomous Underwater Vehicles (AUV) in order
to perform waypoint tracking tasks. Two types of controllers will be compared on these
tasks: PID controllers and deep reinforcement learning-based controller. The chosen deep
reinforcement learning algorithm will be the Soft Actor-Critic (SAC), one of the most recent
machine learning algorithm. Several goals will need to be fulfilled, from either a control theory
or a machine learning perspective. We made the choice to compare the SAC algorithm with
the PID controller, because PID is the most used controller in both the academic field and the
industry.

The main objective of this work will be to evaluate if the SAC is able to understand the
dynamics of the AUV and to learn how to fulfill the control task, based only on the received
data. The SAC-based controller will have to reach target waypoints, while dealing with
disturbances such as varying ocean currents or sensors and actuators noises. This controller
will try to achieve the end-to-end control of the AUV: it will simultaneously fulfill high-level
and low-level control functions, meaning that no guidance algorithm will be implemented.
This will be opposed to the PID control approach, which is associated with a simple straight
lines guidance method.

If the SAC algorithm is able to converge towards a satisfactory behaviour during its
learning process, one of the secondary objectives will be to evaluate if the SAC can outperform

Yoann Sola - PhD Thesis 8/212 version: December 21, 2021



Chapter 1. Introduction

the PID controller on various control criteria such as the percentage of waypoints reached by
the AUV during the tests, the amount of deviation of the AUV from its trajectory (due to the
ocean currents) or even the power consumption.

From a machine learning perspective, one goal of this work will be to study how the
configuration of the various parameters of the SAC algorithm can impact the performance
of the controller. We will also try to analyse if the use of advanced training techniques can
improve the results. This will allow to propose a methodology dealing with the training of
deep reinforcement learning algorithms on waypoint tracking tasks. We will try to make this
procedure as generalizable as possible to other marine robotics tasks.

Lastly, all of our tests will be performed in simulators, but we want the controllers to be
easily transferable to a real-world AUV. We will have to carefully choose the best practical
tools, but also to tune them in order to be as realistic as possible.

1.3 Thesis organization

In this section, we detail the structure of this PhD thesis, as well as the logic followed by the
successive chapters and sections.

Chapters from 2 to 5 correspond to the state of the art and the review of the existing
literature. We tried to give an extensive overview of each domains by tackling as many topics
as possible. The reader should be aware that the notations used in all these chapters will be
unified as far as possible in order to keep consistency, so a few of the variables will be renamed
differently from their original papers. Moreover some notions from control theory and machine
learning can have similar names, so we will used different notations to named them in order
to better differentiate these two fields.
Chapter 2 presents the principles of the control theory. It defines the basic notions of dynamical
systems, feedback systems and the Guidance-Navigation-Control approach, before explaining
how PID controllers work. It also introduces the notions of stability of dynamical systems and
Lyapunov functions.
Chapter 3 describes the principles of machine learning. It especially focuses on all the
algorithms and the elements which led to the Soft Actor-Critic (SAC). It starts with deep
learning by describing the artificial neural networks, the Adam optimizer and the batch
normalization algorithm. The remaining of the chapter concern reinforcement learning and
deep reinforcement learning. The basic paradigm of Markov Decision Process is explained in
details, followed by the Temporal-Difference learning approach. The policy gradient section
lists all the building blocks of the SAC and ends with a complete presentation of this algorithm.
Chapter 4 combines the presentation of the Autonomous Underwater Vehicles (AUV) and
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a selection of the existing works of machine learning applied to control theory and AUVs.
The mathematical models used to represent AUVs will be detailed, as well as the existing
approaches in guidance, navigation and control for AUV. The machine learning section has
been divised into subsections: one for deep learning and the other for reinforcement learning.
Chapter 5 deals with safe reinforcement learning, a subfield of reinforcement learning seeking
to provide safety guarantees to the learning process. These techniques are classified into
two groups: the methods based on the modification of the classical cost function used in
reinforcement learning and those based on the modification of the exploration process of the al-
gorithms. Some of these approaches mix elements of control theory with reinforcement learning.

Chapter 6 corresponds to our main contributions to fulfill the objectives defined in the
introduction. It starts with the successive presentations of the simulation tools, the AUV (the
RexROV 2, a cube-shaped six degrees of freedom robot) and the control task we used in our
work, followed by the description of the two evaluated controllers and the definition of the
metrics allowing to assess their performance. Then we show the results we get during our
initial trials on the waypoint tracking task (these early results were published in [309]).
The next sections detail our first main contribution, which is an in-depth study of how
the changes in the configuration of the state vector can affect the performance of the SAC
algorithm. This study is carried out on a simplified task in order to try to outperform the
PID controller. We managed to match the PID controller in terms of the number of reached
waypoints, while outperforming it on the energy consumption. Moreover we managed to get
these results with reduced state vectors, which means than AUV can fulfill its missions with
less sensor information.
Our second main contribution consists in the experimentation of advanced training techniques:
the Batch Normalization algorithm taken from deep learning and the Learning from Demon-
stration approach taken from safe reinforcement learning. Batch Normalization managed to
improve the performance of the SAC algorithm and to stabilize the learning process. We
tried to make the SAC learn the task from demonstrations provided by PID controllers, but
this approach did not allow the deep reinforcement learning algorithm to learn the task and
to understand the dynamics of the AUV. We proposed a training methodology as well as a
discussion concerning the use of deep RL techniques for the end-to-end control of AUVs.

The chapter 7 is the conclusion of the thesis. The first part summarizes all the results and
allows to make the link between our proposals and the existing state of the art. It answers
the questions raised in the introduction about the objectives we defined. The second part
describes the main ideas about what we expect to do in the future in order to continue this work.

Appendices A to C describe further elements that have been removed from the state of the
art in order to not overload the reading. Appendix A makes a quick presentation of traditional
machine learning and describes the logistic regression, an algorithm belongings to the origins
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of the neural networks. Appendix B shows additional techniques used in deep learning such
as regularization, initialization and several optimizers. Appendix C presents different deep
reinforcement learning algorithms belonging to the Temporal-Difference learning and policy
gradient approaches.
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Chapter 2

Elements of the control theory

In this chapter, we will describe the main principles of the control theory. We will explain vari-
ous concepts related to dynamical systems and feedback systems: modeling, control, guidance,
navigation and stability. We will also present the well-known PID controller. A lot of these
concepts will be used in sections 4 and 5.

2.1 Feedback systems

Feedback systems is one of the most fundamental building block of almost all control schemes.
The textbook [14] is a very complete reference to start with and to go through the main
concepts.

2.1.1 Dynamical systems

A system is an abstract object used for modelling an ensemble of elements interacting with
each other and following specific rules. It is a general notion used in a variety of scientific
and non-scientific domains [344]. It is often represented by multiple equations or functions
involving variables from several interacting elements. The system is evolving in an external
environment. A dynamical system is a system modeled by functions taking into account the
time t [167] and whose variables evolve over time.

In order to better illustrate the different components of dynamical systems, we will use the
example of an inverted pendulum [40][157]: it is composed of a cart able to move towards the
left or the right, with a pendulum fixed to its top by a rigid rod. The rod is able to rotate
thanks to a pivoting link and the control task is to keep the pendulum upright by moving the
cart horizontally.

12



Chapter 2. Elements of the control theory

2.1.1.1 The components of a dynamical system

In the control theory literature, the following notation is used in order to name the different
elements of the dynamical system:

• The vector x is called the state of the system. It includes the internal variables describing
the current state of the system. For example the state vector of the inverted pendulum
is composed of the horizontal position and the linear speed of the cart and by the angle
and the rotational speed of the rod.

• The vector u is called the input of the system and represents the variables allowing the
environment to interact with the system. In the case of the inverted pendulum, the input
vector is only composed of the horizontal force applied to the cart, generating the move
of the cart.

• The vector y is called the output or the measure of the system and is composed of the
variables of the system observed by the external environment. The output vector of the
inverted pendulum is formed by the horizontal position of the cart and the angle of the
rod.

Depending on the dynamical system, the state, input and output vectors can share variables,
as it is the case with the state and output vectors of the inverted pendulum: both of them
include the position of the cart and the angle of the rod. Moreover, the dimension of the input
and output vectors defined the dynamical system as a single-input-single-output (SISO) system
or a multi-input-multi-output (MIMO) system.

2.1.1.2 The different representations of a dynamical system

A dynamical system can be represented either in the temporal domain or in the frequency
domain [14]. Both of these representations are equivalent and we can switch from one
representation to the other using mathematical operations.

The temporal domain representation is composed of an ensemble of differential equations
involving the different elements of the dynamical system:

F(t, x(t), u(t), y(t)) = 0 (2.1)

where F(.) is a set of several differential equations implying the state x, the input u and
the output y. These equations are called the dynamic equations.
Depending if the differential function F(.) are linear or non-linear, the dynamical system is
said to be linear or non-linear. Moreover, if the differential equations F(.) do not involve
directly the time t (the vectors x, u and y are time-dependent, but if the variable t is not
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found in the equations F(.)), the dynamical system is said to be time invariant.

Another temporal representation can be derived from the dynamic equations 2.1 (given for
a general dynamical system): 

d x(t)
dt

= f(t, x(t), u(t))

y(t) = h(t, x(t), u(t))

(2.2)

where f(.) and h(.) are general non-differential equations. These equations are called state
equations and composed the state space representation of the system. More specifically the
first one is called the evolution equation and the second one is the observation equation.
In the case of a Linear Time Invariant (LTI) dynamical system, the state equations 2.2 become:

d x(t)
dt

= A x(t) + B u(t)

y(t) = C x(t) + D u(t)

(2.3)

where A, B, C and D are real-valued matrices.

In the frequency domain, a compact description of the input-output relation called the
transfer function can be found from the state equations 2.3 of a LTI system, by using Laplace
transforms [94]:

Y(s)

X(s)
= G(s) = C(sI−A)−1B + D (2.4)

where X(s) and Y(s) are the Laplace transforms of x(t) and y(t) respectively, G(s) is the
transfer function, s is a complex number and I is the identity matrix.

Both the state space representation and the transfer function allow to carry out advanced
control design and specific analysis of dynamical systems that would not have been possible
inside the temporal domain [14][104].

2.1.2 Closed-loop dynamical systems

The goal of control theory is to design a controller able to make the output signal of a dynamical
system follow a given signal called the reference. In order to follow this reference, the controller
measures the current value of the output signal at any time step. This is done by making a loop
from the output of the controller to the input of the controller, forming a closed-loop dynamical
system or a feedback system.
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Figure 2.1. An open loop control system.

2.1.2.1 Block diagrams and feedback signals

In control theory, block diagrams are often used in order to describe a control architecture. An
example of block diagram is shown in the Figure 2.1: P is the transfer function of the dynamical
system that is being controlled, often called the plant in the control theory literature; C is the
transfer function of the controller and is itself considered as a dynamical system with its own
input and output signals; r, u and y are respectively the reference signal, the input of the
plant and the output of the plant. These signals can be multidimensional in the case of MIMO
systems (as defined in 2.1.1).
The controller C is trying to make the output signal y of the plant P follow the reference r.
The output signal corresponds to the controlled variables of the plant and constitute a measure
of the system, while the reference is the desired setpoint that the output variables of the plant
need to reach. These reference setpoints can be specified by a human or another algorithm.
The controller achieves the given control task by computing the input needed by the plant: the
output of C is the input of P.
As explained in section 2.1.1, the transfer functions are a view of dynamical systems belonging
to the frequency domain. This means that the signals r, u and y are frequency representations
of their respective variables and must respect a certain structure [14]: they belong to a class
of time functions of the form X(s)est, with X(s) being a complex function and s a complex
number. These signals depend on the complex variable s (which will not be written for the
signals r, u and y for more clarity). The signals y and u can be written based on Figure 2.1 as:{

y = P.u
u = C.r

(2.5)

The plant of Figure 2.1 does not send a feedback signal or measure to the controller.
This control system is called an open-loop system or a feedforward system. The controller
has no information about the plant and does not know if the output is correctly following
the reference. The controller is computing the input according to specific plans made in
advance. The control system is insensitive to measurement noises and cannot introduce a risk
of instability if the plant is already stable (an instability is a divergence in the computations
of the input). However, an open-loop system is very sensitive to model uncertainties [14][44].

Figure 2.2 shows a closed-loop system or a feedback system. Instead of only taking the
reference r into account, the input of the controller C becomes the difference between the
reference r and a measure of the output y. The controller is now able to adapt the computation
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Figure 2.2. A close loop control system.

Figure 2.3. A general Guidance-Navigation-Control (GNC) control.

u according to a deviation of y from r, and is not performing planning anymore.
The output y can now be written as:{

y = P.u
u = C.e = C.(r − y)

(2.6)

with e = r - y being called the tracking error.

Closed-loop systems are less disturbed by model uncertainties than open-loop systems (since
the transfer function P is no longer found in the computation of u in equation 2.6), but are
more sensitive to measurement noises, since the equation of u is now based on the measurement
of y. Moreover, a risk of instability exists, since large tracking error signals could cause too
large inputs u for the plant P.

2.1.2.2 Guidance-Navigation-Control systems

In control theory, a Guidance-Navigation-Control (GNC) system is the name of the global
hierarchy of algorithms structuring the control of a dynamical system [78][263]. A general
GNC system is represented on Figure 2.3. Each block represents an independent system or
algorithm. The components of a GNC system are the following:

• The plant system: as previously, the plant is the system which needs to be controlled.
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Its output signals y are the variables being controlled. The plant system used in this
work will be detailed in section 4.1.

• The navigation algorithm: the role of the navigation components is to estimate the
output y of the plant system named ŷ. Sometimes the output cannot be directly de-
termined and an algorithm is therefore required to perform the estimation: when the
measures are very noisy (filtering), when some information are missing (interpolation),
etc. This component is also called a state observer and is said to perform a state estima-
tion [22][353]. The Extended Kalman filter [136][163], regression techniques [121][189],
the Bayesian estimation [110][259] or the interval analysis [159][174] are common examples
of navigation approaches.

• The control algorithm: often called the controller, its function is computing the input
u of the plant [245]. This input is based on the difference between the estimate ŷ of the
output (given by the navigation component) and a reference r (given by the guidance
component). This component can also be referred as the low-level controller.

• The guidance algorithm: the guidance component is in charge of generating the refer-
ence r. It takes into account the current estimate of the output, ŷ, and several parameters
p specified in advance (the parameters can be either variable or fixed). The guidance algo-
rithm allows to fulfill different goals [158]: path planning [196], obstacle avoidance [172],
waypoint tracking [70], etc. These different goals can be combined during a same con-
trol task, and a trade-off must be found between each of them. Line-of-Sight techniques
[20][322], artificial potential fields methods [195][243], Voronoi diagrams [33][72] are ex-
amples of well-known guidance approaches. The guidance system can also be called the
high-level controller.

Each component of a GNC system can be considered as a separate dynamical system, with
its own inputs, outputs, state variables. All the components can also be reduced to one dynamic
system encapsulating all of them, depending on the view needed for the control task. The whole
GNC system forms a closed-loop dynamical system.

2.2 PID controllers

A GNC system includes a controller component. His role is to make the output y of the plant
closer to the reference r computed by the guidance algorithm, based on the estimated output
ŷ given by the navigation algorithm. Different approaches may be considered in order to
compute the appropriate input u needed by the plant, depending on the needs of the control
task. A selection of control approaches has already been presented in the introduction.
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Figure 2.4. The block diagram of a feedback system composed of a PID controller and a plant model.

The Proportional–Integral–Derivative (PID) controller is the most used controller in both
the academic field and the industry [12][14] and belongs to the classical control theory approach.
The input u needed by the plant system is computed by the PID thanks to the tracking error
e(t) = r(t) − ŷ(t), with r(t) being the reference and ŷ(t) being the estimated output of the
plant. The equation used by the PID controller is the following:

u(t) = kp e(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
(2.7)

where kp, ki and kd are real-value scalars (or matrices in the case of multi-dimensional
signals of MIMO systems) called the gains.
As shown in equation 2.7, the PID controller takes his name from the fact that it computes the
input u proportionally to three distinct terms: the tracking error (representing the past), the
integral of the tracking error (representing the present) and the derivative of the tracking error
(representing the future). The block diagram of Figure 2.4 shows a typical PID controller in
the frequency domain (with the use of Laplace transforms), without guidance and navigation
components.
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(a) Proportional control (b) PI control (c) PID control

Figure 2.5. Responses to step changes in the reference value r for a system with a proportional controller (a),
PI controller (b), and PID controller (c). The reference varies at the time step 0 from the value 0 to the value 1.
The process has the transfer function P (s) = 1/(s+ 1)3, the proportional controller has parameters kp = 1, 2,
and 5, the PI controller has parameters kp = 1, ki = 0, 0.2, 0.5, and 1, and the PID controller has parameters
kp = 2.5, ki = 1.5, and kd = 0, 1, 2, and 4.

The gains kp, ki and kd of the PID controller need to be specifically tuned for each plant
system and each control task. Figure 2.5 shows the influence of the value of each gains (example
taken from [14]). It shows the signal input u computed by the PID controller and the output
y and allows to note the following behaviours:

• the proportional gain kp affect the speed of convergence of the plant system: the bigger
kp is, the faster the system converge to the reference.

• the integral gain ki corrects the static error, which is the difference between the input
and the output of a system when the time converges to the infinity: here it is a measure
of the deviation of the output from the reference, taken asymptotically. The bigger ki is,
the closer the output is to the reference.

• the derivative gain kd acts on the magnitude of the oscillations: the bigger kd is, the
smaller the oscillations of the output are.

These gains can be either constant (fixed by control theory methods [182][338]), or variable.
In the latter case, they will be updated automatically during the execution of the control task
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according to a criterion or an external algorithm [13][47]. They can also be tuned using the
frequency domain [203].

The PID controller is easy to be implemented, as only equation 2.7 is needed. It is also
easy to tune since it has just three parameters, which can eventually be tuned empirically by
interpreting the resulting signals (like in the example of Figure 2.5). However in some cases,
even a self-tuning PID controller is not enough, and advanced approaches may be considered.
Several limitations can be found in the PID control approach [17][318]. A PID controller can
have difficulties with the systems involving specific non-linearities or varying internal param-
eters. It can also lack of responsiveness in the presence of large low-frequency disturbances.
Finally the tuning of the PID controller must be carefully chosen, since a trade-off must be
found between the regulation abilities and the response time of the controller.

2.3 Stability of feedback systems

One of the first analysis operated on a dynamical system is a stability analysis [191]. This helps
to understand the system being controlled and provide guidelines on the choice and the tuning
of the controller. Some of the following elements will be used by several safe reinforcement
learning approaches of the section 5. We will describe only several well-known techniques.

2.3.1 Equilibrium points

As defined in section 2.1.1, x(t) is the state of a dynamical system. Let us note:

d x(t)

dt
= F(x(t)) (2.8)

with F being a general function. It is very similar to the evolution equation found in
equation 2.2. When the state x(t) of a dynamical system varies over time, we say that the
system follows a given trajectory in the statespace.
One of the first things to carry out when analyzing the stability of a dynamical system is to
find its equilibrium points xe, which can be computed by resolving the equation:

F(xe) = 0 (2.9)

These equilibrium points are specific points of the state space of a dynamical system, where
the dynamics remain stationary [14]. It means that the state variables will not diverge to
extreme values. The values of the equilibrium points are often used by controllers as reference
signals in order to stabilize the dynamical system, letting it in a steady behaviour.
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In practice, the equilibrium points can also be used in order to linearize complex non-linear
systems [183][312]. Mathematical approximations can be performed around a given equilibrium
point, and the resulting linear system is a valid approximation of the original non-linear system
in the vicinity of the equilibrium point. The new linear system allows to perform a simpler
stability analysis.

2.3.2 Pole placement method

One of the most known stability analysis approach is the pole placement method [192][362].
This method can only be applied to linear systems.

Let G(s) be the transfer function of a linear system. The pole placement method rewrites
this transfer function using a partial fraction decomposition:

G(s) = k
(s− z1) . . . (s− zn)

(s− p1) . . . (s− pm)
(2.10)

where k is a real number, (z1 . . . zn) the complex roots of the numerator of G(s) and
(p1 . . . pm) the complex roots of the denumerator of G(s). (z1 . . . zn) are called the zeros of
G(s) and (p1 . . . pm) are called the poles of G(s).

A linear system is said to be stable if all the poles of its transfer function have strictly
negative real parts. The system will remain close to its nearest equilibrium point.
This definition can be used to certified the stability of a controller, by taking the transfer
function of the whole linear feedback system (composed of the controller and the plant). The
name pole placement refers to the fact that the tuning of the parameters of the controller must
place the poles of the transfer function of the whole feedback system in the negative part of
the complex plane.

2.3.3 Stability with PID controllers

The stability of a feedback system composed of a PID controller can be guaranteed by multiple
methods [253][293], but we will only cite two different approaches.

One convenient method is to find stability regions in the parameter space of the PID
controller [237]. It corresponds to regions in the spaces of value of the gains kp, ki and kd
(which can be multi-dimensional in the case of MIMO systems) where the whole feedback
system meets specific frequency domain criteria. The PID gains are then bounded by these
stability regions: they are the sets of all PID gains that stabilize the closed-loop system.
Figure 2.6 (taken from [237]) shows an example of stability regions the gains of a PD controller
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Figure 2.6. Examples of regions of stability for a PI controller (on the left) and a PID controller (on the
right).

and a PID controller.

The pole placement method from the previous section can also be applied to PID controllers
[351][383].

2.3.4 Lyapunov functions

The Lyapunov stability analysis is one of the most powerful stability guarantee tool, since it
can be applied to any nonlinear dynamical system [171][220].

A Lyapunov funtion is an energy-like function V of Rn → R which can be used to determine
the stability of a general nonlinear dynamic system:

dx

dt
= F(x) with x ∈ Rn (2.11)

The stability of this system around an equilibrium point is guaranteed by using the
following theorem [14]. This theorem is formulated for an equilibrium taken at the origin
of the state space (xe = 0) for simplicity, but it can be generalized to any equilibrium point xe.

Lyapunov stability theorem: Let V be a function on Rn and let V̇ represent the time
derivative of V along trajectories of the system dynamics (2.11):

V̇ =
∂V

∂x

dx

dt
=

∂V

∂x
F(x) (2.12)
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Figure 2.7. A two dimensions Lyapunov function

Let Br = Br(0) be a ball of radius r around the origin of the state space of the system.
If there exists r > 0 such that V is positive definite and V̇ is negative semidefinite on Br, then
xe = 0 is (locally) stable in the sens of Lyapunov: x remains in the vicinity of xe.
If V is positive definite and V̇ is negative definite in Br, then xe = 0 is (locally) asymptotically
stable: x converge to xe as the time tends to infinity.
Br defines what is called a region of attraction, since the trajectories of the system will stay
inside this region of the state space [65][341].

The Lyapunov function is a real-valued function: the smaller its value is, the closer the
defined region of attraction will be to the equilibrium point. An example of Lyapunov functions
computed in a two dimensional state space is shown on the Figure 2.7 (taken from [14]).

A phase portrait is a representation of the evolution of the trajectories of a dynamical
system. A vector field is plotted in the state space of the system and a dot or a curve is
attributed to each initial conditions of the system.
An example of a phase portrait of an inverted pendulum is shown on Figure 2.8 (taken from
[14]). The blue lines and the blue arrows show the evolution of the trajectories over time. We
can see multiple equilibrium points (where the trajectories converge towards a same point)
and a Lyapunov function is drawn in red.
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Figure 2.8. A phase portrait of an inverted pendulum with the red line delimiting the region of attraction
covered by a Lyapunov function.

Lyapunov functions are one of most the powerful tool for guaranteeing the local stability of
a dynamical system, but they are very hard to use, since no systematic method can be applied.
Indeed, the Lyapunov functions need to be found empirically for each dynamical system (no
general rule exist for deriving them), which is often not possible for complex systems such as
robots. Significant progress has been made in order to found computational methods for these
Lyapunov functions, [103][38]. However, these methods cannot often be applied to complex
dynamical systems.

In the remaining of this work, the control theory elements presented in this chapter will be
either reused by machine learning approaches or compared with machine learning algorithms.
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Chapter 3

Elements of Deep Reinforcement
Learning

We will explain in this chapter key concepts of deep learning and reinforcement learning. We
have also added appendix A in order to present additional elements of traditional machine
learning. Moreover additional explanations about deep learning and reinforcement learning
can be found respectively in the appendices B and C. In this chapter, we only kept the essential
parts to understand the algorithm Soft Actor-Critic we will use during the results of the chapter
6.

3.1 Artificial neural networks and Deep learning

As mentioned in the introduction, the term Deep Learning [109][199] refers to the supervised
and unsupervised tasks that are solved using deep neural networks. The major difference
between the traditional machine learning and the deep learning approaches is that deep
learning requires a very large amount of data in order to estimate or classify well: a task
requiring several millions of data samples is very common. Traditional machine learning
algorithms such that random forest or k-nearest neighbors can work even with small datasets.
Another difference is that deep learning algorithms take raw data in input, whereas traditional
machine learning approaches require a feature extraction step. The feature extraction step is
carried out using specific knowledge from the application area of the task, in order to filter
the data. This step is implicitly included in the deep learning techniques, which thus does not
require an expert from the application area.

In this section, we will only focus on the deep learning algorithms used for supervised tasks.
The book [109] is one of the best entry points for deep learning researchers.

25



Chapter 3. Elements of Deep Reinforcement Learning

3.1.1 Multilayer Perceptron

The works on Artificial Neural Networks (ANN) algorithms, often shortened to Neural
Networks (NN), have begun in the 40’s [176][224]. This family of techniques takes its name
from the domain of neuroscience and aims to imitate the way the human brain works.

Multilayer perceptrons (MLP) [123] are the most common type of ANNs for supervised learn-
ing tasks. A MLP is constructed from multiple perceptrons (also called an artificial neuron). A
representation of a perceptron is shown on Figure 3.1 (taken from [21]). The implementation of
a perceptron is very close to the logistic regression algorithm, described in the appendix section
A.1.5. It is composed of two parameters which need to be learnt: the weight vector w and the
bias b. The biais b may be renamed as W0 and may be included in the weight vector w; like on
Figure 3.1. Figure 3.1 shows the i-th perceptron of a MLP, this is why the subscript i is used
with all the components of the perceptron.
After multiplying the weight vector w with the entry vector of the perceptron, a non-linear
function called the activation function is applied to the result of this multiplication (the acti-
vation function is called g on Figure 3.1). Several well-known activation functions are used in
the deep learning community:

• The sigmoid function: y(x) = 1
1 + e−x

• The hyperbolic tangent function: y(x) = ex−e−x

ex+e−x

• The Rectified Linear Unit (RELU) function: y(x) = max(0, x)

• The leaky ReLU function: y(x) = max(0.01x, x)

A multilayer perceptron is composed of several perceptrons connected all together, as rep-
resented on Figure 3.2 1. Hereinafter, we call a perceptron as a neuron, which is the name more
commonly found in the deep learning community. The MLP is organized in layers:

• An input layer simply takes the data matrix X in input and sends it directly to next
layer. The matrix X has the size (number of descriptive features, number of training
data).

• Several hidden layers, each one is composed of multiple neurons. The MLP shown on
the Figure 3.2 is composed of only one hidden layer of four neurons, but neural networks
can be composed of more hidden layers. The neurons of each layer can have different
activation function: the hidden layer of the MLP from the figure 3.2 is composed of
hyperbolic tangent neurons, but it could for example be followed by a hidden layer of

1Taken from Neural Networks and Deep Learning, https://www.coursera.org/learn/neural-networks-deep-
learning?specialization=deep-learning
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Figure 3.1. A perceptron, the base unit of deep learning.

Figure 3.2. A multilayer perceptron (MLP)
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ReLU neurons.
The principle of hidden layers is that the output of each neuron is connected to the
inputs of all neurons of the following layer. Moreover, the neurons are not connected
to the neurons found in the same layer. MLP can also be called fully connected neural
network, since each neuron is connected to all the neurons of previous and next layers.
The role of the hidden layers of the network is to learn and represent the links between
all the descriptive features of the matrix X. This representation is used in order to take
decisions and to solve a given problem.

• The output layer computes the predicted output ŷ of the MLP. If the task is a classifica-
tion, ŷ corresponds to the class of input X. If the task is a regression, ŷ is the estimation
of a variable computed from the input X. ŷ can be either a scalar or a vector.
For binary classification tasks, the output layer is composed of only one neuron imple-
menting the sigmoid function. This output ranges from 0 to 1: if the output is strictly
inferior to 0.5, the predicted label corresponds to the first class; if the output is superior
to 0.5, the predicted label corresponds to the second class.
For multiclass classification tasks, the number of the neurons composing the ouput layer
will be equal to the number of classes. Each neuron represents a class and implements
the Softmax function [36]: it allows to output the probability of the class represented by
the neuron to be the true class of the input X. The final estimated output of the neural
network is then chosen by selecting the neuron with the maximum output, thus taking
the most likely class according to the probabilities outputted by each neuron.
For regression tasks, the output layer is composed of one or more neurons with no activa-
tion function: the expected ouputs do not need to range from 0 to 1. If the output values
are supposed to be positive, the ReLU function can be used.

The layers have an assigned number, from 0 for the input layer to N for the output layer.
Each layer i has two parameters which needs to be learnt or updated:

• A weight matrix Wi of size (number of neurons in layer i, number of neurons in layer i-1),
which corresponds to the aggregated weight vectors of all the neurons from that layer.

• A bias vector bi of size (number of neurons in layer i, 1), which corresponds to the
aggregated bias parameters of all the neurons from that layer.

These parameters allow to compute the outputs of all the neurons of a same layer at the
same time. For a given layer i, we have:

ai = activation
(
Wi

T ai−1 + bi

)
(3.1)

with activation being the activation function of the layer i (applied element-wise) and ai

being the vector corresponding to the output of the layer i and of size (number of neurons in
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layer i, number of training data).

The input layer is the only layer without parameters Wi and bi, since its purpose is just to
take data matrix X in input and to send it to the first hidden layer, without any modifications.
Several hyperparameters need to be choosen in order to set the architecture of the neural net-
work: the number of hidden layers, the number of neurons per layer, the activation function of
each layer.
When the MLP has only one or two hidden layers, it is called a shallow neural network. When
it has more than two layers, the term deep neural network is used.
The activation functions used in the neural network needs to be non-linear. If linear activation
functions are implemented, the whole neural network can be reduced to a simple linear combi-
nation W′T X + b′ and its modeling ability will not be powerful enough: the neural network
will become a simple linear regression.

3.1.2 Training neural networks

We are going to describe how to train a neural network like the MLP in order to learn a ML
task.

Figure 3.3. The backpropagation process in neural networks.
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3.1.2.1 Backpropagation

The backpropagation is an algorithm used to train the neural networks [200][280]. The steps
operated by the backpropagation are represented on Figure 3.3 2:

1. The input layer takes data matrices X in input.

2. The input layer is sent to the first hidden layer and equation 3.1 is applied. The same
equation is applied successively to all the following layers, until the output layer giving
the estimated label or estimated variables in the case of a regression task. This is called
the forward propagation.

3. A loss function L(ŷ, y) is used in order to measure the error between the predicted outputs
ŷ of the neural network and the true labels y of the training set. The loss function needs
to be chosen depending on the nature of task. For binary and multiclass classification
tasks, the cross-entropy loss function [241] function will be used. For a regression task, the
Mean Absolute Error (MAE, also called L1 loss) [359] or the Mean Squared Error (MSE
or also called L2 loss) [206][346] will be used. Other loss functions can be found in the
litterature: the hinge loss [62][71], the Huber loss [142], the Kullback–Leibler divergence
[187][188], etc.
A cost function J is then used in order to know the global classification or regression error
on the whole dataset. It simply computes the mean of the loss function values obtained
from all the outputs of the forward propagation:

J(W,b) =
1

m

m∑
i=1

L
(
ŷ(i), y(i)

)
(3.2)

with m being the number of data samples contained by the training set. The cost function
gives a measure of the performance of the neural network and helps to know when the
training process needs to be ended.

4. The parameters Wi and bi of each layer i (except the input layer) need to be updated in
order to minimize the cost function:

min
Wi,bi

J(Wi,bi) ∀ i ∈ [1, N ] (3.3)

with N being the number of layers of the neural network, apart from the input layer.

2Taken from Back Propagation Neural Network: What is Backpropagation Algorithm in Machine Learning?,
https://www.guru99.com/backpropogation-neural-network.html
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The update of the parameters is made thanks to the gradient descent, a very well-known
optimization algorithm [64][207]. It is applied to the parameters as follows:

Wi = Wi − α ∂ J(Wi,bi)
∂Wi

bi = bi − α ∂ J(Wi,bi)
∂ bi

∀ i ∈ [1, N ] (3.4)

with α being the learning rate, a hyperparameter allowing to control the speed and the
precision of the convergence towards the minimum of the cost function.

The partial derivatives are matrices of the same size as their corresponding parameter:

• ∂ J(Wi,bi)
∂Wi

has the size (number of neurons in layer i, number of neurons in layer i-1).

• ∂ J(Wi,bi)
∂ bi

has the size (number of neurons in layer i, 1).

This part of the learning process corresponds to the backpropagation step.
The partial derivatives of equation 3.4 are computed using the chain rule:

∂ J(Wi,bi)

∂Wi

=
∂ J(Wi,bi)

∂ ai

.
∂ ai

∂Wi

(3.5)

with ai being the output vector of all the neurons of the layer i. Each partial derivative
vector has the same size and the multiplication found in equation 3.5 is applied element-
wise.

The partial derivative ∂ J(Wi,bi)
∂ ai

is itself computed using the chain rule:

∂ J(Wi,bi)

∂ ai

=
∂ J(Wi,bi)

∂ ai + 1

.
∂ ai + 1

∂ ai

(3.6)

Each partial derivative is computed using terms from either the same layer or the next
layer, which are incrementally computed during the backpropagation. Linear algebra is
used in order to vectorize these chain rules and matrix operations allow to found each
term of the previous chain rules. More details of these computations can be found in [109].

As the arrow suggests on Figure 3.3, the chain rules are first applied to the output layer,
then the values of the computed partial derivatives are propagated backwards through
all hidden layers. The same chain rules are applied to the bias vectors bi.
This backpropagation allows each hidden layer to update its parameters Wi and bi one
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after another, until reaching the first hidden layer.

In practice, the gradient descent used during the backpropagation gives decent results, but
more advanced optimization algorithm can be used.

3.1.2.2 The Adam Optimizer

The gradient descent mentioned in the previous section is not the only used optimization
algorithm in deep learning. More advanced optimization algorithms, called optimizers, can be
employed depending on the needs of the task. The choice of the right optimizer can be viewed
as an additional hyperparameter. A given optimizer can be the best choice during one task,
regarding the performances it provides, while performing poorly on another task.

The optimizer called Adam was defined in [175] and means Adaptive moment estimation.
The idea of the authors of [175] was to combine the principles of the gradient descent with
momentum and RMSprop, two optimizers described in section B.3. The idea of these two
optimizers is to apply a moving average to either the partial derivatives (for the gradient
descent with momentum), or the square of the partial derivatives (for RMSprop). The results
of these moving averages will be used in order to update the parameters, instead of the raw
partial derivatives.
In the case of the Adam optimizer, the gradient descent update equations 3.4 become:

MAWi
= β1 MAWi

+ (1− β1) ∂ J(Wi,bi)
∂Wi

MAbi
= β1 MAbi

+ (1− β1) ∂ J(Wi,bi)
∂ bi

SMAWi
= β2 SMAWi

+ (1− β2)
(
∂ J(Wi,bi)

∂Wi

)2

SMAbi
= β2 SMAbi

+ (1− β2)
(
∂ J(Wi,bi)

∂ bi

)2

Wi = Wi − α
MAWi√

SMAWi
+ ε

bi = bi − α
MAbi√

SMAbi
+ ε

∀ i ∈ [1, N ] (3.7)

MA stands for the Moving Average and implements an exponentially weighted moving
average of the partial derivative of the cost function J with respect to both parameter vectors
Wi and bi of the i-th layer of the neural network. SMA stands for Squared Moving Average
and is implementing an exponentially weighted moving average of the square of the partial
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derivative of the cost function J with respect to the parameter vectors Wi and bi of the i-th
layer of the neural network. β1 and β2 are two hyperparameters allowing to weight the update
of the moving averages. α is the same learning rate as in the gradient descent. N is the number
of layers of the neural network. ε is a small real number avoiding the denominators of the
fractions to be equal to zero. The authors of [175] suggested the following values: β1 = 0.9,
β2 = 0.999, ε = 10−8. The learning rate α still need to be specifically tuned for each deep
learning task.

Adam is the most used optimizer in the deep learning community and is often the most
effective one, at the exception of some very specific tasks. It allows to speed up the learning
process thanks to the smoothing of the partial derivatives performed by the moving averages.
The Adam optimizer is often applied to reduced sets of training data instead of the whole
available dataset. This reduced set are called mini-batch and are successively sampled from the
training set. When the whole training set has been sampled trough successive mini-batches,
we said that an epoch has been performed. The mini-batches are an additional way allowing
to speed up the learning process.

3.1.2.3 Batch normalization

The inputs of the dataset are usually normalized during the preprocessing of the data,
by substracting the mean to all the input vectors and then dividing the results of these
subtractions by the variance. The mean and the variance are computed on all the data of the
dataset. This allows to shape the cost function (in the parameter space) in order to reach the
minimum point faster.

The Batch Normalization (BN) algorithm [150][340] applies the same idea to all the
layers of the neural network. The inputs of all the layers are normalized before applying the
activation function. For a given layer i, the normalization is applied to zi = Wi

Tai−1 + bi.
The BN algorithm can be applied in the context of mini-batches and epochs, or not. This
form of normalization allows to speed up the learning process. Moreover, it can also stabilize
the training of the neural networks: during the backpropagation, the BN algorithm allows
to prevent the partial derivatives to explode to extremely high or extremely low values. The
pseudo-code of the BN algorithm is detailed below and is described for a given layer l:

1. For each mini-batch or batch of size m, we have Zl = [z
(1)
l , . . . ,z

(m)
l ], where z

(i)
l is the

the pre-activation vector of the l-th layer given for i-th data sample.

2. Computation of the vector:
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mean =
1

m

m∑
i=1

z
(i)
l (3.8)

3. Computation of the vector:

variance =
1

m

m∑
i=1

(z
(i)
l −mean)2 (3.9)

4. Computation of the normalized pre-activation vector:

Znorm
l =

Zl −mean√
variance + ε

(3.10)

where ε is a small real number avoiding the division by 0. The division by
√

variance + ε
is aplied element-wise to the numerator.

5. (Optionnal) If necessary, the pre-activation can be forced to belong to another distribu-
tion, with a different mean and a different variance:

Z∼
l = γT .Znorm

l + β (3.11)

where γ and β are vectors and can be additional learnable parameters.

The BN algorithm is applied in this way to all the layers of the neural network.

3.2 Reinforcement learning

As defined in the introduction, Reinforcement Learning (RL) is one of the three main subfields
of Machine Learning, alongside with Supervised Learning and Unsupervised Learning. We
are going to describe the main elements allowing to understand the Soft Actor-Critic, the RL
algorithm we will use in the chapter 6. One of the main entry points for researchers is the well-
known book [320]. A taxonomy of the main Reinforcement Learning algorithms is presented
on the Figure 3.4 (taken from [375]), showing the main families of algorithms of RL. Some of
these approaches will be tackled in the following sections.
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Figure 3.4. A taxanomy of the most known Reinforcement Learning algorithms

3.2.1 The paradigm of Markov Decision Process

The main formalization of Reinforcement Learning (RL) tasks is based on the paradigm of
Markov Decision Process (MDP) [25]. A MDP is a discrete-time stochastic control process
used in optimization problems falling into the subfield of dynamic programming [138].

3.2.1.1 The agent

As represented on Figure 3.5 (taken from [320]), a MDP is composed of an agent trying to
achieve a goal defined by the task. The agent evolves in an environment and learns the task
by trial and error.

At time step t, the agent is in a given state St of the environment and performs an action
At. The state and the action can be vectors. The environment responds to the agent by sending
to it an observation of the new state St+1 and a scalar signal called the reward Rt+1. The role
of the reward is to judge the actions carried out by the agent with respect to the states of the
environment: if the reward is positive, the action was good to carry out in the given state in
order to complete the task; otherwise, it was a bad action to perform and it moved the agent
away from its goal. The whole sequence of all the visited states and all the actions taken by
the agent during T steps is called a trajectory :
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Figure 3.5. The paradigm of Markov Decision Process

S1, A1, R2, S2, A2, . . . , ST (3.12)

The goal of the agent is to maximize the long term sum of all the received rewards. In
section 3.1, the cost function was the key element defining the supervised learning task. In
reinforcement learning, the task is mainly defined by the reward function and must be tuned
carefully.

The behaviour of the agent is defined by a policy π(a|s), allowing it to choose which action
to perform in a given state. The policy can be stochastic or deterministic: deterministic
policies generate a single action π(s) = a, while stochastic policies generate a vector composed
of the probabilities of choosing each possible actions, also called the probability distribution
over actions π(a|s) = Pπ[A = a|S = s].

If the task is supposed to never end (e.g. an inverted pendulum equiped with a motor and
trying to balance itself indefinitely), it is called a continuing task. If the task is supposed to
end when the agent reaches a terminal state ST , it is called an episodic task and each trial of
the agent evolving in the environment is called an episode.

3.2.1.2 The environment

A MDP M is defined as M =< S,A, P, R, γ >, where S is a set of states, A is a set of
actions, P is transition probability function, R is the reward function and γ is the discount
factor (defined later).
The environment is defined by a model composed of the reward function R and the transition
probability function P .
When the agent is in a given state St and performs the action At, allowing it to move towards
another state St+1 and to receive a reward Rt+1, we say that the transition (St, At, St+1, Rt+1)
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has been carried out. The transition probability function P encapsulates all the probabilities
of the agent moving from a state S to a state S ′ after choosing the action A:

P (s′, r|s, a) = P[St+1 = s′, Rt+1 = r|St = s, At = a] (3.13)

In a MDP, all the states follow the Markov property, meaning that the future states only
depend on the current state, and not the previous states visited by the agent:

P[St+1|St] = P[St+1|S1, . . . , St] (3.14)

The model of the environment can be known by the agent, completely unknown or partially
unknown, depending on the task. As shown on Figure 3.4, this leads to a first distinction
between RL algorithms:

• Model-based algorithms: the model is initially known by the agent, or the model is not
known and has to be learned during the learning process. Once the model is completely
known, it is used by the agent for planning all its actions.

• Model-free algorithms: The model of the environment is not needed by the algorithm
and is not used nor learned.

3.2.1.3 The return and the value functions

As mentioned previously, the goal of the agent is to maximize the total sum of discounted
rewards, called the return Gt (sometimes also called the discounted future reward):

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (3.15)

where Rt is the reward received at the time step t and γ is the discount factor belonging
to ]0, 1] and allowing to control the influence of the future expected rewards, which may be
estimated with large uncertainties.

The value functions are used by the agent in order to assess which states and/or actions are
the best in order to maximize the return based on the current policy π.
The state-value function Vπ(s) is defined by the expected return computed from a given state
s, following a given policy π:

Vπ(s) = Eπ[Gt|St = s] (3.16)

The action-value function Qπ(s, a), also called the Q-value function or the Q-function, is
defined by the expected return computed from a given action a taken in a given state s, following
a given policy π:
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Qπ(s, a) = Eπ[Gt|St = s, At = a] (3.17)

The definitions of these value functions are linked as follows [320]:

Vπ(s) =
∑
a∈A

Qπ(s, a)π(a|s) (3.18)

3.2.1.4 The Bellman equations

The goal of the agent is to find the optimal policy in order to maximize the return.

This optimal policy can be found by first seeking the optimal value functions:

V∗(s) = max
π

Vπ(s) (3.19)

Q∗(s, a) = max
π

Qπ(s, a) (3.20)

The optimal policy will be the policy that achieves the optimal value functions:

π∗ = arg max
π

Vπ(s) or π∗ = arg max
π

Qπ(s, a) (3.21)

During the deployment of the agent, the action selected in any given state s will be the
action a which gives the maximum value of the function Q∗(s, a).
The value function can be updated iteratively during the learning process thanks to the Bellman
equations [320]:

V (s) = E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + . . . )|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γV (St+1)|St = s]

(3.22)

In the same way, the action-value function gives:

Q(s, a) = E[Rt+1 + γV (St+1) | St = s, At = a]

= E[Rt+1 + γEa∼πQ(St+1, a) | St = s, At = a]
(3.23)
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3.2.1.5 The exploration-exploitation trade-off

A well known issue in Reinforcement Learning is the exploration-exploitation trade-off.
Indeed, the RL algorithm needs to explore the environment by interacting with it in order to
discover the action and the state spaces, gathering the information needed by the estimations
of value functions and the policy.
In the same way, the agent needs to exploit the already gathered knowledge in order to choose
the right actions maximizing the return.

If the agent spends too much time exploring the environment, it will never fulfill the initial
task. If it does not explore enough, the estimates of its value functions and its policy will not
be accurate enough to choose the right actions maximizing the return, and again the agent
will not fulfill the task.

In order to fix this problem, several exploration strategies can be employed: Upper
Confidence Bounds [18], Boltzmann exploration [55], Thompson sampling [332], etc.

Epsilon-greedy (ε-greedy) is the most common exploration strategy employed in RL. The
idea is that we define the probability ε of taking a random action in the current state. Thanks
to this technique, the agent is able to explore its environment with a probability ε and to
exploit its current estimates of value functions with a probability (1-ε). When the agent is
exploiting the information, it simply chooses the action a with the maximum action-value
Q(s, a) for the current state s. During exploitation, we say that the agent acts greedily.

Moreover, the probability ε can be variable. At the beginning of the training process,
this probability can be high, since the agent does not know anything about the environment
and the task to fulfill, so it needs to explore a lot. After a certain time step or some pre-
defined thresholds, the probability ε is reduced gradually over time, allowing the agent to
switch on an exploitation behaviour, since enough information were previously gathered during
the exploration behaviour.

3.2.1.6 Policy-based and value-based

As shown on Figure 3.4, a second distinction can be made among model-free methods:

• Policy-based algorithms: it is the category of algorithms trying to approximate directly
the optimal policy, without taking the value functions into account. The REINFORCE
algorithm [320] is an example of policy-based algorithms.

• Value-based algorithms: it is the category of algorithms which estimates first the optimal
value functions, before using the optimal policy as in equation 3.21. The SARSA and
Q-learning algorithms in section C.1 are examples of value-based algorithms.
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In the following sections, the most classic Reinforcement Learning algorithms will be pre-
sented, followed by more recent algorithms used in the next chapters, which took several ideas
from various of these classic RL algorithms.

3.2.2 Temporal-Difference learning

Temporal-Difference (TD) learning [319] is a family of model-free and value-based algorithms.
Some of the ideas presented in this section will be reused by the SAC algorithm.

3.2.2.1 TD error

These value-based methods seek to estimate the value functions [336]. They update these
estimates towards an estimated return called the TD target.

For the state-value function V (St), the TD target is defined by the expression Rt+1 +
γV (St+1), inspired by the Bellman equations from 3.22. This target is evaluated after a new
transition (St, At, St+1, Rt+1) has been carried out, thanks to the information it brings to the
agent. V (St) is then updated towards this TD target, by applying a weighted sum using a
learning rate α, the same hyperparameter as in section 3.1:

V (St)← (1− α)V (St) + αGt

V (St)← V (St) + α(Gt − V (St))

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))

(3.24)

The learning rate α allows to control the importance of the update applied to V (St). The
term (Rt+1 + γV (St+1) − V (St)) behind the learning rate is precisely what is called the TD
error, since it is the difference between the previous estimate of the state-value function V (St)
and the new TD target Rt+1 + γV (St+1) evaluated after the last transition.

Similarly, we have the following update for the action-value function Q(St, At):

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) (3.25)

3.2.2.2 On-policy and off-policy

Depending on the way the TD errors or the TD targets are computed, an algorithm can be
qualified as being on-policy or off-policy in the literature:

• On-policy: if the policy used to compute the TD targets (called the target policy) and
the policy used by the agent to explore the environment (called the exploration policy)
are the same, then the algorithm is on-policy.
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• Off-policy: if the policy used to compute the TD target (called the target policy) and
the policy used by the agent to explore the environment (called the exploration policy)
are different, then the algorithm is off-policy.

3.2.2.3 Deep Q-Network

The Deep Q-Network (DQN) algorithm [229][230] is a major improvement in the history
of Reinforcement Learning. It is the first algorithm to take concepts from Deep Learning
algorithms and to use them in Reinforcement Learning approaches, creating the subfield
of Deep Reinforcement Learning (Deep RL). It is the evolution of the Q-value algorithm
(presented in appendix C.1.2).

The major drawback of the Q-learning algorithm is that the estimated Q-values are stored
in tables representing all the possible pairs of states and actions. When the dimension of either
the state space or the action space increases, the problem becomes quickly intractable.

The main idea behind DQN is to fix this issue by using a neural network as a function
approximator of the Q-value function. The Q-value function is then labeled Q(s, a|θ), with
θ being a vector containing all parameters of the neural network. These parameters are the
weights and the bias of the neural network, as defined in section 3.1.1.

Moreover, the Q-learning can also suffer from instability and divergence during the learning
process. DQN fixes also these issues by implementing two additional ideas:

• Experience replay: This mechanism [82] allows the transitions Tt = (St, At, St+1, Rt+1)
experienced by the agent to be store in a replay memory (also called replay buffer) D =
{T1, . . . , Tt}. The maximum length of D is a hyperparameter needing to be tuned and
this buffer will be able to contain transitions taken from different episodes.
Random transitions are then sampled from this replay memory D and are to compute
the updates of the Q-values estimates. These stored past transitions are used during the
learning process in the place of the transitions being currently experienced by the agent,
meaning that DQN is an off-policy algorithm: the actions found in these past transitions
were selected by a past policy and not by the current exploration policy.
This trick improves the sample efficiency of the algorithm (which means that less samples
are required by the agent in order to converge toward an optimal solution). It also allows
to remove any correlation between the sequence of observations or samples used to learn
the Q-value function, and to smooth over changes found in the data distribution (the
sudden changes appearing in the successive observations become less influential).

• Periodically updated target: The Q-values are updated in order to move towards the
TD target. In DQN, these TD targets are periodically updated, instead of being updated
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at each time step like in Q-learning.
Another neural network of parameters θ′ is created by copying the initial parameters θ.
This neural network models the target Q-value function Q′(s, a|θ′) and its parameters are
kept unchanged for C time steps. Every C time steps, the parameters θ′ are updated by
copying the parameters θ and this process is repeated until the end of the training. This
neural network will be used to compute the TD targets found in the update equation of
the Q-values.
This mechanism allows to overcome the short-term oscillations, making the learning pro-
cess more stable.

As for the neural networks described in section 3.1, the parameters θ are updated using
the gradient descent algorithm in order to minimize a cost function. Here, this cost function is
defined using the TD error:

J(θ) = E(si,ai,ri,si+1)∼U(D)

[(
r + γmax

ai+1

Q′(si+1, ai+1|θ′)−Q(s, a|θ)
)2
]

(3.26)

where U(D) is a uniform distribution over the replay memory D, and θ′ is the parameters
of the fixed target neural network. This cost function includes a formulation TD error similar
to equation 3.25. The backpropagation allowing to update the parameters θ is carried out
over samples taken from the replay memory D and uses this new cost function.

3.2.3 Policy Gradient

Policy Gradient (PG) [321] is another family of Reinforcement Learning approaches. Policy
gradient algorithms continue to emerge and are among the most recent advances of the machine
learning field. There are a large amount of different algorithms, and the most important ones
will be presented in this subsection.
While TD learning approaches were value-based, PG methods are policy-based: the policy
is directly optimized in order to maximize the return G. As for the reinforcement learning
algorithms described in previous sections, PG methods are model-free.

3.2.3.1 Policy gradient theorem

In PG approaches, the policy is modeled by a parametrized function based on the parameters
θ (usually a gaussian distribution). It is noted πθ(a|s) and has to maximize the return (the
expected amount of future discounted reward). To do, the agent has to maximize an objective
function J(θ) (noted as the cost function in section 3.1) defined as:

J(θ) =
∑
s∈S

dπ(s)V π(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a) (3.27)
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where dπ(s) is the stationary distribution of Markov chain for πθ (the parameters θ have
not be written for simplicity). It is defined as:

dπ(s) = lim
t→∞

P (st = s|s0, πθ) (3.28)

and represents the probability of reaching the state s given an infinity amount of time,
starting from the initial state s0 and following the policy πθ.

Since the policy is now parametrized, the parameters θ need to be updated in order to
maximize the return J(θ). The gradient ascent is used to improve the policy:

θ = θ + α
∂ J(θ)

∂ θ
(3.29)

with α being the learning rate (as in section 3.1).

From now, the gradient of the return with respect to the policy parameters is noted ∇θJ(θ)
for simplicity.
This gradient can be computed thanks to the policy gradient theorem [321]:

∇θJ(θ) = ∇θ
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)πθ(a|s)

∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇θπθ(a|s)
(3.30)

A complete proof of the policy gradient theorem can be found in [320].
The gradient can then be further developed:

∇θJ(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇θπθ(a|s)

=
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a)
∇θπθ(a|s)
πθ(a|s)

= Eπ[Qπ(s, a)∇θ lnπθ(a|s)]

(3.31)

where Eπ refers to Es∼dπ ,a∼πθ when both state and action distributions follow the policy πθ
(in the case of an on-policy algorithm, where the target and the exploration policies are the
same).

3.2.3.2 Actor-Critic architecture

Besides learning the policy in order to maximize the return, PG methods can also learn the
value function: either the value function V (s), or the action-value function Q(s, a), or both
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of them in some algorithms. While in TD learning methods the value function gives directly
the policy, here it helps indirectly to learn the policy, since the value functions are found in
the definition of the objective function, equation 3.27, and in the policy gradient theorem,
equation 3.31.
The value functions are also modelled with a function parametrized by a set of parameters w.

The Actor-Critic architecture is composed of two models:

• The critic: it updates the model of the value function Vw(s) or Qw(s, a). The TD error
is used in order to update the parameters of the value function.
The critic must minimize the square of the Temporal-Difference error:

δt(w) = (rt + γQw(si+1, ai+1)−Qw(st, at))
2 (3.32)

A gradient descent is needed in order to update the parameters of the value function
thanks to the gradient ∇wδt(w).

• The actor: it updates the model of the policy πθ, which will be used to choose the
actions carried out by the agent.
The actor must maximize the objective function J(θ) defined in equation 3.27 and the
gradient ∇θJ(θ) needs to be computed thanks to the policy gradient theorem. These
gradients will be used to update the parameters of the policy thanks to the gradient
ascent.
The policy is updated towards the directions suggested by the critic.

Here is an example of a basic Actor-Critic architecture, with the critic modeling the
action-value function Qw(a|s). Two different learning rates αθ and αw are used for the update
of the parameters of the actor and the critic respectively.

1. Random initialization of θ and w.

2. For episode = 1, . . . ,M :

(a) Initial observation of the state s0 given by the environment.
Sampling of an action a0 ∼ πθ(a0|s0).

(b) For t = 1, . . . , T :

i. Sampling of a reward rt ∼ R(st, at) and the next state si+1 ∼ P (si+1|st, at) by
the environment.
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ii. Sampling of the next action ai+1 ∼ πθ(ai+1|si+1).

iii. The actor updates the policy parameters θ using the gradient ascent with the
policy gradient theorem:

θ ← θ + αθQw(st, at)∇θ lnπθ(at|st) (3.33)

iv. The critic updates the value function parameters w using the gradient descent
with the TD error:

w ← w − αw(rt + γQw(si+1, ai+1)−Qw(st, at))∇wQw(st, at) (3.34)

v. Update of at ← ai+1 and st ← si+1

This Actor-Critic architecture is on-policy since the exploration policy and the target policy
are the same. In some implementations found in the literature, the critic and the actor can
share lower layer parameters of their network and two output heads estimating the policy and
value functions.

3.2.3.3 Soft Actor-Critic

The Soft Actor-Critic (SAC) [116] is one of the most recent policy gradient algorithm. It is a
mix of two families of PG approaches:

• The Trust Region Policy Optimization (TRPO) and Proximal Policy Opti-
mization (PPO) approach: they are on-policy algorithms implementing a stochastic
policy, and they are known to be stable, but to have a low sample efficiency.
They manage to improve the stability of the training by avoiding parameter updates that
would change the policy too much at one step.
TRPO [294] uses the Kullback–Leibler (KL) divergence (detailed later in this section) in
order to measure the magnitude of the changes in the probability distribution over actions
between the old and the new policies. During the update of the policy parameters, this
measure is enforced to be small enough by respecting specific constraints. The maximiza-
tion of the objective function J(θ) becomes a constrained optimization problem.
PPO [295] simplifies the complexity of the TRPO computations by using a simpler ob-
jective function, while retaining similar performance. Instead of using the KL-divergence,
PPO modifies the objective function J(θ) in order to keep the ratio

r(θ) =
πθ(a|s)
πθold(a|s)

(3.35)
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inside a specific interval [1 − ε, 1 + ε] (where ε is a hyperparameter), by computing an
expectation over all the states and actions.

• The Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep
Deterministic (TD3): they are off-policy algorithms implementing experience replay
and a deterministic policy, and they are known to be very sample efficient, but to be
pretty unstable.
DDPG [212] is based on an Actor-Critic architecture and combines ideas taken from DPG
[306] and DQN [229], in order to learn simultaneously the policy and the Q-value function.
TD3 [90] improves the DDPG algorithm by adding several ideas:

– Training two Q-value networks in order to reduce the overestimation of the value
function, as in the Double Q-learning [122] and Double DQN [339] algorithms. The
TD errors are then computed using the minimum of the two Q-value networks, in
order to favor underestimation (as in the Clipped Double Q-learning algorithm [90]).
Like DQN, each Q-value network has its own target network allowing to compute
the TD errors of their respective cost function.

– Delaying the update of the two target networks and the policy network, in order
to reduce the variance of the estimations. The policy network, the target policy
network and target Q-value network are updated at a lower frequency than the Q-
value network.
In the Actor-Critic architectures, policy and value updates are deeply coupled: value
estimates diverge through overestimation when the policy is poor, and the policy will
become poor if the value estimate is inaccurate. Delaying the updates helps to avoid
this problem.

– Smoothing the target policy by adding a small clipped random noise to the action
selected in the TD error by the target policy network. This can be considered as a
smoothing regularization strategy, in order to avoid the overfitting of the policy to
narrow peaks in the value function.

Like DDPG and TD3, the SAC algorithm is an off-policy algorithm implementing an
Actor-Critic architecture. Like TRPO and PPO, it uses a stochastic policy πθ. The term Soft
found in the name of SAC means that this algorithm is entropy-regularized.

In reinforcement learning, the entropy is a measure of the predictability of an agent. The
more the policy of the agent is certain of which action is the best for getting the highest
cumulative reward in a given state, the lower the entropy of the policy will be. In other words,
the lower the entropy is, the more deterministic the policy will be. In the case of SAC, the
entropy H(.) is defined as follows:

H(πθ(.|st)) = Ea∼πθ(.|s)[− log(πθ(a|s))] (3.36)
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The policy is now trained with the objective to maximize the expected return and the
entropy at the same time, leading to the following objective function needed to be maximized:

J(θ) =
T∑
t=0

γt E(st,at)∼ρπ [r(st, at) + αH(πθ(.|st))] (3.37)

where α is a hyperparameter controlling how important the entropy will be (called the
temperature), γ is the discount factor defined in previous sections, and ρπ is the marginal
of the state distribution induced by the policy πθ(a|s), as defined in the DPG section. The
temperature α must not be confused with the learning rate allowing to update the neural
networks (they will be noted differently here, to avoid confusion).

The entropy measure of the policy is incorporated into the reward in order to encourage
exploration: the goal is to learn a policy that acts as randomly as possible, while still being
able to succeed at the task. This allows to avoid situations in which the agent might fall into
a local optimum behaviour. Moreover, maximizing the entropy can help to capture multiple
modes of near-optimal strategies: if there exist multiple options that seem to be equally good,
the policy should assign each with an equal probability to be chosen. This maximum-entropy
policy can also give more robustness to the agent, allowing it to be more robust to abnormal
or rare events occurring during the task.
The SAC algorithm is the follow-up of the soft Q-learning algorithm [115], created by the same
authors.

The SAC algorithm used neural networks in order to learn three functions:

• The policy πθ modeled by a neural network with the parameters θ.

• The soft Q-value function Qw modeled by a neural network with the parameters w,
corresponding to the Q-value function derived from the new entropy-regularized reward.

• The soft state-value function Vψ (or sometimes simply called soft value function) modeled
by a neural network with the parameters ψ, corresponding to the state-value function
derived from the new entropy-regularized reward.

Like DQN, DDPG and TD3, these neural networks are trained using the experience replay
mechanism. Moreover, while DDPG had two target networks for each of its learnt functions,
SAC uses just one target network assigned to the soft value function and modeled with the
parameters ψ′.

The soft Q-value function and the soft state-value function are defined using the Bellman
equations:
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Qw(st, at) = r(st, at) + γEst+1∼ρπ(s)[Vψ(st+1)]

where Vψ(st) = Eat∼π[Qw(st, at)− α log πθ(at|st)]
(3.38)

where ρπ(s) and ρπ(s, a) is the marginal of the state distribution induced by the policy
πθ(a|s). The soft state-value function includes the entropy.

This gives us:

Qw(st, at) = r(st, at) + γE(st+1,at+1)∼ρπ [Qw(st+1, at+1)− α log πθ(at+1|st+1)] (3.39)

The soft value function is here used as a baseline for the computation of the soft Q-value
function in order to reduce the variance of the estimations made by the algorithm.

The soft state-value function is trained in order to minimize an objective function based on
TD errors [116]:

JV (ψ) = Est∼D[
1

2

(
Vψ(st)− E[Qw(st, at)− log πθ(at|st)]

)2
]

with gradient: ∇ψJV (ψ) = ∇ψVψ(st)
(
Vψ(st)−Qw(st, at) + log πθ(at|st)

) (3.40)

where D is the replay buffer.

The soft Q-value function is trained in order to minimize an objective function based on
TD errors and the target soft Q-value network:

JQ(w) = E(st,at)∼D[
1

2

(
Qw(st, at)− (r(st, at) + γEst+1∼ρπ(s)[Vψ′(st+1)])

)2
]

with gradient: ∇wJQ(w) = ∇wQw(st, at)
(
Qw(st, at)− r(st, at)− γVψ′(st+1)

)
(3.41)

where Vψ′ is the target network of the soft value network. The parameters of this neural
network are updated using a moving average on the parameters of the soft Q-value network:

ψ′ ← τψ + (1− τ)ψ′ with τ � 1 (3.42)

Like TRPO, the SAC algorithm uses the Kullback–Leibler (KL) divergence [187][188] in
order to quantify the similarity between the policy before and the policy after the update of its
parameters.
The KL divergence measures how one probability distribution p diverges from a second proba-
bility distribution q. It is defined as:
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DKL(p‖q) =

∫
x

p(x) log
p(x)

q(x)
dx = Ex∼X

[
log

p(x)

q(x)

]
(3.43)

DKL achieves the minimum zero when p(x) = q(x) on all the possible values of x.

SAC updates the policy in order to minimize the following KL divergence:

πnew = arg min
π′∈Π

DKL

(
π′(.|st)‖

exp(Qπold(st, .))

Zπold(st)

)
= arg min

π′∈Π
DKL

(
π′(.|st)‖ exp(Qπold(st, .)− logZπold(st))

) (3.44)

where Π is the set of the potential policies allowed to be used as a model, while still being
tractable, and Zπold(st) is the partition function used to normalize the probability distribution
created from the soft Q-values.

The actor minimizes the following objective function in order to update the policy network:

Jπ(θ) = DKL

(
πθ(.|st)‖ exp(Qw(st, .)− logZw(st))

)
= Eat∼π

[
− log

(exp(Qw(st, at)− logZw(st))

πθ(at|st)
)]

= Eat∼π[log πθ(at|st)−Qw(st, at) + logZw(st)]

(3.45)

The partition function Zw(.) is usually intractable, but this is not a problem in practice
since it will not contribute to the gradient ∇θJπ(θ). [116] gives a proof showing that this
policy update will guarantee that Qπnew(st, at) ≥ Qπold(st, at).

Finally, all the networks can be updated multiple times in a row, for only one step of
environment sampling. The gradient descents used different learning rates απ, αQ and αV for
updating the functions πθ, Qw and Vψ respectively. These learning rates and the weighting
factor τ used for updating the target soft state-value network are hyperparameters needing to
be tuned.

A simplified pseudocode of the SAC algorithm is given:

1. Random initialization of the parameter vectors θ, w, ψ.
Initialization of the target parameters: ψ′ ← ψ

2. for each iteration do
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(a) for each environment step do

i. at ∼ πθ(at|st)
ii. st+1 ∼ ρπ(st+1|st, at)

iii. D ← D ∪ { (st, at, r(st, at), st+1) }

(b) for each gradient update step do

i. ψ ← ψ − αV∇ψJV (ψ)

ii. w ← w − αQ∇wJQ(w)

iii. θ ← θ − απ∇θJπ(θ)

iv. ψ′ ← τψ + (1− τ)ψ′

Three successive versions of the SAC algorithm have been released by their creators, each
time trying to add new ideas:

1. The version which has been described in this section.

2. The same implementation as the first one, but using two critics instead of one [116],
in order to reduce overestimations of the Q-values like in the TD3 algorithm described
above. Two soft Q-value network are trained independantly, and the network giving the
minimum value between both of them is taken when computing the gradients ∇ψJV (ψ)
and ∇θJπ(θ).

3. The same implementation as the second one, but the soft value network is removed and
the temperature parameter α controlling the entropy measure is automatically adjusted
by an additional neural network [117].

In this work, we will be using the first version of the SAC algorithm.
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Figure 3.6. Stochastic and deterministic Soft Actor-Critic

As shown on Figure 3.6 3, SAC can work in both either a discrete action space, or a
continuous action space. The soft state-value function Vψ is not represented here, but its
implementation is very similar to the soft Q-value function.

• Discrete action space: The critic takes the components of a given state as an input
and is outputting the soft Q-values of all the possible actions.
The actor takes the components of a given state as an input and is outputting the selection
probability of all the possible actions.

• Continuous action space: The critic takes the components of a given state and a given
action as an input and is outputting the soft Q-values computed for these specific state
and action.
The policy is modeled by a squashed Gaussian distribution and the action selected by the
policy is computed as:

a = tanh(n) where n ∼ N (µθ,σθ) (3.46)

In this case, the actor takes the components of a given state as an input and is outputting
the mean µθ and the variance σθ, which can be multidimensional or scalar (depending
on number of components of the action).
The set of all the potential policies Π mentioned earlier is then the family of multivariate
Gaussian distributions and is a generic distribution parameterisation choice.

The performance of the SAC is very dependant on the task: sometimes it is better than
other algorithms, and sometimes not [5].

3Taken from Soft Actor-Critic, http://pages.isir.upmc.fr/ sigaud/teach/sac.pdf
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Chapter 4

Autonomous Underwater Vehicles and
application of machine learning to
control theory

In chapter 6, we will apply Soft Actor-Critic, a deep reinforcement learning algorithm, to the
control of AUV for a waypoint tracking task. In this chapter, we describe elements of AUV
(modelling, GNC systems), as well as a selection of work dealing with the application of deep
learning and reinforcement learning to control theory and robotics tasks.

4.1 Autonomous Underwater Vehicles

In this section, we are going to give a brief description of the main design approach of
Autonomous Underwater Vehicles (AUVs) [108][149], before describing several examples of
control, guidance and navigation algorithms.

The design of an AUV is composed of a variety of sensors estimating the output and the
state signals, such as acoustic modems, GPS receivers (used only when the AUV is surfacing),
sonars, Doppler Velocity Logs (DVL), Inertial Navigation Systems (INS) also called Inertial
Measurement Units (IMU), cameras, etc. The actuators used to move the AUV are mainly
the same from one robot to another: they can consist in fins (also called rudders), thrusters
(also called propellers), ballasts, etc.
The Figure 4.1 shows an example of AUV (taken from [258]), where only the actuators are
detailed. They are composed of only one thruster and four fins (the rudders are just vertical
fins). This figure also shows the reference frame (O,X0, Y0, Z0) of the AUV (called the
body-fixed reference frame) with his different Degrees Of Freedom (DOF): the linear movement
along the axes X0, Y0 and Z0 named respectively surge, sway and the heave and the rotational
movement along the axes X0, Y0 and Z0 named respectively roll, pitch and the yaw. Roll, pitch
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Figure 4.1. Examples of an Autonomous Underwater Vehicle.

and yaw are angles (called the Euler angles) and must not be confused with the rotational
speeds along the same axes.

There are multiple ways of implementing the components of a GNC system (see section
2.1.2) for an AUV [286], and a mathematical model of the AUV is often needed during the
design process.

4.1.1 Fossen’s models

The models defined by Thor Inge Fossen in [85] and [86] are very well known among the marine
robotics community, and can be applied to a great variety of marine platforms. Fossen’s models
of AUV will be implemented inside the simulations from the chapter 6.
The formalism used in [86] is based on the subfield of the kinematics, rigid-body kinetics,
hydrostatics, seakeeping theory and maneuvering theory. The 6 Degree of Freedom (6DOF)
Fossen’s model for a general marine vehicle is the following [86]:{

η̇ = JΘ(η)ν
Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave

(4.1)

with {
η = [x, y, z, φ, θ, ψ]T

ν = [u, v, w, p, q, r]T
(4.2)

where η is the vector of the position (x, y, z) (expressed in the Earth-centered Earth-fixed
reference frame) and the Euler angles (φ, θ, ψ), ν is the vector of the linear velocities (u, v, w)
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and the angular velocities (p, q, r), JΘ(η) is a transformation matrix allowing to transform
vectors between the body-fixed reference frame and the North-East-Down coordinate system,
τ is the vector of the control and propulsion forces, τwind and τwave are respectively the vectors
of the wind and the wave forces, M , C(ν) and D(ν) are respectively the inertia, the Coriolis
and the damping matrices, g(η) is the vector of the gravitational and buoyancy forces, g0 is
the vector of the static restoring forces and moments due to ballast systems and water tanks.
We are not going to further detail how this standard model has been derived.

In the case of an AUV, several physical assumptions [86] allow to simplify the general
equations 4.1, leading to the following model:{

η̇ = JΘ(η)ν
Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ

(4.3)

The model of the AUV can be used in order to design model-based GNC components, as
well as to build realistic simulations. In the following, we are going to see a selection of AUV
controllers taken from the literature of control theory.

4.1.2 Control of AUVs

The literature about the control of AUVs is deep and diverse. We are going to present a
selection of works dealing with low-level control tasks applied to AUVs. Several approaches
mentioned in the introduction will be cited in this section. Moreover, [273] and [371] are useful
surveys about control architectures allowing to give a broad view of the literature. The survey
[350] is more specific, since it focuses on the control of underactuated AUVs.

A lot of classical control works make use of the PID controller, the most well-known linear
controller. [119] applied a PID controller to the position control and stabilization of an AUV.
They used a cascaded position and velocity control approach, based on the inverse kinematic
model of a 8 thrusters AUV.
[210] designed an intelligent PID control law, by decomposing a path-following task in
separated layers: the 3D path tracking control is decoupled into a planar 2D path tracking
task and a distinct depth tracking task. Each layer makes use of its own PID controller.
[107] provides an interesting discussion about the limitations of linear control of AUVs. The
authors applied proportional-derivative (PD) controllers to several AUV models linearized for
different velocities.
In order to get rid of these limits, PID controllers has been sometimes mixed with other
control approaches. For example, [141] compared a fuzzy self-adaptive PID controller and a
classic PID controller on an AUV depth control task. [173] also proposed a self-adaptive fuzzy
PID controller for the heading and depth control of an AUV. They based their controller on a
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nonlinear MIMO model of AUV.

In adaptive control theory, the work [225] used two adaptive proportional-derivative (PD)
control laws in order to control an AUV. These two elements only required the model of gravity
and the buoyancy regressor matrix for deriving the proposed controller. [225] used adaptive
control in order to perform planning with probabilistic state estimation and execution. It
allowed to make the AUV adaptive and robust to the dynamic and uncertain conditions of the
oceans.

Interesting approaches can also be found in the optimal control theory. [10] was able
to compensate actuator failures by using multiple model obtained with optimal control
techniques. A switching control mechanism is implemented in order to use the more adequate
model. The authors of [67] used optimal control theory in order to perform a path planning
task in the horizontal plane. They defined a minimum time problem by constraining the state
variables to the places where the control appears linearly.
[45] and [271] both used a Linear–Quadratic Regulator (LQR) in order to control the depth
of an AUV. They based their design on a linearized model of the system. The authors of
[352] were able to use a LQR controller in order to stabilize the position of an AUV, while
decreasing its energy consumption. They optimize the parameters of the controller thanks to
a genetic algorithm.
[303] made an AUV fulfill a path-following task thanks to multi-objective Model Predictive
Control (MPC) framework. The path tracking is defined as the main objective, while the
speed profile is considered as the secondary task. [302] also performed a trajectory tracking
task based on a Lyapunov-based MPC. This particular approach allowed to consider explicitly
several practical constraints such as the actuator saturation and the thrust allocation. In
[251], a docking control is performed thanks to the use of MPC: the model of the AUV is
continuously modified during the execution of the task based on the velocity of AUV, the sea
currents, and other environment factors. The controller is recalculated at every model change
by solving a finite horizon optimal control problems. This type of MPC is called a Receding
Horizon Tracking Control (RHTC).

The robust control approaches are very suitable to the control of AUVs, since the marine
environment is filled with unknown elements and uncertain parameters can be found inside the
model of the AUV. [193] and [287] performed the same robust nonlinear path-following control
of an AUV based on Lyapunov theory and back-stepping techniques. The robustness to vehicle
parameter uncertainties is addressed by incorporating a hybrid parameter adaptation scheme.
[278] also used a robust control approach with a trajectory tracking task using the second
method of Lyapunov. The authors were able to define an uncertain paradigm thanks to the
known parameter bounds.
[218] managed to perform the identification of the AUV model using a Kalman filter and
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as well as a maximum likelihood estimator. This allowed to obtain an accurate and more
representative nominal model, which was then handled by a robust control technique.
[79] used the sliding mode control technique in order to fulfill trajectory tracking task. This
allowed the controller to be robust against bounded disturbances. The authors of [284]
managed to perform a depth control task based on High Order Sliding Modes (HOSM). They
compared their performance with a classical sliding mode algorithm. In [128] a multivariable
sliding mode control was implemented for the diving and steering control of an AUV. A
combination of the steering, diving, and speed control functions is defined, and the robustness
is provided by the variable-structure sliding mode approach.
[242] defined a robust H-infinity based control methodology. The AUV model being formed by
highly coupled and non-linear equations, the authors managed to get a reduced order model
by subdividing it into smaller subsystems, like depth, steering and speed subsystems. These
subsystems are considered to be mutually non-interactive, which allows to facilitates the design
of the H-infinity controller.
The authors of [215] compared a H-infinity controller and a sliding-mode controller on a
heading and depth control task of an AUV. [205] performed a depth control task using a
H-infinity controller coupled with an interval analysis approach. The system inner parameters
and the external disturbances are supposed to be time-invariant and bounded in order to apply
interval analysis. This method allows to define sets of stability and performance criteria, in
any possible time-domain and frequency-domain variations.

The fuzzy logic approach has been employed for the design of advanced AUV controllers
by implementing it alone or by coupling it with other techniques. For example, [308] made use
of the fuzzy logic for both the low-level and high-level control of AUV. [213] decomposed a 3D
path planning problem into two independent 2D planning tasks in the horizontal and vertical
planes respectively. The outputs of these two behaviors are fused via a weighted fuzzy logic
controller in order to generate the output given to the AUV.
The authors of [114] used the fuzzy logic with a sliding mode controller in order to control
an AUV: the fuzzy logic allows to guarantee the stability and the robustness of the con-
trol system. [211] mixed the fuzzy logic with backstepping and sliding mode approaches
in order to create the adaptive robust control of an underactuated AUV on a path following task.

One of the most easy to implement approach found in the non-linear control theory
is the feedback linearization: it is used to transform the complex nonlinear system into a
comparatively simple linear system. [56] mixed feedback linearization control with a PD
controller. [254] managed to stabilize the roll of an AUV under wave disturbances by using
feedback linearization with a H-infinity approach.

The hierarchical control approaches are less often found in the literature of AUV control.
The authors of [34] designed a hierarchical control architecture by organizing the controller in
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three layers: the mission layer, the task layer and the execution layer. They also implemented
a state supervisor and a task coordinator, consisting in two modules able to handle discrete
events. [274] defined a hierarchical varying sampling H-infinity control approach for the depth
and the pitch control of an AUV. Two different controllers are used, both based on a H-infinity
framework with varying sampling intervals.

4.1.3 Guidance and navigation of AUVs

The literature of the guidance and navigation of AUVs is also very extensive. We are going to
present a selection of the works relating to these components.

The main guidance or high-level control problems are described in the survey [43]. Several
types of mission can be fulfilled by an AUV guidance algorithm, and these missions can be
also combined on order to form a multi-objective guidance task.
Path planning tasks consist in generating a trajectory going from an initial point to a final
point, while following a given set of constraints. [360] defined an optimal path planning
method for coastal environments for AUV, and [373] is a survey focusing on path planning for
persistent autonomy of AUVs. These tasks can also make use of intermediate waypoints in
order to generate the trajectories, like in [368] and [369].
During obstacle avoidance missions, the system is subject to non-intersection or non-collision
position constraints with external elements. [135] and [42] are good examples of AUV guidance
algorithms focused on obstacle avoidance.
In marine robotics, station keeping is a very common mission: the robotic platform has to
stay inside a limited area, defined around a given point of the environment. [214] describes an
algorithm designed for station keeping tasks of AUVs under water wave disturbances. [288]
focuses more on a station kereping mission performed with in a power efficient way.

These guidance problems can be solved thanks to different approaches. The line-of-sight
(LOS) techniques are one of the most simple implementations of guidance algorithms: the
controlled system must follow a target point that is moving in real time along a given
trajectory. This trajectory can be either pre-defined or generated automatically thanks to
specific constraints. [231] gives an example of a LOS control of an underactuated AUV in the
horizontal plane, under the influence of ocean currents. The authors of [365] also proposed a
LOS approach for the control of an underactuated AUV subhect to ocean currents, with the
addition of input saturations.
The artificial potential fields methods (also called virtual potential field) consist in the
definition of a field vector indicating the directions that the system must follow at any point
of the environment. The field vector is generated by adding two intermediate field vectors:
an attractive field and a repulsive field. The attractive field displays the directions that the
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system must follow in order to reach the target points of the environment. The repulsive field
displays the directions that the system must follow in order to avoid the dangerous points of
the environment or to stay away from the boundaries of the working space. The works [88] and
[89] are good examples of local path planning based on an artificial potential fields approach.
The voronoi diagram is a mathematical technique allowing to defined Voronoi cells around
specific points or landmarks of the environment. The Voronoi cell associated with a given
landmark is composed of all the points which are closer to this particular landmark than to
the other landmarks of the environment. The boundaries of these Voronoi cells gives the
trajectories which must be followed by the system. [48] used a 3D dynamic Voronoi diagram
in order to perform an AUV path-planning task, while [113] performed an obstacle avoidance
mission thanks to a Voronoi diagram computed with the sonar data of an AUV.

A lot of navigation tasks can be found in the literature, and the works [227], [260], [208]
and [26] (in chronological order) are good surveys describing the major navigation problems as
well as the main approaches for solving them.
The most common navigation problem is the localization of the AUV, due to the lack of GPS
signals in the marine environment. Both [333] and [169] describes representative methods of
acoustic positioning systems.
Another type of widespread missions is the Simultaneous Localization and Mapping (SLAM)
tasks: the AUV must localize itself, while updating in real-time the map of an unknown
environment. [358] proposed a robust SLAM method applied to an AUV, and [24] designed a
SLAM algorithm for AUVs, based on robotic vision and acoustic beacons.

The algorithm allowing to fulfill these navigation missions can be taken from different
mathematical subfields. The Extended Kalman Filter (EKF) is one of the most used navigation
algorithm, in both the academic domain and the industry. EKF is a probabilistic non-linear
estimator able to take into account unknown parameters. Its estimated variables are computed
thanks to a linear quadratic estimation based on a set of measurements performed on the
observed system. [301] designed an adaptive EKF to the navigation of an AUV, while [9]
proposed an EKF in order to provide an AUV navigation robust to the magnetic disturbances
of the environment.
Other probabilistic approaches can be applied to AUV navigation problems. For example,
[165] used a Bayesian estimation approach based on a distance measurement equipment, as
well as several known databases of the environment. The authors of [148] managed to perform
the navigation of an AUV under moving ice thanks to a Bayesian estimator. This method
allowed to reduce the model errors.
Interval analysis is a set of robust ensemble methods based on constraint propagations and
bounding boxes, applied to uncertain variables. These approaches allows to guarantee that the
state variables of a dynamical system will remain inside computed regions of the state space.
The works [246] and [298] are examples of interval analysis methods applied to the navigation

Yoann Sola - PhD Thesis 58/212 version: December 21, 2021



Chapter 4. Autonomous Underwater Vehicles and application of machine learning to control theory

of AUVs, in order to improve the precision of the state variables estimations.
Uncommon regression techniques can also be found in the literature of AUV navigation
algorithms. For example, the authors of [66] designed a hierarchical probabilistic regression
in order to perform an AUV navigation based on detection of the fauna and the flora of the
marine environment. [81] used an incremental regression method named locally weighted
projection regression for the navigation of an AUV.

4.2 Machine learning applied to control theory and

robotics

In this section, we will present a selection of works applying machine learning algorithms to
control theory and to robotics. The papers related to robotics will mainly focus on AUVs,
but other types of platform will be also cited. The machine learning (ML) approaches will
be classified in two different subsections: deep learning (DL) and reinforcement learning (RL),
the latter also including deep reinforcement learning (DRL). They are the most used ML ap-
proaches, even if other techniques can be found in the literature. For example the works [75]
and [97] both used a ML control framework based on a genetic programming technique as a
search algorithm. This allows to find control laws that are not accessible through linear control
theory.

4.2.1 Deep learning applied to control tasks and robotics

First of all, [357] is a good survey about the application of neural networks to control theory.
Neural networks have found early applications in control theory. For example in 1988, [268]
designed a multilayered neural network controller, in order to control a general plant model.
In 1992, [170] used a neural network in order to control a temperature control system. In
1998, [248] applied a neural network to the control of unknown nonlinear systems. The control
signals are directly obtained by minimizing either the instant difference or the cumulative
differences between a set point and the output of the neural network.

We can found several works of neural networks coupled with PID controllers. Two
approaches have been identified in the literature: either the neural network is working in
parallel of the PID controller, or the neural network is replacing the PID controller.
For example, [168] designed a self-tuning PID controller of a flexible micro-actuator using a
neural network. The flexible microactuator is made of a bimorph piezoelectric high-polymer
material (PVDF). The neural network is trained to reduce the error between the plant output
and the reference signal in order to learn the optimal gains of the PID controller. [133] used a
similar method by training a neural network in parallel of a MIMO PID controller of an AUV.
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Figure 4.2. A block diagram of a neural network updating a PID controller.

The gains Kp, Ki and Kd of the PID controller are updated at each time step by the neural
network. A generic representation of this approach is represented on the block diagram of the
Figure 4.2.
The approaches replacing the PID controller are based on neural networks reproducing
the equations of a PID controller: these are called Proportional–Integral–Derivative Neural
Networks (PIDNN). As shown on the Figure 4.3, the neurons of the hidden layer implement
the different components of a PID controller, found in the equations 2.7 of the section 2.2. e
is the tracking error defined as e(t) = r(t)− y(t), where r is the reference signal that the plant
system must follow and y is the measured outputs of the plant system. The weigth matrix
of the output layer is composed of the gains Kp, Ki and Kd, like a PID controller. The
command outputted by the PIDNN follows the same equation as in 2.7, except that the gains
are updated using the backpropagation technique.
[304] used a PIDNN in order to control general time-delay systems. [202] performed the
control of a server fan cooling system thanks based on a PIDNN. In particular, this controller
managed to achieve a low power consumption thanks to this approach. The authors of [378]
designed a MIMO temperature sensing and control system using PIDNNs. Multiple PIDNN
were connected together in order to form a fully-connected PIDNN. This control system
allowed to be robust to actuator failures.

The loss functions implemented inside the neural networks replacing or run in parallel of a
PID controller are all based on the tracking error e. Several types of expression can be found
in the literature for these loss functions:

• The loss function uses only the current tracking error, like in [168] and [378]:

J(t) =
1

2
e(k)2 (4.4)

• The loss function is based on the sum of all the squared tracking error obtained from the
beginning of the task, like in [202] and [133]:
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Figure 4.3. Illustration of a PID Neural Network.

J(t) =
1

2

t∑
k=1

e(k)2 (4.5)

• The loss function is based on the mean of all the squared tracking error obtained from
the beginning of the task, like in [304]:

J(t) =
1

t

t∑
k=1

e(k)2 (4.6)

Several great surveys of deep learning applied to robotics can be found in the literature,
such as [216], [265], [46] and [166] (in chronological order).
Not a lot of deep learning-based controller of AUVs have been published. The work [63] is one
of the best examples: a neural network is used in order to perform an AUV trajectory tracking
task using a neural network control approach. Two neural networks (NN) are implemented,
based on the AUV model derived in the discrete-time domain. The critic NN is used in
order to evaluate the long-time performance of the designed control, while the actor NN is
compensating the unknown external disturbances. Even if the authors used the names actor
and critic, this not a RL actor-critic architecture (defined in the section 3.2.3.2).

[317] is an interesting discussion about the limits and the potentials of deep learning ap-
proaches for robotics. It mainly deals with the learning challenges, the robotic vision challenges
and the reasoning challenges (the inferences or conclusions generated by the processing of any
input information). The authors detail the needs for better evaluation metrics, as well as better
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simulations for robotic vision. It also talks about the perception, the planning, and the control
in robotics, and concludes by saying that the neural networks are generally not performing well
when the state of the robot falls outside the training dataset. It also defines the concepts of
programming and data as a spectrum allowing to automatically derive deep learning algorithms
from reasonable amounts of data and suitable priors.

4.2.2 Reinforcement learning applied to control tasks and robotics

We will present a selection of works aiming to apply RL and DRL to control theory and
robotics. We separated the existing literature into three categories: the general surveys and
navigation problems together, the low-level control problems and the guidance (also called
high-level control) problems. We will show one explicit example of a state vector and a reward
function only for the low-level and high-level control problems, since our work will relate more
to these subjects.

4.2.2.1 General surveys and navigation problems

Robotics is a breeding ground for RL, since it involves complex task and complex systems.
The encountered tasks can be often composed of highly dimensional continuous action and
state spaces. [179] is a survey on RL applied to robotics providing a first state of the art.
However this article was published in 2013 and the whole DRL subfield is lacking, since the
majority of the modern DRL algorithms were not yet published at this time.

A very few papers are covering navigation problems for robotics. [264] applied successfully
a plain Q-learning algorithm to an unmanned aerial vehicle (UAV), in order to replace the
navigation component of its GNC system. The guidance component consisted in predetermined
waypoints, while the control where carried out by a PID controller.
[50] managed to make a DDPG algorithm perform simultaneously the control and the
navigation functions of an AUV. The DDPG was tested on a waypoint tracking task.

4.2.2.2 Low-level control problems

Among the low-level control problems, we can find RL approaches applied to PID controller
tuning. [140] was an early work trying to tune the gains of a PID controller in order to carry
out engine control tasks. The online tuning of the PID was operated by a basic policy-search
RL based on Temporal-Difference (TD) errors.
[354] proposed an actor-critic architecture associated with Radial Basis Function (RBF)
networks (defined in [234]), in order to create adaptive PID controllers for general non-linear
dynamical systems. The same technique was applied to the control of wind turbines systems
in [299].
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[49] managed to create an adaptive PID controller for terrestrial robots using an original
incremental Q-learning approach.

RL papers can also be found for AUV low-level control. [96] is an early trial allowing to
control the AUV’s thrusters in response to command and sensor inputs. The authors used a
Q-learning approach based on a neural network, which was a rare instance of DRL for this
time (in 1999).
The RL controller created in [4] is robust to thruster failures. It is based on model-based
evolutionary methods: the problem is modeled by a Markov Decision Process (MDP) and the
controller is based on a parametrized policy updated by a direct policy search method. The
controller is able to operate under-actuated AUVs with fully or partially broken thrusters.
[363] and [51] both implemented the DDPG algorithm in order to control an AUV. The first
paper used it in order to create a depth controller allowing track desired depth trajectories,
while the second paper allowed the AUV to follow linear velocities and angular velocities
reference signals.

Low-level reinforcement learning-based controllers can also be found for other types of
systems. [348] is a very early work published in 1965 and experimenting the control of general
non-linear dynamical systems using an RL approach. The authors created a model-based
controller implementing custom learning schemes.
[127] also managed to control nonlinear dynamical systems thanks to a plain actor-critic
architecture based on neural networks. The goal was to control several state variables under
actuator constraints.
[364] used a specific TD-learning in order to control turbo-generator systems, while [180]
compared the PPO, TRPO and DDPG algorithms to a PID controller, on a attitude control
of an UAV.
Finally [118] is a large comparative study Q-leaning associated with neural network. The
algorithm is tested on several systems: an AUV, a plane, the magnetic levitation of a steel
ball and the heating coil (belonging to the set of Heating, Ventilation, and Air Conditioning
(HVAC) problems). These benchmarks allow to evaluated several control theory aspects:
effects of nonlinear dynamics, reaction to varying setpoints, long-term dynamic effects,
influence of external variables and the evaluation of the precision.

In these problems, the state s of the agent is often composed of a lot of variables in order
to correctly follow the reference signals given by the guidance component. For example, the
state given to the DDPG in [51] is:

St = [v,ω, v̇, ω̇,ut−1, et]
T (4.7)

where v is the vector of the linear velocities (vx, vy, vz), ω is the vector of the angular
velocities (ωx, ωy, ωz), v̇ is the vector of the linear accelerations, ω̇ is the vector of the angular
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accelerations, ut−1 of the vector of the commands executed by the AUV thrusters at the previous
time step (composed of 6 inputs) and et are the tracking errors between the velocities values at
time t and fixed time setpoints (the task is here to control the three linear velocities and two
of the angular velocities, in order to make them follow several reference signals). This state
vector is composed of 23 dimensions.
The reward has also to be specifically designed for each control task. In [51], the reward is
defined as follows:

rt = λ1 exp

(
− 1

a2
(xct − xcref )T ∧ (xct − xcref )

)
− λ2

6∑
i=1

|ui| − λ3‖ūt−τ :t−1 − ut‖ (4.8)

where ∧ is the cross product operator, λ1, λ2 and λ3 are real-value scalars weighting the
three components of the reward, xct is the vector of the controlled variables, xcref is the vector
of the references values, ut is the vector of the commands send to six thrusters of the AUV, ui
is one of the six components of the vector ut, ūt−τ :t−1 is a moving average of the past command
vectors based on a slide windows of length τ , and a is a scalar hyperparameter. This reward is
composed of three parts:

• The term multiplied by λ1 which evaluate the square error between the controlled variables
and their references.

• The term multiplied by λ2 aims to limit the magnitude of the commands given to the
thrusters.

• The term multiplied by λ3 allows to penalize a too great variability in the commands
values, preventing from generating successive commands differing too largely. This term
can be seen as a penalization of commands with too high frequencies signals.

Our work [309] was the first to propose the application of the SAC algorithm to the control of
AUVs. [257] is a very recent work (currently in preprint) proposing a design of reward function
for an AUV docking task. They tested this reward function formulation by comparing its
implementation inside the PPO, TD3 and SAC algorithms, and managed to achieve successful
results.

4.2.2.3 Guidance or high-level control problems

We selected several guidance problems relating mainly to AUVs. These approaches are often
able to replace both the control and guidance components of the systems, but this is not
systematic. [316] implements a classic actor-critic architecture in order to carry out the
waypoint tracking and obstacle avoidance tasks of an AUV. [125] is also able to make an AUV
fulfill path following and collision avoidance missions, but using a PPO algorithm.
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[144] is able to perform a trajectory tracking task of an AUV using the DPG algorithm and
Recurrent Neural Networks. The motion control is only done in a 2D horizontal plane. It
compares this method with a PID controller and other non-recurrent methods.
[349] is an original work, since it uses the DDPG algorithm in order to plan the trajectories
of multiple AUVs. The goal is to estimate a water parameter field inside an under-ice
environment.
Finally [262] experiments different modifications of the REINFORCEMENT and the actor-
critic algorithms in order to generate the reference signals of the motors of a seven degrees of
freedom anthropomorphic arm. The goal is to hit a baseball, and reference signals are followed
by PD controllers.

[125] gives a good example of state vector used in guidance problems. It managed to perform
path following and collision avoidance tasks by giving to PPO the following vector:

St = [ Θ, v, ω, χe, ρe, cv ]T (4.9)

where Θ = (φ, θ, ψ) is the orientation vector of the AUV (the Euler angles), v is the linear
velocity vector, ω is the angular velocity vector (the derivative of Θ), χe and ρe are respectively
the course (or azimuth) error and the elevation error (it corresponds to the error angles indicat-
ing the direction of the correct trajectory), cv is the linear velocity vector of the surrounding
ocean currents. This state vector is composed of 14 dimensions.
[316] is performing a waypoint tracking task with obstacle avoidance with the following reward
function:

rt =


ra if arrive
rb if collide

rcvxcos(ν) every step
rd every step

(4.10)

If the AUV reaches the waypoint, it gets the positive reward ra. If it collides with an
obstacle, it receives the negative reward rb. At every time step, it gets the variable reward
rcvxcos(ν): rc is positive, vx is the forward speed of the AUV and ν is the angle between the
heading of the AUV and the waypoint (in the top-down horizontal plane). The expression
rcvxcos(ν) encourages the AUV to maintain its heading and its speed toward the waypoint.
At every time step, the AUV also receives a negative rd, in order to encourage it to reach the
waypoint faster.
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Safe reinforcement learning

When Reinforcement Learning (RL) algorithms are used with physical systems, a lot of
constraints and safety concerns appear naturally. The safety must be guaranteed for the
system but also for the environment. Safe Reinforcement Learning is the subfield that tackles
these problems by mixing notions from RL, optimization and control theory.

In order to give an exhaustive viewpoint of Safe RL, we followed here the very convenient
taxonomy defined in [92], while adding some references released after this work and harmonizing
specific notations with the notation used during the previous sections. The authors of [92]
describe a large number of use cases, involving different risk metrics and safety considerations.
They identified two main trends amongs all of these algorithms: the methods that modify the
optimization criterion used in reinforcement learning, adding terms alongside of the expectation
of the return, while other approaches modify the exploration process itself. This taxonomy is
shown on Figure 5.1.

Figure 5.1. A taxanomy of safe Reinforcement Learning approaches.
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A few approaches presented in this chapter can be useful for our work (in chapter 6).
However, we chose to describe the complete taxonomy of Safe RL, since a lot of these algorithms
are based on control theory elements. We believe that these methods can be very inspirational
for future works of RL applied to robotics or control theory.

5.1 Adapting the optimization criterion

As described in section 3.2, the primary goal of an agent is to maximize the long term cumulative
rewards it gets from the environment throughout an entire episode, at any cost. It is able to
learn the optimal policy for a given task by updating some parameters (of the policy, the value
function, etc) in order to maximize an objective function composed of the expectation of the
return:

max
π∈Π

Eπ(G0) = max
π∈Π

Eπ(
∞∑
t=0

γtRt) (5.1)

where π is the policy of the agent which belongs to the policy set Π, Eπ( . ) is the
expectation with respect to a given policy π, γ is the discount rate and Rt is the reward
received by the agent at time t. This objective function is called the risk-neutral criterion,
since it is totally insensitive to any form of safety guarantees.

A first approach to guarantee the safety of a reinforcement learning algorithm is to modify
the risk-neutral criterion in order to take into account some forms of risk. The concept of risk
is specific to the subfield of Safe RL and can take various forms, depending on the context.
In the category of the approaches modifying the optimization criterion, the risk is related to
the fact that even an optimal policy may perform poorly in some cases due to the variability
of the problem, and the fact that the model of the environment is partially known.

5.1.1 Worst-case or minimax criterion

The worst-case or minimax criterion is used during the learning process of a task where it is
crucial to limit the impact of the worst case scenario, even if it is very unlikely to happen.

The worst-case criterion allows to penalize the variability of the policy. This variability can
come from two sources of uncertainty: the inherent uncertainty of the stochastic system and
the parameter uncertainty of the model of the MDP itself.

• The worst-case criterion used under inherent uncertainties [130] corresponds to the case
where the environment is stochastic and the agent is not sure to always visit the same
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state St+1 every time it starts from the same state St and it chooses the same action At.
The risk-neutral criterion is then modified as follows [129]:

max
π∈Π

min
w∈Ωπ

Eπ,w(G0) = max
π∈Π

min
w∈Ωπ

Eπ,w(
∞∑
t=0

γtRt) (5.2)

where ωπ is the set of all the trajectories that occur under the policy π and Eπ,w( . ) is
the expectation with respect to a given policy π and following a given trajectory w.
With this criterion, the optimal policy corresponds to the policy that has the best
worst-case return: the highest return regarding the worst possible trajectory in terms of
states visited and actions taken. This is why it is also called the minimax criterion.

The new criterion can be applied to various algorithms. For example, [95] makes use of
this criterion to adapt the Q-learning algorithm, becoming the Q̂-learning. In this method
the Q̂-values act like a lower bound on the actual Q-values.
It is also proven that this algorithm is overly pessimistic, so it has to be used in critical
use cases, where it is imperative to avoid rare occurrences of large negative returns, which
can be catastrophic on some systems.

• The worst-case criterion under parameter uncertainties [247] differs slightly from the
previous one, since these uncertainties correspond to model errors. Indeed, it is used
during tasks where the transition matrix defining the environment of the MDP is not
exactly known and belongs to a family of possible models [324]. These uncertainties can
be due to estimations of the model from noisy data, estimations from insufficient training
examples (or learning samples) or variable data which change during the execution of the
policy, which invalidate the estimations coming from them.
The risk-neutral criterion is then modified as follows:

max
π∈Π

min
p∈P

Eπ,p(G0) = max
π∈Π

min
p∈P

Eπ,p(
∞∑
t=0

γtRt) (5.3)

where p is a transition matrix belonging to the set of all possible models P and Eπ,p( . )
is the expectation with respect to a given policy π and for a given transition matrix p of
the MDP.

This is a problem similar to those founded in the robust control theory [380], where the
algorithms are designed for rejecting external disturbances and for being robust to model
uncertainties [120].
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5.1.2 Risk-sensitive criterion

The principle of risk-sensitive criteria is that it allows to find a trade-off between getting
large cumulative rewards and avoiding risky situations. Indeed the criterion includes a scalar
parameter β allowing the decision maker to decide to what extent the policy will be aware of
the notion of risk.
If β > 0 a risk aversion behaviour is promoted, and if β < 0 a risk-seeking behaviour will be
encouraged. β = 0 implies a risk neutrality behaviour.

This criterion is mainly modeled using two different approaches:

• Using exponential functions, as in [139][39]:

max
π∈Π

β−1 logEπ

(
expβG0

)
= max

π∈Π
β−1 logEπ

(
expβ

∑∞
t=0 γ

tRt
)

(5.4)

Using a Taylor expansion of the exponential and logarithm functions, the criterion can
be expanded as:

max
π∈Π

β−1 logEπ

(
expβG0

)
= max

π∈Π
Eπ(G0) +

β

2
V ar(G0) + O(β2) (5.5)

where V ar(G0) corresponds to the variance of the return.

Thanks to these expansions, we see that the risk metric is here associated with the variance
of the return, since the parameter β regulating the risk awareness of the agent is in front
of the term V ar(G0). Indeed, a high variance in the return implies instability in the
received rewards and so more risk, since the return can be largely positive at a given time
step, before being largely negative (and so catastrophic) a few time steps latter.
However, the use of exponential functions is not suited for problems where a policy with
a small variance can produce a large risk, since the small variance will not alert this
criterion of the actual risk occurring.

• Using a weighted sum of the return and the risk [289]:

max
π∈Π

(Eπ(G0) − βω) (5.6)

with ω being the risk metric.
The use of a weigthed sum allows to directly balance the priority over maximizing the
return or the risk awareness.

This risk metric can be replaced by various terms: the variance of the return [111], the
temporal difference errors that occur during learning [226], or even the probability of the
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agent reaching an error state, following a given policy and starting from a given state
[100].
Each possibility induces a different behaviour and this choice is very task-dependent.
[226] and [100] proved that the risk-sensitive behaviour is induced at the cost of indirectly
transforming the action-values Q(St, At). It means that the estimation of the long term
utility of the actions is loose and that the agent is able to detect long term risk situations
but not risk situations in the early steps of the learning process. The policy may be overly
pessimistic.

A trade-off must then be found between the risk-awareness and the maximization of the
cumulative rewards, depending of the critical aspect of the task.

5.1.3 Constrained criterion

Constrained criteria [232][164] do not consist in a real modification of the optimization criteria.
The classic expected return is used (the risk-neutral criterion) but optimization constraints
are added, in order to keep other expected measures within specific bounds.
These constraints leads to the definition of sets of allowable or safe policies inside the whole
policy space.

Some constraints can be applied to the expectation of the return [99], in order to keeping
it superior to a minimal value: E(G0) ≥ k.
The variance of the return [323] can also be constrained to stay inferior to a minimal value:
VAR(G0) ≤ k.
Other approaches are based on the principle of ergodic MDPs [147], which guarantee that
any state is reachable from any other state by following a suitable policy. The space of safe
policies is restricted to the policies preserving the ergodicity with a specific probability called
the safety level, which has to be tuned.
More exotic constraints can also be found. For example, [3] developed a constrained RL
algorithm in a tax collection system and used legal, business and resource constraints.

The drawbacks of these methods is that many of these problems are computationally in-
tractable, which adds difficulties to the formulation of RL algorithms. Moreover it can be hard
to choose the correct parameters that will have to be constrained, and not all the constraint
types can be applied to all the domains.

5.1.4 Other optimization criteria

The area of financial engineering [244][105] has been at the origin of several very specific opti-
mization criteria (not detailed in this section) such has the Sharpe ratio also called the Value-
at-Risk (VaR) [217][323] or the density of the return [238][239].
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5.2 Changing the exploration process

In the usual exploration process, the agent starts the training phase by discovering its envi-
ronment and learning the task from scratch, by selecting random actions. This behavior can
make the agent fall in an undesirable or unsafe state, which could harm the environment or
the physical system. Moreover, exploring the state and action spaces can take a lot of training
time before finding interesting or rewarding pairs of states and actions.
The other main trend of safe reinforcement learning is to change the exploration process, while
keeping the classic risk-neutral optimization criterion.

5.2.1 Using external knowledge

The external knowledge corresponds to the knowledge that is not gathered by the interactions
of the agent with the environment.
It ”informs” the agent about the unsafe regions of the state space, allowing it to know the
undesirable or harmful states without having to visit them to discover their unsafe nature.
Another advantage is that this process saves a lot of time and is able to accelerate the training
phase, which always beneficial for the reinforcement learning workflow.

5.2.1.1 Providing initial knowledge

Prior knowledge of the problem can be provided in order to bootstrap the training phase
[310][221]. This knowledge is first gathered and formatted by a human teacher, leading to
a finite set of demonstrations. Then this set is used by a regression algorithm in order to
produce a partial value function which will guide the exploration during the beginning of the
training phase.
Following this initialization, the system can switch to a Boltzmann or fully greedy exploration
based on the values predicted in the initial training phase.
In this way, the learning algorithm is exposed to the most relevant regions of the state and
action spaces from the earliest steps of the learning process, thereby eliminating the time
needed in a random exploration for the discovery of these regions.

Transfer Learning (TL) [329][330] can also be used as another way to provide initial
knowledge to the agent: the experience gained in learning to perform one task can help to
improve learning performance in a related, but different task.

However, a bias can be introduced by this initial knowledge, which may produce sub-optimal
policies. The exploration process following the initial training phase can also make the agent
visiting catastrophic or unsafe states. Finally, it can be difficult to initialize some complex RL
structures.
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5.2.1.2 Deriving a policy from a finite set of demonstrations

This approach of Safe Reinforcement Learning is based on techniques of the two subfields of
Learning from Demonstration (LfD) [290][8] and apprenticeship learning [2][326].

It is quite similar to the methods of the previous section, since a teacher also provides
demonstrations of the task, recording generated state-action trajectories, in order to produce
a model learnt from these demonstrations. But here this model is used to directly derive a
near-optimal policy, instead of deriving a value function.

However, the learner performance is heavily limited by the quality of the teacher’s demon-
strations, and the agent do not know how to act when it encounters a state for which no
demonstration exists. The authors of [92] also explained that these methods have mainly been
applied to model-based RL algorithms.

5.2.1.3 Using teacher advice

Instead of initializing the training phase as it was the case for the two previous sections, the
advice given by the teacher are used by the agent throughout the entire exploration of state
and action spaces.
The teacher is available for the agent at any time of the training phase and can be a human
or another controller. The teacher advice consist in giving actions that will maximize the
optimization criterion chosen for the task.

Depending on the needs of the task, the interactions between the learner agent and the
teacher can be initiated by the agent [59][101] (in ask for help approaches), by the teacher
[60][331] (in teacher provides advices approaches), or by neither of them [277][185] in other
specific approaches.

5.2.2 Risk-directed exploration

The risk-directed exploration methods use a risk metric in order to adjust the probabilities of
the actions selected by the agent.

For example, the risk metric can be based on the notion of controllability [98]: the more a
state or a state-action pair leads to a lot of variability in the Temporal-Difference (TD) error
signal, the less it is controllable.
This notion of controllability do not have to be mistaken for the property of controllability
found in the control theory [131]. In the control theory, a dynamical system completely
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controllable is a system that can reach any of its intern states.

In [197], the measurement of the risk for a particular action in a given state is the weighted
sum of the entropy and normalized expected return of that action. The notion of entropy is
the same as the one defined in the implementation of the Soft Actor-Critic algorithm found
the section 3.2.3.

5.2.3 The Lyapunov Neural Network

The Lyapunov Neural Network (LNN) [272] are special neural networks trained in order to
estimate the Lyapunov functions (defined in the section 2.3.4).
It allows to certify the safety of a closed-loop dynamical system (see section 2.1.2).

The weights parameters of the neural network are constrained in order to follow a
specific structure, and the loss function, the ground-truth labels and the backpropagation are
redefined using mathematical justifications. These modifications allows to have an estimate
of the Lyapunov function at any time, given by the output of the modified neural network,
and a region of attraction can be defined in the state space of the closed-loop dynamical system.

The LNN can be employed in order to constrain the closed-loop dynamical system to
stay in the approximated regions of attraction during the exploration process of controllers
based on reinforcement learning. Moreover, LNN can be applied to all kinds of controllers,
based on machine learning or not. The plant system being controlled can be non-linear, but a
mathematical model is needed by the LNN.

The Figure 5.2 (taken from [272]) shows the region of attraction approximated in the state
space of an inverted pendulum (defined in the section 2.1.1), around the equilibrium (0, 0). It
is compared with regions of attraction approximated using other classical algorithm, and we
can see that the regions of attraction found with a LNN (in orange) is the larger, allowing to
give more freedom to the agent during the exploration process while guaranteeing its safety.
The results are displayed on a phase portrait.

The Lyapunov Neural Network is the follow-up of other works from the same authors
[31][30][32].
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Figure 5.2. A comparison of the region of attraction of an inverted pendulum estimated by different
algorithms.
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Chapter 6

Proposals for the development of deep
reinforcement learning-based
controllers for AUV

We will describe in this chapter all the results we obtained thanks to the use of methods
introduced in the previous chapters, as well as how we adapted them for the control of an
Autonomous Underwater Vehicle (AUV). We only worked with simulations and not with real
robotics platform, but we kept in mind that all the developed solutions could be embedded
on real AUVs in the future. We will first explain how our simulations are structured, before
describing the AUV model we chose and the control task we want to fulfill. The goal of these
simulations is to compare the performance of the PID controller and the SAC algorithm on
waypoint tracking tasks.
After detailing the implementation of the PID and the SAC and defining the performance
metrics we used, we will describe all the trials we made in chronological order. We will start
with our first attempt of making the Soft Actor-Critic (SAC) fulfill the control task (these
results were published in [309]). We then performed a sensitivity analysis in order to study
how the number of state variables provided to the SAC algorithm can affect its performance.
We used a simpler waypoint tracking task for this sensitivity analysis. We also implemented
advanced training techniques in order to see if it can improve the SAC performance on a harder
waypoint tracking task. We will finally propose a training methodology, as well as a discussion
about the integration of guidance functions inside our end-to-end controller.

75
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6.1 The setup of the simulations and the control solu-

tions

In this section, we will describe the needs which led to the simulation tools we chose, before
explaining how these tools interact with one another. Simulation is an important research
and development tool that can be used to test newly devised control algorithms on a vehicle.
Simulation enables algorithms and control schemes to be evaluated in a virtual environment
thus reducing potential risks associated with real-world experimentation. It facilitates the
transfer of the controller from simulation to the real world.
We will also describes the AUV model, the control task, the two different controllers as well as
the metrics chose to measure their respective performance.

6.1.1 Simulation tools

Deep reinforcement learning algorithms need to be trained on a realistic simulation before
being deployed on a real robotic platform. Indeed, simulation plays an important role in the
development, testing and evaluation of new robotic applications, reducing implementation
time, cost and risk.

The simulated environment needs to be representative of the ground truth and has to give
rewards and appropriate state observations to the deep reinforcement learning agent.
As explained in the introduction, the marine environment is very hostile and is composed of a
lot of unexpected events and external disturbances. The chosen tools needs to simulate these
factors.

6.1.1.1 Choosing the right simulation tools

Training a deep reinforcement learning algorithm with a realistic simulation in order to fulfill
an Autonomous Underwater Vehicle (AUV) control task requires multiple needs.

• Programming language: A programming language is required in order to implement
the SAC algorithm, the PID controller and to manage the whole simulation and its results.
The Python programming language [219] is a natural choice for this work, since it is one
of the most used language in data science [102].
The Python library NumPy [252] was used in order to manage some array data and to
perform scientific computations on the Central Processing Unit (CPU) of the PC.
We also made use of the Python library Matplotlib [143] in order to print the evaluation
of the loss functions of the neural networks of the SAC in real time (during the training
process).
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• Machine learning framework: A machine learning framework is needed in order to
simplify the implementation of the SAC algorithm. ML frameworks are libraries allowing
to carry out neural network computations on the Graphics Processing Unit (GPU) of a
computer. The GPU performs parallel computing and helps to reduce the computation
time needed by the execution of a given program. Since the neural network computations
are highly parallelizable, the usage of the GPU allows to speed up the learning process.
The most well-known ML frameworks available for the Python programming language
are:

– Tensorflow [1] and Keras [102], two libraries which are often used together. Tensor-
flow is used for low-level implementations of custom neural network architectures,
while Keras is used for high-level implementations of state-of-the-art layers of neural
networks. These two libraries are mainly popular in the industry domain since they
are one of the oldest ML frameworks and their deployment are very time-tested.
They also have one of the biggest community of users.

– Pytorch [256], the Python version of the Torch framework. It is mainly popular in
the academic domain, it is more recent than Tensorflow and Keras, and its features
are quickly evolving.

We chose to use the Pytorch framework [256], since it is more popular in the academic
domain than in the industry: we want our work to be reusable for other research projects.

• Robotics middleware: a middleware is a framework allowing to structure an appli-
cation in distinct components and to manage all the communications made between all
these components. It independantly executes all components in parallel.
In robotics, a middleware is used to design all parts of GNC system (defined in the section
2.1.2) in multiple software components and allows to easily transfer the application from
a simulation to a real robotic platform. Indeed, specific components are implemented for
the simulation, the low-level features and the high-level algorithms: when the application
needs to be embedded in a real robot, only the useful middleware components are kept.
Middlewares also offer useful tools for the supervision and the management of the appli-
cation.
The most used robotics middleware is the Robotic Operating System (ROS) 1 [269], which
is available for more and more programming language and is often updated with the aim
of being secured and well optimized. It is applied to a wide variety of robots.
The Mission Oriented Operating Suite-Interval Programming (MOOS-IvP) 2 [28] is an-
other robotics middleware specifically designed for marine robotics. The programming
paradigm is here slightly different and MOOS-IvP is less often updated and less robust

1https://www.ros.org/
2https://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php
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than ROS.
During this work, we chose to use the ROS middleware because it is a more sustainable
solution for future applications of our results and because a lot more of documentation
and existing packages are available.

• Robotics simulator: a simulator is needed in order to train the SAC algorithm with
realistic data. There are various simulators designed for robotics available:

– General robotics: let us see several general robotics simulators first. These sim-
ulators were not designed for specific sub-domain of robotics and resources can be
found for nearly all types of robotic platforms: terrestrial, aerial, robotics arms, etc.
They can often accurately and efficiently simulate several robots at the same time
and operate them in complex indoor and outdoor environments. One thing to note
is that these general simulators are systematically lacking of marine robotics support
by default and need to develop additional plugins or packages. This is due to the
fact that the marine robotics community is smaller than other robotics communities.
The Gazebo simulator 3 [181] is among the most popular robotics simulator since it
is based on the well-known ROS middleware: Gazebo can be launch from ROS or
independently, and a lot of interactions are available between ROS components and
Gazebo.
The Modular OpenRobots Simulation Engine (MORSE) simulator 4 [76] is also found
in a lot of use cases. It is based on the Blender Game Engine and the Bullet Physics
engine, and iso its graphics rendering can be better than other robotics simulator.
It can be used with a lot of different middleware.
CoppeliaSim 5, formerly known as V-REP [275], is robotics simulator based on a dis-
tributed control architecture allowing to used components of different middlewares
or frameworks in the same application.

– Marine robotics: the following simulators were specifically designed for marine
robotics applications: underwater robots, surface vehicles, underwater sensors, etc.
There are often (but not systematically) based on one of the previous general robotics
simulator and improved it by adding some lacking features. Indeed they are adding
the support of hydrodynamic forces, such as waves or ocean currents, as well as some
marine robot models and environments.
The Unmanned Underwater Vehicle (UUV) Simulator 6 [222] focuses on underwater
robotic platforms. It is composed of a set of Gazebo and ROS packages and both the
hydrodynamics and the robots models are based on the Fossen’s models (defined in

3http://gazebosim.org/
4https://morse-simulator.github.io/
5https://www.coppeliarobotics.com/
6https://github.com/uuvsimulator/uuv simulator
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the section 4.1). It allows to simulate various sensors and actuators, as well as ocean
currents. It includes various models of Autonomous Underwater Vehicles (AUV)
and Remotely Operated Vehicle (ROV), and offers several ready-to-use underwater
environments and control algorithms.
The project UWSim 7 [266] is another simulator of underwater vehicles, offering
other examples of AUV models and environment.
Virtual RobotX 8 [35] is also a marine robotics simulator based on ROS and Gazebo,
but is exclusively focus on Unmanned Surface Vehicles (USV). Its development comes
from the simulation-based robot competition designed to complement the physical
Maritime RobotX Challenge.
The project USV SIM 9 [255] is another simulator focused only on USVs. It is also
based on ROS and Gazebo.
MArine Robotics Simulator (MARS) 10 [335] is a Hardware-in-the-Loop simulator
for multiple AUVs and USVs, meaning that the inputs and the ouptuts of a real
hardware can be plugged to a PC executing the MARS simulator and simulating the
rest of the hardware and of the environment.
Other projects can be more focused on the underwater sensors, such as the project
described in [37] 11. This class of simulators aims to have higher granularity, meaning
that marine phenomena are simulated with greater precision.

For this work, we choose to use the Unmanned Underwater Vehicle (UUV) Simulator.
Indeed, the UUV Simulator is based on ROS (which was the middleware we previously
chosen) and have a lot of ready-to-use AUVs, underwater environments and controllers. It
also makes use of the Fossen’s models, which are sufficiently precised for robotics applica-
tions: we do not need to simulate precise micro-phenomena such as acoustic propagation.

• Statistical analysis tool: a tool allowing to analyse post-simulation results was needed.
We chose to use MATLAB 12 [233], because of the simplicity it offers for exploring large
datasets and generating plots and figures.

Once the tools have been chosen, they have to been integrated all together.

6.1.1.2 The architecture of our simulations

In this section, we are going to describe how we used these simulation tools all together. The
Figure 6.1 explains how the application is structured with all these tools, by recalling the main

7http://www.irs.uji.es/uwsim/
8https://github.com/osrf/vrx
9https://github.com/disaster-robotics-proalertas/usv sim lsa

10https://github.com/iti-luebeck/MARS
11https://github.com/hblasins/uwSim
12https://www.mathworks.com/matlab
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Figure 6.1. Architecture of our marine robotics application.

features they provides and showing how they are included one in another.

Besides Matlab, which is used for post-simulation results analysis, all tools are used inside
ROS components. This is why the middleware ROS encapsulates all the other tools in the
Figure 6.1, except Matlab. In the ROS terminology, these ROS components are called Nodes
and are able to communicate between one another thanks to the use of topics and services. As
explained previously, Gazebo is based on a ROS architecture and allows to run independently
the physical computations needed by the simulation and control algorithms. Gazebo can be
launched without its user interface (called the Gazebo client), allowing to compute the dynamics
of the simulation without displaying the rendering. The UUV Simulator is built upon Gazebo
and adds new packages. The ROS nodes can interact with the UUV Simulator nodes during
the execution of a simulation and can use a variety of features in real time: receiving the state
variables of the AUVs, changing the direction and the magnitude of the ocean currents, sending
commands to the thrusters, simulating sensor failures, etc.
The Figures 6.2 and 6.3 show two different views of the UUV Simulator:

• The Figure 6.2 shows a view taken from rviz, a tool provides by ROS and allowing to
supervise the simulation. The mission displayed on this figure is a path following task
performed by the ECA A9 13.

• The Figure 6.3 shows a view taken directly from the Gazebo client. The mission displayed

13https://github.com/uuvsimulator/eca a9
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Figure 6.2. The ECA A9 performing a path following task, viewed from rviz.

on this figure is a waypoint tracking task performed by the RexROV 2, which will be
detailed in the next section.

6.1.2 AUV and task setup

In this section, we will explain how the tools introduced previously are used in order to define
the control task and the AUV used to perform it.

6.1.2.1 The autonomous underwater vehicle

The UUV Simulator offers several models of real AUVs and ROVs: the RexROV, the RexROV
2, the ECA A9, the Desistek SAGA ROV and the Light Autonomous Underwater Vehicle
(LAUV). These models are based on the Fossen’s models defined in the section 4.1.
For this work, we chose to use the RexROV 2 model 14. The RexROV 2 is usually operated
remotely by a human, but here it will be considered as an AUV since it will act autonomously
thanks to control algorithms. The dimensions and parameters of the RexROV 2 were derived
from model parameters of the SF 30k ROV [29]. As shown on the Figure 6.4, the RexROV 2
is a cube-shaped ROV. It has six degrees of freedom (6DOF), the three possible translations
and the three possible rotations, and it is actuated thanks to six thrusters or propellers.
These thrusters are placed according to an unconventional layout (see Figure 6.5): one given
thruster is able to impact multiple DOFs at the same time, and each basic movement needs a
specific combination of thrusters inputs. The RexROV 2 sensors are composed of an Inertial

14https://github.com/uuvsimulator/rexrov2
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Figure 6.3. The RexROV 2 performing a waypoint tracking task, viewed from the Gazebo client.

Figure 6.4. The RexROV 2 shown in the Gazebo client.

Measurement Unit (IMU) measuring the linear and angular accelerations and velocities in the
AUV frame, a Doppler Velocity Log (DVL) measuring the linear velocities of the AUV relative
to the seabed and a pressure sensor measuring the depth of the AUV. It can also have a RGB
camera and a GPS sensor (used when the AUV is surfacing) but there were not implemented
in this work. This particular AUV was chosen for its shape allowing an ease of controllability.

The notation used to describe the RexROV 2 variables will be the following:
η = [x, y, z, φ, θ, ψ]T

ν = [vx, vy, vz, ωx, ωy, ωz]
T

u = [u1, u2, u3, u4, u5, u6]T
(6.1)

where η is the vector composed of the position x = (x, y, z) (expressed in the Gazebo
reference frame) and the Euler angles (roll, pitch and yaw) Θ = (φ, θ, ψ), ν is the vector
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(a) Thrusters layout of the RexROV 2 (top view).

(b) Thrusters layout of the RexROV 2 (side view).

(c) Thrusters layout of the RexROV 2 (front view).

Figure 6.5. Multiple point of views of the thrusters layout of the RexROV 2.
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composed of the linear velocities v = (vx, vy, vz) and the angular velocities ω = (ωx, ωy, ωz),
and u is the vector composed of the control and propulsion forces composed of the control
inputs ui sent to the six thrusters of the RexROV 2.

6.1.2.2 The control task

AUVs can be employed for various types of missions or control tasks: path planning, obstacle
avoidance, waypoint tracking, station keeping, etc. In this work, we chose to make the
RexROV 2 perform a waypoint tracking task. The task will be only operated in simulation,
since we did not have the time to test the algorithms on real AUVs. This waypoint tracking
problem aims to compare a deep-reinforcement-learning-based controller with a PID controller.
Following the RL terminology, the task is divided in a finite number of episodes. In each
episode, the AUV must reach a different 3D point called the waypoint or target waypoint.
These episodes are composed of time steps, and the maximum number of time steps has to be
tuned for each RL task.

At the beginning of each episode, we initialize the AUV at the 3D position x = [0, 0,−20]
(in meters and relative to the frame attached to the Gazebo world center) and we assign it a
random orientation Θ. More precisely, the Euler angles are initialized with φ = θ = 0 and ψ
taken randomly in the range [0: 360].
At the beginning of each episode, a waypoint is randomly placed inside a bounded 3D box in
the world of the simulator, centered on the position [0, 0,−20]. The size of the box can vary
depending on the difficulty we want to assign to the control task. On the Z axis, the box will
always take the range [-60:-1]. For the X and the Y axes, two cases are possible:

• The simpler task: the box will take the range [-20:20] on both X and Y axes.

• The harder task: the box will take the range [-50:50] on both X and Y axes.

The Figure 6.6 shows these two cases, represented in the horizontal plane (O,X,Y) (since
the two boxes have the same range for the Z axis). The simpler task will be used in the section
6.3, while the harder task will be used in the sections 6.2 and 6.4.

During the execution of a training or testing episode, the AUV cannot exceed the vertical
boundaries [-60:-1] of the Z axis. If it does so, the episode ends with a failure called a collision.
If the AUV is able to reach a distance of less than 3 meters from waypoint without going
outside of the vertical boundaries, the episode ends with a success. Finally, if the AUV spends
too much time steps without reaching the waypoint, the episode ends with a failure (we call
this case of failure a timeout): we empirically set the maximum number of time steps to 1000,
which is a sufficient duration for the AUV to reach the target waypoints of both the simpler
and the harder tasks.
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Figure 6.6. The bounded boxes of the simpler and the harder tasks represented in the horizontal plane
(O,X,Y).

In order to make the simulation more realistic, we added noise to the sensors measurements
of all the state variables of the RexROV 2. For each variables, a noise σi is added to its
original value by randomly sampling the interval [0.05 : 0.1] following a uniform distribution.
A random noise σi is also added to each components of the action vector u by uniformly
sampling the interval [0.01 : 0.05].
We also added external disturbances to our underwater simulated environment thanks to the
use of fluctuating ocean currents. Each 100 timesteps, the ocean current velocity cv ∈ [0 : 1]
(in m.s−1) and the ocean current angles (cha; cva) ∈ [−0.5 : 0.5] (for horizontal and vertical
angles respectively in radians) are randomly modified by uniformly sampling a new value
in their respective ranges. The Figure 6.7 shows an example of ocean current vector in the
Gazebo reference frame. The fact that the angles and the velocity of the ocean currents are
constantly changing during the execution of the episodes adds a real challenge to the control
task.

The UUV Simulator offers several underwater environment files, called worlds, which can
be either fictional (Empty underwater world, AUV underwater world, Ocean waves world,
Lake) or based on real-world locations (Herkules ship wreck, the coast of Mangalia in Romania,
Munkholmen in Norway, Subsea BOP panel). We chose to use the Ocean waves world which
is a generic underwater environment providing a realistic seabed with a great variability of
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Figure 6.7. An example of ocean current vector in the Gazebo reference frame.

reliefs.

This work has been focusing on the low-level control of the AUV as well as the integration of
guidance functions: the deep RL-based controller has to perform what is called an end-to-end
control. This means that the navigation component of the GNC system (see section 2.1.2)
is kept relatively simple for this control task and is not the subject to specific studies. The
navigation component is provided by Gazebo, which simply sent the true values of the AUV
variables with added noises.

The Figure 6.5 shows the thrusters layout of the RexROV 2. We can see that some of its
thrusters can affect multiple degrees of freeedom (DOF) at the same time, because of their
orientation. The DOFs of this AUV are thus strongly correlated, making the control task even
harder to perform. Other stable cube-shaped AUVs would be able to move horizontally or ver-
tically using independant thrusters, but the RexROV 2 required specific thrusters combinations
for each movement. Understanding the dynamics of this AUV represents a real challenge for
any learning algorithm.

6.1.3 Implementation of the control algorithms and definition of the
metrics

In this section, we are going to describe the algorithms we are going to use for the control
of the RexROV 2 as well as the metrics allowing to judge their respective performance. The
task described in the section 6.1.2.2 will be performed by both the Soft Actor-Critic (SAC)
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algorithm (see section 3.2.3) and a PID controller (see section 2.2) using the UUV Simulator.
For each trial on this task, the procedure will be the following:

1. Training phase: the SAC algorithm is trained on successive training episodes. Each
episode will replicate the task of the section 6.1.2.2;, with a randomly placed target
waypoint and random time-varying ocean currents. The SAC-based controller will be
trained until reaching the pre-defined maximum amount of training episodes. The learning
process can also be manually cut in order to save computational time. The training phase
can be stopped if we observe that the SAC algorithm fail to learn the task by not reaching
a lot of waypoints. At the contrary, it can also be stopped if we judge that the SAC-based
controller has already achieved satisfactory results and cannot learn anything more from
the training episodes.

2. Choosing the trained models: During the training phase, the parameters of the
neural networks of the SAC are constantly evolving. The values of these parameters
are regularly saved and stored in specific files during the learning process. We chose to
save these parameters every 100 training episodes until the episode number 1500, and
then every 250 episodes until the episode number 5000 (we fixed the maximum amount
of training episodes to 5000). All these saved parameters form a set of trained models.
For example, the parameters saved at the episode 1000 will be denoted the model 1000.
Based on the amount of successes obtained during the training phase, we will choose one
or more trained model in order to compare them with the PID controller.

3. Testing phase: the chosen trained models are independently compared with a PID con-
troller. Each trained model is run on a distinct testing phase of 1000 episodes, composed
of 500 test episodes running the SAC-based controller and 500 test episodes running the
PID controller. These test episodes reproduce the same task as during the training phase,
but now the parameters of the neural networks cannot vary anymore (since the learning
process is over). The SAC and the PID controllers have to reach the same set of random
target waypoints and are subject to the same time-varying ocean currents, in order to
preserve the consistency of this comparison.

4. Analyzing the results: Once the testing phase is finished, the results are analyzed
thanks to different performance metrics. These metrics are computed a posteriori using
Matlab.

6.1.3.1 Implementation of the PID algorithm

The UUV Simulator proposes several ready-to-use implementations of classical controllers:
PID controllers, PD controllers with compensation of restoring forces for dynamic positioning,
model-free sliding mode controllers based on [93] and [283], model-based sliding mode
controllers, model-based feedback linearization controllers, singularity-free tracking controllers
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based on [84]. We chose to use the PID controller for the comparison with the SAC algorithm
since it is the most used algorithm in the control theory literature.

The PID controller is defined as a multi-input-multi-output (MIMO) system and is able to
regulate the six degrees of freedom of the RexROV 2 in order to reach the waypoint: the surge,
the sway and the heave, as well as the roll, the pitch and the yaw (as defined in the section
4.1). It computes an input vector u based on the tracking error e(t) = r(t)− ŷ, with r being
the reference (corresponding here to the waypoint) and ŷ being a measurement of the output
variables of the AUV. This vector is defined as follows:

u(t) = Kp e(t) + Ki

∫ t

0

e(τ)dτ + Kd
de(t)

dt
(6.2)

with

e(t) = [xe, ye, ze, φe, θe, ψe]
T (6.3)

where Kp, Ki and Kd are real-value matrices called the gains, (xe, ye, ze) are the errors
between the waypoint position and the AUV position (expressed in meter, in Cartesian
coordinates and in the absolute reference frame of gazebo) and (φe, θe, ψe) are the Euler angles
errors corresponding to the amount of angles the AUV is lacking in order to point towards the
waypoint (expressed in radians, in the local reference frame of the AUV).

The PID controller provided by the RexROV 2 package is already tuned and its gains were
found using SMAC (Sequential Model-based optimization for general Algorithm Configuration)
[145] 15. Kp, Ki and Kd are diagonal matrices defined with the following diagonal coefficients
(here they have been rounded for more clarity):

diag Kp = [11994, 11994, 119934, 19460, 19460, 19460]T

diag Ki = [321, 321, 321, 2097, 2097, 2097]T

diag Kd = [9077, 9077, 9077, 18881, 18881, 18881]T
(6.4)

These inputs u are not sent directly to the AUV thrusters. More specifically, the vector
u can be written as u = (fx, fy, fz, τr, τp, τy)

T , where (fx, fy, fz) are forces and (τr, τp, τy) are
torques. The forces and torques provided by the PID controller need to be applied to the AUV
in its local reference frame. The UUV Simulator uses an intermediary component called the
thruster manager which allows to transforms these input or forces/torques signals given by the
PID controller into thrusters commands. In the case of the RexROV 2, there are six thrusters
operating the AUV. As said earlier, each thruster can affect a combination of several degrees
of freedom. The thruster manager defines a Thruster Allocation Matrix (TAM) in order to
transform the PID input vector u into a thruster commands vector c as follows:

15https://github.com/automl/SMAC3
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c(t) = TAM . u(t) (6.5)

The RexROV 2 package gives the following 6x6 TAM (here the coefficients have been
rounded to three digits for more clarity):

0.0 0.259 0.0 0.0 0.906 0.906
0.999 0.0 0.383 0.383 0.423 −0.423
0.0 0.966 0.924 −0.924 0.0 0.0
−0.237 0.0 −0.696 −0.696 −0.102 0.102

0.0 0.946 −0.799 0.799 0.218 0.218
0.488 0.0 0.331 0.331 −0.764 0.764


(6.6)

Each line of the TAM corresponds to a different thruster of the RexROV 2. After this
computation, each component of the command vevtor c is sent to its respective thruster,
following the same indexing as shown on the Figure 6.5. The thruster manager also allows to
change specific parameters such as the maximum thrust which can be applied to the AUV, the
update rate or the type of the thrusters.

The guidance algorithm used with the PID controller will simply consist in straight lines
going from the initial position of the RexROV 2 to the target waypoints. No navigation
algorithm will be used: the variables will be sent directly to the PID by the UUV Simulator,
with added noises (described in the section 6.1.2.2).

6.1.3.2 Implementation of the Soft Actor-Critic algorithm for AUV control

The deep reinforcement learning (deep RL) algorithm we chose to evaluate for the waypoint
tracking task of the RexROV 2 is the Soft Actor-Critic (SAC), which was previously detailed in
the section 3.2.3. It is a model-free approach belongings to the family of Policy Gradient (PG)
technics. We chose the SAC because it is one of the latest advances in deep RL and because
it has never been used for the control of an AUV. Moreover like a lot of deep RL technics, it
is very appropriate for continuous control tasks thanks to the use of neural networks, which
allows to work in continuous state and action spaces (as it is the case in robotics).

In this section, we will not detail the whole implementation of the algorithm, and we will
only explain the specific tuning of the SAC for our use case. Moreover some of the parameters
presented here may vary throughout the next sections, and the version of the SAC in this
section can be considered as the base version of this algorithm.

In reinforcement learning (see more details in 3.2), an agent (here the SAC algorithm) evolve
in an unknown environment (the underwater environment) in order to fulfill a task (reaching
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waypoints). At the time step t, the agent applies an action at to the environment, while the
environment responds to that with a feedback composed of a state st and a reward signal rt.
The state is a partial observation of the environment, while the reward judge how good the
agent is acting with respect to the given task. This sequence is repeated until the episode ends.
More specifically, the goal of the agent is to maximize the return (the total sum of discounted
rewards). In the case of the SAC algorithm, the agent must also maximize an entropy term in
order to encourage the exploration of the environment. The global objective function which to
needs to be maximize by the agent is:

J(θ) =
T∑
t=0

γt E(st,at)∼ρπ [r(st, at) + αH(πθ(.|st))] (6.7)

where α is temperature parameter controlling the maximization of the entropy, γ is the
discount factor allowing to less rely on uncertain future expected rewards, and ρπ is the
marginal of the state distribution induced by the policy πθ(a|s), as defined in the DPG section.
γ is set to the value 0.99, while the value of α is set according to the scale of the reward
function and will be described at the end of this section.

Policy Gradient-based models are particularly sensitive to the shape of the reward function.
The smallest variations can lead to the convergence or not of the model, and the magnitude
and the evolution of each term composing the reward function must be chosen carefully. This
function is often crafted by trial and error, since no global rules exist in the reinforcement
learning theory, and the expression of the function can drastically change from one task to
another. The simulated environment used during the training must be realistic enough, while
not being too complex for the agent. Indeed, if the task requested is too complex, the agent
might not be able to converge: for example if the state returned by the environment is not
descriptive enough, or if the reward function is too constraining. A trade-off between the
reward function and the complexity of the environment must therefore be found.
Since our study involve MIMO dynamical systems, the state st and the at will be vectorial from
now.

Unlike the PID controller, the SAC does not use a thruster manager: it outputs an action
vector At = [u1, u2, u3, u4, u5, u6]T which is composed of the inputs ui sent directly to the six
thrusters of the RexROV 2. Each input belongs to the range [−240.0 : 240.0].
At the time step t of a given episode, the environment sent the following state vector St to the
SAC algorithm, composed of 23 variables:

St = [ x, Θ, v, ω, θe, ψe, xe, ut−1 ]T (6.8)

where x = (x, y, z) is the position vector of the RexROV 2, Θ = (φ, θ, ψ) is its orientation
vector (the Euler angles), v is the linear velocity vector (the derivative of x), ω is the angular
velocity vector (the derivative of Θ), θe and ψe are respectively the tracking errors of the pitch
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and the yaw angles (the amount of angles that is lacking in order to make the AUV point
towards the waypoint), xe is the error between the position vector x and the position vector
of the waypoint, and ut−1 = (u1, u2, u3, u4, u5, u6) is the action vector of the inputs sent at the
previous time step.

In order to perform the waypoint tracking mission, we designed the reward function rt
defined in (6.9). It was inspired partly by [51], where the reward function takes into account
low-level variables such as linear and angular velocities and their respective references. We
adapted this work with other control variables, taking directly into account the position of the
AUV and its reference, and by setting a lot of the values empirically:

rt =


rwaypoint if dt < ε (success)
rcollision if z /∈ [zmin : zmax] (collision)
rtoward if dt < dt−1

rbackward if dt ≥ dt−1

(6.9)

where rt is the reward received by the agent at time t, dt is the current relative distance
between the AUV position and the position of the waypoint to reach, zmin and zmax are the
authorized limits for the vertical movement z of the AUV, and ε is the threshold allowing to
detect when the AUV has reached the waypoint (the AUV does not need to reach exactly the
waypoint, and is asked to enter inside a sphere of radius equal to ε meters). As described in
the section 6.1.2.2, zmin is set to -60 meters and zmax to -1 meter, whereas ε is set to 3 meters.
Each term appearing in (6.9) represents a specific feature of the global desired behavior of the
AUV:

• rwaypoint is a constant positive reward given to the agent when the AUV reaches the
waypoint, which leads to a terminal state, ending the current episode with a success. It
is set to 500.

• rcollision is a constant negative reward given to the agent when the vertical movement of
the AUV exceeds the limits defined by [zmin : zmax] (here [-60: -1]), which leads to a
terminal state, ending the current episode with a failure. It is set to -550.

• rtoward is a variable reward given when the distance dt is decreasing, which means that
the AUV moves toward the waypoint. It is defined as follows:

rtoward = λ1(dt − dt−1) − λ2 ‖Ω‖ (6.10)

where λ1 and λ2 are positive weighting terms set respectively to 200 and 10. The term
weighted by λ1 rewards large movements toward the waypoint, while the term weighted by
λ2 penalizes strong angular speeds, and promotes indirectly a softer use of the actuators.
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• rbackward is a constant negative reward given when the distance dt is increasing or staying
equal to its previous value, which means that the AUV moves backward the waypoint or
stays still. It is set to -10.

We recall that the SAC algorithm is based on an Actor-Critic architecture and is composed
of four neural networks:

• The soft state-value network Vψ (or sometimes simply called soft value network), modeled
by the parameters ψ. The input of the network as a size of 23 and is composed of the
state St defined in 6.8, while its output is the state-value function V (St). This function
allows to evaluate how good the state St is. This neural network is composed of two
hidden layers of 256 neurons and one ouput layer composed of 1 neuron (corresponding
to the estimation of the scalar V (St)). The activation function used in the two hidden
layers is the leaky ReLU (Rectified linear unit), the classical deep learning activation
function (mentionned in 3.1.1) defined as f(x) = max(0.01x, x). The output layer has no
activation function and remains a linear layer in order to perform the regression of the
state-value function.

• The target network of the soft state-value network, modeled by the parameters ψ′. It is
used in the computation of the loss function of the soft state-value network.

• The soft Q-value network Qw , modeled by the parameters w. The input of the network
as a size of 29 and is composed of the state St and the action At, while its output is the
Q-value function Q(St,At). This function allows to evaluate how good the action At is,
with rescpect to the state St. This neural network is composed of two hidden layers of 256
neurons and one ouput layer composed of 1 neuron (corresponding to the estimation of
the scalar Q(St,At)). The activation function used in the two hidden layers is the leaky
ReLU. The output layer has no activation function and remains a linear layer in order to
perform the regression of the state-value function.

• The policy network πθ , modeled by the parameters θ. The input of the network as a
size of 23 and is composed of the state St defined in 6.8, while its output is composed of
the mean vector µθ and the variance variance σθ. These vectors are used to compute the
action vector At as follows:

At = tanh(n) where n ∼ N (µθ,σθ) (6.11)

This neural network is composed of two hidden layers of 256 neurons and one ouput layer
composed of 12 neurons: 6 neurons for the components of the vector µθ and 6 neurons for
the components of the vector σθ. The activation function used in the two hidden layers
is the leaky ReLU. The output layer has no activation function and remains a linear layer
in order to perform the regression of the two mean and variance vectors.
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All the components of the weight matrices and the bias vectors of these neural networks
are randomly initialized using a uniform distribution over the range [−3.10−3 : 3.10−3], except
for the target network: its parameters are initialized using a copy of the initial parameters of
the soft state-value network.
The parameters of the target network are updated using the rule: ψ′ ← τψ+ (1− τ)ψ′, where
τ is set to 5.10−3. The three other neural networks are all updated thanks to the ADAM
algorithm (detailed in the section B.3) and the loss functions defined in the section 3.2.3.3,
using the same learning rate set to 3.10−4. The updates are computed using batch of training
samples taken from a replay buffer D able to contain up to 5.106 transitions. The size of the
batches is set to 256. The temperature parameter α is set to the inverse of the reward range.
In this task we find empirically that the reward function lays around the interval [-20: 20],
which means a range of 40: we set the temperature to α = 1

40
= 0.025. A lot of the previous

hyperparameters has been set to the values recommended by [116], the original paper of the
SAC algorithm. The authors kept using some of these values during a lot of different use cases.

The SAC algorithm has to perform an end-to-end control of the AUV. This means that it
has to carry out both the low-level and high-level control (called guidance) of the AUV. It has
to simulataneously send the good inputs to the thrusters of the AUV (low-level) and choose
the right trajectories to follow (high-level).
As we are focusing on the low-level control and the guidance of the RexROV 2 and not on
its navigation, the tracking errors of the variables are directly given inside the state vector St.
Since the SAC algorithm does not use a thruster manager and sends directly its actions as
the inputs of the thrusters, the task is harder for this deep RL agent. Indeed, it has to figure
out the dynamics of the RexROV 2 and how each thruster is affecting the different degrees of
freedom of the AUV.

6.1.3.3 Definition of the performance metrics

When the testing phase is completed, the records of the test episodes of both controller are
analysed using the software Matlab. We defined metrics in order to measure different aspects
of the performance of these controllers such as the speed of convergence of the learning
algorithms, the efficiency in the tracking of the waypoints, or even the energy consumption of
the AUV.

The only metric used during the training phase of the SAC algorithm is called the Number
of success for each 100 episodes. It counts the number of successful episodes obtained each
one hundred training episodes: it counts the episodes in which the AUV reached the waypoint.
It allows to measure how fast the SAC algorithm is able to reach an acceptable behaviour
during its learning of the neural networks parameters. This metric will be presented with
the following format: [5, 10, . . . , 95, 100, 99]. We said earlier that the training phases are
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Figure 6.8. Definition of the ideal trajectory and the distance error dδ.

composed of a maximum number of 5000 episodes, so the array of the Number of success for
each 100 episodes can be composed of 50 numbers or less.

During the testing phase, more metrics were defined in order to compare the PID and SAC
controllers according to different criteria. Here are the list of these metrics, all computed on
data form the test episodes of both controllers (500 episodes for each of them):

• Success rate: the success rate is the percentage of successful episodes a controller got
throughout its 500 test episodes. As defined in the section 6.1.2.2, a success happens
when the AUV reaches the waypoint without going outside of vertical boundaries and
without exceeding the maximum number of time steps.

• Collision rate: the collision rate is the percentage of unsuccessful episodes a controller
got throughout its 500 test episodes because of collisions. As defined in the section 6.1.2.2,
a collision happens when the AUV goes beyond the vertical boundaries [-60: -1] on the
Z axis of the environment and the episode ends with a failure.

• Timeout failure rate: the timeout failure rate is the percentage of unsuccessful episodes
a controller got throughout its 500 test episodes because of timeout failures. As defined
in the section 6.1.2.2, a timeout happens when the AUV spends more than 1000 time
steps without reaching the target waypoint and the episode ends with a failure.

• Mean of dδ: We define the notion of ideal trajectory as follows: the ideal trajectory is the
perfect path allowing the AUV to go directly to the waypoint. In practice, it corresponds
to the straight line linking the initial position of the AUV and the target waypoint. We
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also define the distance error dδ as the measure of the deviation of the AUV from the
ideal trajectory. This deviation is expressed in meters and is measured using a 3D line
perpendicular to the ideal trajectory and passing through the current position of the AUV
(see Figure 6.8). The Mean of dδ is the mean value of the distance error dδ, computed
on all the time steps of all the test episodes.

• SD of dδ: by keeping the previous definitions of the ideal trajectory and the distance
error dδ, SD of dδ is the standard deviation of the distance error dδ, computed on all
the time steps of all the test episodes. The mean and the SD of dδ allow to assess the
tracking abilities of the controller and are both expressed in meters.

• Mean of ‖u‖: As defined earlier the vector u is composed of the six commands ui
received by the thrusters of the RexROV 2. Its Euclidean norm is defined as ‖u‖ =√

(u1
2 + u2

2 + u3
2 + u4

2 + u5
2 + u6

2). The Mean of ‖u‖ is the mean value of the norm
‖u‖, computed on all the time steps of all the test episodes. The mean of ‖u‖ gives an
idea of the global thrusters usage made by the controller. The bigger the commands ui
are, the more the thrusters will be used. This metric gives indirectly an information about
the durability of an AUV controlled by a given controller: they smaller the demand on
the thrusters is, the more the AUV actuators will last.

• Mean number of steps: The Mean number of steps is a metric measuring the mean
number of time steps taken by a test episode of a given controller. It simply gives the
mean duration of the episodes performed during the testing process, independently of the
result of these episodes (success or failure). The mean number of steps is correlated to
the mean and the SD of dδ, since a great number of time steps taken by an episode can
be due to the fact that the AUV is deviating too much from the ideal trajectory, and that
it has struggled to reach the target waypoint.

• Mean of
∑
‖u‖: For each episode, the sum of the norm ‖u‖ is computed, noted

∑
‖u‖.

It gives a precise idea of the total amplitude of all the commands asked to the thrusters
during each episode. The Mean of

∑
‖u‖ is simply the mean value of the quantity

∑
‖u‖,

computed on all the test episodes. This metrics gives the mean thrusters usage per
episode, and gives indirectly an information about the energy consumption of the AUV:
the greater the quantity

∑
‖u‖ is for one episode, the bigger the energy consumption of

the AUV was during that episode. Indeed, the greater the command ui is, the greater the
electric current sent to the thruster i will be. The values of the mean of

∑
‖u‖ shown in

the results of the next sections will always have to be multiplied by 105 in order to have
the true numbers. We multiplied the values of the mean of

∑
‖u‖ by 10−5 in order to

not have too large numbers in our results tables.

The result of the test episodes can be either a success or a failure and can biased the metrics
based on the distance error dδ, the time steps and the norm ‖u‖, depending on what we want
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to analysed. All the cited metrics have also been computed using only successful episodes, and
these additional values are denoted with term (Success) in front of their name. For example,
these (Success) versions of the metrics can be employed in order to know the mean time needed
by the controllers to reach the waypoints, or the amplitude of the deviations from the ideal
trajectory caused only by the ocean currents (and not caused by the aberrant behaviour of a
machine learning-based controller that has not learnt well the task).
Finally, all the metrics will not be systematically commented. We will display tables giving
the maximum amount of information to the reader, but we will only discuss the most relevant
values for each trial. Moreover, some metrics are also implicitly included in one another, and
can be considered as intermediary values. For example, the mean of

∑
‖u‖ can be viewed as

an approximation of the product of the mean of ‖u‖ and the mean number of steps: it is the
expression of an energy value and is the product of a time value and an intensity value.

6.2 Initial trial on the waypoint tracking task

In this section, we describe the result of our first trials of applying the SAC to the control
of the RexROV 2 on a waypoint tracking task. More precisely, the goal of this first task was
reaching waypoints randomly placed inside a large box with the ranges [-50: 50] on the X and
Y axes and [-60: -1] on the Z axis (see the section 6.1.2.2). These results were published in [309].

Firstly, we trained the SAC algorithm on training episodes (with a maximum of 5000
episodes). We had the following number of success during the training process:

Number of success for each 100 episodes: [91, 95, 99, 100, 99, 100, 100, 100, 100,
100, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 61, 7, 5, 3, 53, 34,
0, 0, 22, 81, 91, 100, 100, 99, 100, 100, 100, 83, 98, 91, 13]

We stopped the training after 4600 episodes and we can see that the SAC algorithm rapidly
converged, since it managed to get 91 successes during its first 100 episodes. This is a really
rapid convergence towards a good behaviour and confirms that the SAC algorithm can be
really sample efficient. We can note that after 2500 episodes, the number of success begin to
drop drastically before going up again. This could come from the maximization of the entropy
term by the SAC, which allows to favor exploration of unknown parts of the environment. As
said in the previous section, the parameters of the SAC are regularly saved inside specific files,
forming a set of trained models.
Then, the SAC has been compared with the PID controller during 1000 episodes, giving 500
test episodes for each algorithm. We chose to test the model obtained after 1200 training
episodes (1200 episodes took around 4 hours to be performed.) and this results are shown on
the Table 6.1.
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Metrics PID SAC

Success rate (%) 96.0 86.4
Collision rate (%) 0.8 1.2

Timeout failure rate (%) 3.2 12.4

Mean of dδ (m) 3.81 8.69
SD of dδ (m) 3.53 5.47

Mean of ‖u‖ 541.42 481.16
Mean number of steps 299 365
Mean of

∑
‖u‖ (.105) 1.618 1.756

(Success) Mean of dδ (m) 2.84 6.40
(Success) SD of dδ (m) 2.62 3.46

(Success) Mean of ‖u‖ 540.47 472.84
(Success) Mean of

∑
‖u‖ (.105) 1.477 1.256

Table 6.1. Results for the initial waypoints tracking task, with waypoints placed inside a large box and with
a model trained on 1200 episodes.

For each metric, we highlighted the controllers with the best results using a case filled with
the green color.16 We can see on the Table 6.1 that the PID controller had a greater number of
success (96.0%) than the SAC algorithm (86.4%), and with less collisions and timeout failures.
We recall that an episode ends with a success when the AUV goes inside a sphere of radius 3
meters centered on the waypoint. Collisions happen when the RexROV 2 exceeds the vertical
limits -60 and -1 on the z axis, while timeouts happen when the RexROV 2 stays 1000 time
steps inside the box without reaching the waypoint (the episode ends with a failure in both
cases).
If we consider all the test episodes, the PID controller is consuming less energy (regarding
the mean of

∑
‖u‖), even if the SAC algorithm is generating smaller mean inputs ‖u‖. This

due to the fact that the SAC is deviating too much from the ideal trajectory leading to the
waypoint, measured by the mean and the standard deviation of the error dδ. It is also spending
too much time steps during the episodes. However if we only take into account the successful
episodes, the SAC algorithm is consuming less energy than the PID. This is really encouraging
and the next steps will be to improve the success rate of the SAC algorithm.

An example of sucessful episode for both controllers has been chosen, and the trajectories
followed by the RexROV 2 are shown in 3 dimensions on Figure 6.9 and in 2 dimensions

16The metrics called (Success) Mean number of steps was not computed for this first trial, since some variables
required for its computation have not been saved in our logs at this time.
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Figure 6.9. Example of 3D trajectories followed by the AUV for both of its controllers.

on Figure 6.10. On Figure 6.10a, the target waypoint is shown has a point, and we have
represented a sphere with a 3 meters radius and centered on the waypoint on Figures 6.9 and
6.10b. When the AUV enters inside this sphere, the episode ends with a success. For the
same episode, the evolution of the norm of the input vector u sent to the thrusters is shown
on Figure 6.11, as well as the evolution of the distance error dδ on Figure 6.12.

We can see on the figures 6.9 and 6.10 that both controllers struggled to reach the waypoint
directly, because their respective trajectory deviated from the ideal trajectory (the straight line
connecting the waypoint to the initial position of the AUV) before finally reaching the sphere
with a radius of 3 meters. This is due to the successive changes appearing in the
directions and the magnitude of the ocean currents each 50 time steps. Moreover
the Figure 6.12 shows that until the time step 400, both controllers have a distance error dδ
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(a) Trajectories according to the (
−→
X,
−→
Y ) plane.

(b) Trajectories according to the (
−→
X,
−→
Z ) plane.

Figure 6.10. Example of a 2D trajectory followed by the AUV for both controllers.
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Figure 6.11. Euclidean norm of the input vector u over time steps.

Figure 6.12. Distance error dδ of the AUV from its ideal trajectory over time steps.
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relatively similar. After the time step 400, the SAC-based controller is deviating more from
the ideal trajectory than the PID controller. Finally we can see on the Figure 6.11 that the
euclidian norm of the input vector u generated by the PID controller is most of the time greater
than the one generated by the SAC, explaining why the SAC-based controller is saving more
energy than the PID.

6.3 Study of the impact of the state vector on a simpler

task

After the previous initial trial where the PID outperformed the SAC in terms of success rate,
we chose to slightly simplify the task in order to eventually make the SAC equalize the success
rate of the PID controller. The difference is that now the waypoints appear inside a box with
the ranges [-20: 20] on the X and Y axes and [-60: -1] on the Z axis. In order to avoid making
this control task too easy, we also made the collision failures of the episodes happen when the
AUV goes outside of the range [-30: 30] for the X and the Y axes and [-60: -1] for the Z axes.
In this section, we will describe several definitive changes made to the simulation, and we will
show the results of a study of the impact of the state vector components on the performance
of the SAC on this new simplified task.

6.3.1 Improvements of the simulation setup

We decided to made some changes in order to improve our simulation setup, which will be kept
for all the upcoming results in the next sections.
We first made the simulations to be computed in real time. In the previous section, the UUV
Simulator had no limitations in its speed of computation and was able to perform the simulation
with a factor of 4: it was able to compute four seconds of simulation during one real time second.
The UUV Simulator is now forced to follow the real time: it computes one second of simulation
during one real time second. This choice was made in order to facilitate the transfer of our
SAC-based controller inside a real robotic platform. Since the UUV Simulator is based on ROS,
the SAC algorithm and the simulated environment are encapsulated inside separate components
and their execution are not synchronised. With an environment simulated with a factor of 4,
neither the rates of the sensors measures sent to the controller nor the duration separating two
successive inputs sent to the thrusters will be the same as in real life. These differences bias
the SAC algorithm and it would not be able to perform the control task if it were embedded on
a real-world AUV: if the SAC is trained with a faster simulation, the effect of its actions will
not affect the behaviour of the real AUV the way we would expect, since the inputs will not
be executed by the thrusters for the same duration as it used to learn in the training process.
These remarks were confirmed by the fact that the SAC-based controller did not have the same
behaviour when we assigned different values to the speed factor of the simulator.
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We also made a change in the reward function. The global structure of the reward is still the
same as in the equation 6.9, and only the term rtoward has been modified:

rtoward = 40. exp

(
− dt

20

)
(6.12)

where dt is the distance between the position of the AUV and the waypoint at the time
step t. The use of the exponential function was inspired by [51] and has the effect of giving
very large rewards when the AUV goes close to the waypoint. Moreover, whereas rtoward was
previously based on the difference dt − dt−1, it is here based only on the current distance dt.
The positive reward was before proportional to the speed at which the AUV is going towards
the waypoint, whereas now it grows exponentially when the distance dt is reduced. It better
captures the goal of the task: we do not want the AUV to go to the waypoint as fast as possible,
we simply want it to reach the waypoint independently of the duration.

6.3.2 Influence of the state vector’s size on the performance

We will now see how the number of variables found in the state vector given by the environment
to the SAC algorithm can affect its performance. We will start with the same state vector St as
the one defined in the section 6.1.3.2, and we will remove variables until the agent is no more
capable of learning the task. The task becomes harder to be fulfilled with fewer information.
If the SAC is able to learn the task with less variables, this means that some sensors can be
removed from the RexROV 2, which will allows to reduce the production costs of the AUV.
We want to know the maximum number of variables we can remove from the state vector while
still being able to fulfill the control task. Moreover, this sensitivity analysis of the state vector
allows to identify which sensors are the more useful for the AUV.

6.3.2.1 Initial state vector

For this new task composed of closer waypoints, we first trained the SAC algorithm with the
new changes described previously but with the same state vector St as for the task of the section
6.2:

St = [ x, Θ, v, ω, θe, ψe, xe, ut−1 ]T (6.13)

Let us recall that x = (x, y, z) is the position vector of the RexROV 2, Θ = (φ, θ, ψ) is
its orientation vector (the Euler angles), v is the linear velocity vector, ω is the angular
velocity vector, θe and ψe are respectively the tracking errors of the pitch and the yaw angles,
xe is the error between the position vector x and the position vector of the waypoint, and
ut−1 = (u1, u2, u3, u4, u5, u6) is the action vector of the inputs sent at the previous time step.
This vector is composed of 23 dimensions.

Yoann Sola - PhD Thesis 102/212 version: December 21, 2021



Chapter 6. Proposals for the development of deep reinforcement learning-based controllers for AUV

We kept the same procedure as in the previous trial. We trained the SAC algorithm for 2700
training episodes, and we had the following amount of success:

Number of success for each 100 episodes: [12, 60, 85, 95, 99, 99, 98, 99, 98, 100, 100,
100, 100, 100, 99, 100, 100, 100, 99, 99, 100, 100, 100, 100, 99, 100, 100]

The number of episodes after which we stopped the training phase will vary during the
following results sections, since there is no rule of thumb for the number of training episodes
needed for this task. Here the SAC managed to converge rapidly towards a good behaviour:
it reaches 85% of success after only 300 episodes. The convergence was here slower than in
the section 6.2, in which the SAC managed to have 91% during the first 100 episodes. This
phenomenom can seem incoherent, since the harder task allowed a faster convergence of the
SAC during the training phase. A possible explanation is that since the waypoints were placed
further away from the initial position of the AUV (at most at 50 meters away on the X and Y
axes), the episodes took more time steps to end, which led the replay buffer to be filled with more
training samples at each episode than here. The update process of the networks parameters
started therefore at earlier episodes, since this process begins when the replay buffer reaches a
certain size.
During these trials,we started to introduce a new type of figure in order to monitor the training
phase: the evolution of the cost functions of the SAC and of the total sum of rewards per
episode. They are shown on the Figure 6.13 for the learning phase of this subsection. These
plots were generated automatically during the training by matplotlib.
These plots describes the following features:

• The first light blue plot shows the evolution of the total reward per episode. The X axis
represents the number of different training episodes and the Y axis describes the total sum
of rewards obtained by the agent during each episode. It allows to see how fast the agent
is able to find a behaviour allowing it to collect a high number of large positive rewards.
However, a higher sum of rewards does not always mean a higher number of successes,
since the agent can sometimes converge towards a sub-optimal behaviour leading to the
highest possible sum of rewards at the expense of the success of the task. If such cases
appear, the reward function needs to be fine-tuned in order to better reflect the goal of
the task.

• The red plot shows the evolution of the Q-value loss function of the SAC. The X axis is
composed of the time steps of the simulation and the Y axis describes the loss function
JQ used by the soft Q-value network (see the equation 3.41).

• The dark blue plot describes the evolution of the value loss function of the SAC. The X
axis is composed of the time steps of the simulation and the Y axis describes the loss
function JV used by the soft value network (see the equation 3.40).
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Figure 6.13. Total reward per episode and loss functions for the initial state vector.

• The green plot describes the evolution of the policy loss function of the SAC. The X axis
is composed of the time steps of the simulation and the Y axis describes the loss function
Jπ used by the policy network (see the equation 3.45).
The plot of the three loss functions allows to visualize when the learning process of the
SAC algorithm happens. When a given loss function has a non-zero value for one time
step, it means that the corresponding network does not manage to estimate correctly the
value function, the Q-value function or the policy function: the outputs of the neural
network differ from the targets (based on the training samples from the replay buffer).
It means that its parameters need to be adjusted using the gradient descent. The higher
the value of the loss function is, the more the parameters need to be adjusted.

Here the Figure 6.13 shows that the agent adopts rapidly a behaviour leading to very
high rewards during the first 300 episodes, before converging towards an asymptote of slightly
smaller total rewards per episode. The plots of the three loss functions also show that the agent
continues to learn indefinitely, since the amplitude of the loss functions becomes bigger and
bigger through time. The fact that these loss functions vary constantly from small values to
high values is normal during the training phase:

• the high values are due to large errors between the expected outputs of the neural networks
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and the real values (computed from the rewards sent by the environment). This means
that new information needs to be learnt.

• the small values means that the observations of the environment match the expectations
of the neural networks, when the agent goes from one state st to another state st+1 thanks
to the action at.

After the training process, we choose to test three different models in order to see how
the number of training episodes performed by the agent can affect its performance during the
testing phase. We choose to test a model after 600 training episodes, a model after 1300 training
episodes and a model after 2500 training episodes. These three models were evaluated using the
same procedure as the one described in the previous sections. In order to keep our simulations
consistent, we will always use the three same models in the remaining results of the section
6.3.2. Here are the three results tables.

Metrics PID SAC

Success rate (%) 97.2 97.0
Collision rate (%) 2.8 3.0

Timeout failure rate (%) 0.0 0.0

Mean of dδ (m) 1.56 3.16
SD of dδ (m) 1.46 1.80

Mean of ‖u‖ 531.31 413.36
Mean number of steps 200 209
Mean of

∑
‖u‖ (.105) 1.065 0.864

(Success) Mean of dδ (m) 1.42 2.95
(Success) SD of dδ (m) 1.27 1.57

(Success) Mean of ‖u‖ 531.39 413.73
(Success) Mean number of steps 204 212
(Success) Mean of

∑
‖u‖ (.105) 1.081 0.874

Table 6.2. Testing phase of a model based on the initial state vector, trained on 600 episodes.
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Metrics PID SAC

Success rate (%) 97.6 98.6
Collision rate (%) 2.2 1.4

Timeout failure rate (%) 0.2 0.0

Mean of dδ (m) 1.50 2.66
SD of dδ (m) 1.35 1.44

Mean of ‖u‖ 531.63 446.00
Mean number of steps 202 175
Mean of

∑
‖u‖ (.105) 1.074 0.780

(Success) Mean of dδ (m) 1.37 2.64
(Success) SD of dδ (m) 1.17 1.41

(Success) Mean of ‖u‖ 531.83 446.06
(Success) Mean number of steps 205 178
(Success) Mean of

∑
‖u‖ (.105) 1.085 0.790

Table 6.3. Testing phase of a model based on the initial state vector, trained on 1300 episodes.

Metrics PID SAC

Success rate (%) 97.0 98.2
Collision rate (%) 3.0 1.6

Timeout failure rate (%) 0.0 0.2

Mean of dδ (m) 1.73 2.95
SD of dδ (m) 1.63 2.11

Mean of ‖u‖ 531.70 467.97
Mean number of steps 199 154
Mean of

∑
‖u‖ (.105) 1.057 0.720

(Success) Mean of dδ (m) 1.49 2.55
(Success) SD of dδ (m) 1.31 1.59

(Success) Mean of ‖u‖ 531.69 469.55
(Success) Mean number of steps 203 155
(Success) Mean of

∑
‖u‖ (.105) 1.075 0.722

Table 6.4. Testing phase of a model based on the initial state vector, trained on 2500 episodes.

These tables are displaying very satifying results. First of all, the primary goal of the task
is fulfilled: make the SAC have a success rate superior or equal to the PID controller. On this
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run, the model 600 had the same sucess rate as the PID (within 0.2%), and the models 1300
and 2500 did slightly better (1% and 1.2% better respectively). Moreover, even if the PID
stayed closer to the ideal trajectory (its mean and SD of dδ are always lower than ones of the
SAC), the mean of

∑
‖u‖ was always lower than the PID. The SAC managed to save more

energy than the PID controller, which was our secondary objective for this task. The models
1300 and 2500 also had slightly fewer collisions failures and took a smaller number of time steps
to finish their test episodes, which is always good (even if it is not the focus of this work).
Unlike the model of the section 6.2, the SAC performed as well as the PID controller, and even
better for some models. This seems logical since the task has been simplified in this section.
However, we did not expect to have a better energy consumption while having such good success
rates. The SAC algorithm found a trade-off between fulfilling the control task and
saving energy.

6.3.2.2 Removing the measure of the position of the AUV

As of this section, we start to show the results of altering the state vector of the SAC algorithm.
After removing the position vector x = (x, y, z) from the state vector, St has now 20 dimensions:

St = [ Θ, v, ω, θe, ψe, xe, ut−1 ]T (6.14)

After 3300 training episodes, the SAC had the following number of success during the
training phase:

Number of success for each 100 episodes: [16, 70, 98, 95, 96, 98, 96, 99, 96, 95, 96,
96, 99, 99, 100, 97, 99, 98, 98, 98, 98, 98, 99, 96, 99, 98, 98, 100, 98, 97, 100, 98, 98]

We also obtained the cumulative rewards and the loss functions shown in the Figure 6.14.
The total reward per episode is very similar to the previous one (in the Figure 6.13), but the
amplitudes of the three loss functions are smaller, except at precise high peaks. These peaks
could correspond to unexpected events appearing for the first time to the agent. Since these
combinations of states, actions and rewards are new for it, it does not manage to predict these
responses from the environment: the ouputs of the neural networks diverge from the targets,
which generate these high peaks, because of the large Temporal Differential (TD) errors.
We can also observe that the plot of the Q-value loss does not display a ”ramp” shape as before.

As in the previous trials, the models selected after 600, 1300 and 2500 training episodes
were tested and compared with the PID controller. Here are the results of these three test
phases.
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Figure 6.14. Total reward per episode and loss functions after removing the position from the state vector.

Metrics PID SAC

Success rate (%) 95.0 98.0
Collision rate (%) 4.8 1.4

Timeout failure rate (%) 0.2 0.6

Mean of dδ (m) 1.92 4.36
SD of dδ (m) 1.73 2.78

Mean of ‖u‖ 533.45 427.21
Mean number of steps 205 240
Mean of

∑
‖u‖ (.105) 1.092 1.025

(Success) Mean of dδ (m) 1.45 4.08
(Success) SD of dδ (m) 1.13 2.48

(Success) Mean of ‖u‖ 533.51 426.44
(Success) Mean number of steps 211 237
(Success) Mean of

∑
‖u‖ (.105) 1.121 1.005

Table 6.5. Testing phase of a model after removing the position from the state vector, trained on 600
episodes.
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Metrics PID SAC

Success rate (%) 96.6 97.6
Collision rate (%) 3.4 1.8

Timeout failure rate (%) 0.0 0.6

Mean of dδ (m) 1.57 3.44
SD of dδ (m) 1.35 2.23

Mean of ‖u‖ 532.44 462.14
Mean number of steps 201 180
Mean of

∑
‖u‖ (.105) 1.072 0.831

(Success) Mean of dδ (m) 1.45 3.09
(Success) SD of dδ (m) 1.19 1.82

(Success) Mean of ‖u‖ 532.38 462.46
(Success) Mean number of steps 207 178
(Success) Mean of

∑
‖u‖ (.105) 1.097 0.817

Table 6.6. Testing phase of a model after removing the position from the state vector, trained on 1300
episodes.

Metrics PID SAC

Success rate (%) 97.4 98.2
Collision rate (%) 2.4 1.8

Timeout failure rate (%) 0.2 0.0

Mean of dδ (m) 1.76 3.26
SD of dδ (m) 1.57 2.11

Mean of ‖u‖ 532.85 479.79
Mean number of steps 205 161
Mean of

∑
‖u‖ (.105) 1.094 0.772

(Success) Mean of dδ (m) 1.48 2.96
(Success) SD of dδ (m) 1.24 1.76

(Success) Mean of ‖u‖ 532.47 479.75
(Success) Mean number of steps 205 159
(Success) Mean of

∑
‖u‖ (.105) 1.088 0.760

Table 6.7. Testing phase of a model after removing the position from the state vector, trained on 2500
episodes.

The three models were all able to have a slightly better success rate than the PID controller
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and with a fewer percentage of collisions, which is better than before. As before, the PID
always had a smaller distance error dδ, but the SAC always manage to save more energy
by having a smaller mean of

∑
‖u‖.

Thanks to this trial, we know that the agent of the SAC algorithm can control the
RexROV 2 without knowing the true global position vector. However, it still
needs to know its position relatively to the waypoint, given by the error position
vector xe.

6.3.2.3 Removing the measure of the Euler angles and the pitch tracking error

After removing the position vector of the AUV from the state vector of the SAC, we now remove
the measure of the Euler angles, given by the orientation vector Θ = (φ, θ, ψ), and the pitch
tracking error θe (the amount of pitch angle that is lacking in order to make the AUV point
towards the waypoint). St becomes a 16-dimensional vector:

St = [ v, ω, ψe, xe, ut−1 ]T (6.15)

After 3400 training episodes, the SAC had the following number of success during the
training phase:

Number of success for each 100 episodes: [43, 100, 98, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 99, 99, 100, 100, 100, 99, 100, 100, 100, 100, 99, 100, 100, 99, 100, 99,
100, 100, 100, 100]

The Figure 6.15 shows the cumulative rewards and the loss functions we get during the
training phase. All the four plots are similar to the plots found in the Figure 6.13, but are
much noisier. Perhaps some situations encountered during the training phase were more
extreme than during the previous training phases, troubling the learning process of the agent
at some time steps.

Like previously, the models selected after 600, 1300 and 2500 training episodes were tested
and compared with the PID controller. Here are the results of these three test phases.
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Figure 6.15. Total reward per episode and loss functions after removing the Euler angles and the pitch error
from the state vector.

Metrics PID SAC

Success rate (%) 97.0 97.6
Collision rate (%) 2.8 2.4

Timeout failure rate (%) 0.2 0.0

Mean of dδ (m) 1.85 4.27
SD of dδ (m) 1.76 2.59

Mean of ‖u‖ 532.72 429.72
Mean number of steps 209 239
Mean of

∑
‖u‖ (.105) 1.113 1.027

(Success) Mean of dδ (m) 1.54 4.21
(Success) SD of dδ (m) 1.35 2.51

(Success) Mean of ‖u‖ 532.66 429.52
(Success) Mean number of steps 214 242
(Success) Mean of

∑
‖u‖ (.105) 1.134 1.034

Table 6.8. Testing phase of a model after removing the Euler angles and the pitch error from the state
vector, trained on 600 episodes.
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Metrics PID SAC

Success rate (%) 97.8 99.4
Collision rate (%) 2.2 0.6

Timeout failure rate (%) 0.0 0.0

Mean of dδ (m) 1.50 3.16
SD of dδ (m) 1.30 1.70

Mean of ‖u‖ 533.04 467.87
Mean number of steps 203 189
Mean of

∑
‖u‖ (.105) 1.081 0.883

(Success) Mean of dδ (m) 1.33 3.15
(Success) SD of dδ (m) 1.08 1.69

(Success) Mean of ‖u‖ 533.12 467.91
(Success) Mean number of steps 206 190
(Success) Mean of

∑
‖u‖ (.105) 1.092 0.887

Table 6.9. Testing phase of a model after removing the Euler angles and the pitch error from the state
vector, trained on 1300 episodes.

Metrics PID SAC

Success rate (%) 96.2 98.8
Collision rate (%) 3.8 1.2

Timeout failure rate (%) 0.0 0.0

Mean of dδ (m) 1.45 4.96
SD of dδ (m) 1.40 2.74

Mean of ‖u‖ 532.82 457.09
Mean number of steps 199 336
Mean of

∑
‖u‖ (.105) 1.058 1.536

(Success) Mean of dδ (m) 1.30 4.86
(Success) SD of dδ (m) 1.19 2.65

(Success) Mean of ‖u‖ 532.82 457.26
(Success) Mean number of steps 206 335
(Success) Mean of

∑
‖u‖ (.105) 1.093 1.529

Table 6.10. Testing phase of a model after removing the Euler angles and the pitch error from the state
vector, trained on 2500 episodes.

The three models had a better success rate and a better collision rate than the PID con-
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troller, and the model trained on 1300 episodes even achieved a sucess rate of 99.4%,
meaning that it did not reached the waypoint during only 3 test episodes. Like pre-
viously, the PID controller had a better mean and a better SD for the distance error dδ. The
models 600 and 1300 managed to save more energy than the PID, since they had a lower mean∑
‖u‖, but for the first time the PID managed to beat the model 2500 on this criterion (on all

episodes and on successful episodes).
These results show that the SAC algorithm does not need to know neither its orien-
tation vector Θ nor the pitch tracking error θe in order to perform the task. The
only angle it needs to know is the yaw tracking error ψe.

6.3.2.4 Removing the measure of the angular speeds

For this trial, we removed the angular velocity vector ω from St, leaving the state vector with
13 dimensions:

St = [ v, ψe, xe, ut−1 ]T (6.16)

After 4000 training episodes, the SAC had the following number of success during the
training phase:

Number of success for each 100 episodes: [51, 99, 98, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 100, 100, 100, 100, 99, 100, 100, 100, 100,
99, 100, 100, 100, 100, 99, 100, 100, 100, 100, 99]

The Figure 6.16 shows the cumulative rewards and the loss functions obtained during the
training phase. The four plots are very similar to the previous plots.

Like previously, the models selected after 600, 1300 and 2500 training episodes were tested
and compared with the PID controller. Here are the results of these three test phases.
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Figure 6.16. Total reward per episode and loss functions after removing the angular speeds from the state
vector.

Metrics PID SAC

Success rate (%) 99.8 96.8
Collision rate (%) 0.0 3.0

Timeout failure rate (%) 0.2 0.2

Mean of dδ (m) 1.40 4.63
SD of dδ (m) 1.27 3.17

Mean of ‖u‖ 533.58 428.44
Mean number of steps 208 260
Mean of

∑
‖u‖ (.105) 1.109 1.113

(Success) Mean of dδ (m) 1.32 3.72
(Success) SD of dδ (m) 1.17 2.14

(Success) Mean of ‖u‖ 533.18 428.55
(Success) Mean number of steps 207 251
(Success) Mean of

∑
‖u‖ (.105) 1.100 1.071

Table 6.11. Testing phase of a model after removing the angular speeds from the state vector, trained on 600
episodes.
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Metrics PID SAC

Success rate (%) 96.2 97.4
Collision rate (%) 3.4 2.4

Timeout failure rate (%) 0.4 0.2

Mean of dδ (m) 1.71 4.25
SD of dδ (m) 1.74 2.89

Mean of ‖u‖ 532.84 448.30
Mean number of steps 202 231
Mean of

∑
‖u‖ (.105) 1.074 1.034

(Success) Mean of dδ (m) 1.24 3.93
(Success) SD of dδ (m) 1.13 2.52

(Success) Mean of ‖u‖ 532.63 447.45
(Success) Mean number of steps 204 231
(Success) Mean of

∑
‖u‖ (.105) 1.080 1.028

Table 6.12. Testing phase of a model after removing the angular speeds from the state vector, trained on
1300 episodes.

Metrics PID SAC

Success rate (%) 98.4 98.2
Collision rate (%) 1.4 1.8

Timeout failure rate (%) 0.2 0.0

Mean of dδ (m) 1.57 2.72
SD of dδ (m) 1.26 1.52

Mean of ‖u‖ 533.22 468.51
Mean number of steps 206 159
Mean of

∑
‖u‖ (.105) 1.101 0.743

(Success) Mean of dδ (m) 1.50 2.67
(Success) SD of dδ (m) 1.18 1.46

(Success) Mean of ‖u‖ 533.01 468.66
(Success) Mean number of steps 208 161
(Success) Mean of

∑
‖u‖ (.105) 1.104 0.752

Table 6.13. Testing phase of a model after removing the angular speeds from the state vector, trained on
2500 episodes.

For the models 600 and 2500, the PID controller had a better success rate and a better
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collision rate than the SAC-based controller, whereas it was the contrary for the model 1300.
This means that the model 600 has not learnt enough information, and that the model 2500 has
been trained too long and is probably biased: the model 2500 tried to maximize the cumulative
rewards at all cost, even if the episodes ended with a failure. For the three models, the PID
controller still had a better mean and a better SD for distance error dδ. For the models 1300
and 2500, the SAC saved more energy by having a lower mean

∑
‖u‖. For the model

600, we see that the PID controller had a lower mean
∑
‖u‖ when we take all the episodes

into account (the general Mean of
∑
‖u‖ metric), but it is the contrary when we only take the

successful episodes into account ((Success) Mean of
∑
‖u‖ metric). This shows us once again

that taking into account all the test episodes can biased the interpretation of the
results, especially if we want to only analyse the manner the controllers reach the
target waypoints.
These results show that the SAC algorithm does not need to know any information
about its angular speeds in order to reach the waypoints.

6.3.2.5 Replacing the position tracking errors with the relative distance to the
waypoint

For this run, we replaced the position tracking vector xe (the error between the position vector
x and the position vector of the waypoint) by dt, the scalar giving the relative distance between
the AUV and the target waypoint. St becomes a 11-dimensional vector:

St = [ v, ψe, dt, ut−1 ]T (6.17)

After 2400 training episodes, the SAC had the following number of success during the
training phase:

Number of success for each 100 episodes: [15, 33, 33, 31, 36, 8, 19, 1, 13, 21, 17, 1,
7, 2, 18, 2, 3, 10, 39, 40, 36, 22, 14, 26]

The SAC did not managed to converge towards a good behaviour with this state
vector. The agent is lacking of information and did not managed to understand
neither the goal of the task, nor the dynamics of the RexROV 2. We did not lost
time to compare any model with the PID controller, since every trial or simulation takes hours
or days to be completed.

Finally we can note that the plots shown on the Figure 6.17 are noisier in the case of a
failure in the learning process. The total reward per episode also did not converge towards an
asymptote since the agent did not managed to find high cumulative rewards.
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Figure 6.17. Total reward per episode and loss functions after replacing the position errors with the relative
distance to the waypoint.

6.3.2.6 Removing the measure of the linear speeds

After failing to make the SAC algorithm learn the control task in the previous trial, we restored
the position tracking vector xe in the vector St (instead of dt), and we removed the linear velocity
vector v. The vector St has now 10 dimensions:

St = [ ψe, xe, ut−1 ]T (6.18)

After 2500 training episodes, the SAC had the following number of success during the
training phase:

Number of success for each 100 episodes: [1, 26, 48, 76, 78, 87, 89, 90, 72, 77, 81, 85,
89, 90, 91, 95, 96, 96, 62, 68, 24, 47, 45, 61, 46]

The SAC never reached a success rate of 100% during this training phase, but it still
managed to have more than 95% of success rate several time. Moreover, the usual training
plots shown on the Figure 6.18 appears to be less noisy than before.

As of this subsection, less models will be tested in order to save computing time:
during this work, we had a lot of simulations to run in order to test a large range of config-
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Figure 6.18. Total reward per episode and loss functions after removing the linear speeds from the state
vector.

uration and implementations of the SAC algorithm. Moreover, we saw previously than even
if the models were trained on different amount of episodes, the final performance of all these
tested models were quite similar (as long as the SAC algorithm managed to converge to a good
behaviour during the learning process). Testing less models is still representative of the abilities
of the SAC algorithm.
For this trial, we only tested the model 1750. This model was chosen by checking the success
rates obtained during the learning process: the SAC had 96% of success rate during 200 suc-
cessive episodes, between the episode 1601 and the episode 1800. Here is the corresponding
results table.
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Metrics PID SAC

Success rate (%) 99.2 97.6
Collision rate (%) 0.2 0.8

Timeout failure rate (%) 0.6 1.6

Mean of dδ (m) 1.63 6.54
SD of dδ (m) 1.39 4.93

Mean of ‖u‖ 532.62 459.05
Mean number of steps 208 248
Mean of

∑
‖u‖ (.105) 1.109 1.137

(Success) Mean of dδ (m) 1.45 4.84
(Success) SD of dδ (m) 1.20 2.90

(Success) Mean of ‖u‖ 532.31 461.29
(Success) Mean number of steps 205 234
(Success) Mean of

∑
‖u‖ (.105) 1.085 1.077

Table 6.14. Testing phase of a model after removing the linear speeds from the state vector, trained on 1750
episodes.

The model 1750 reached 97.6% of success rate. Even if the PID did slightly better (with a
difference of 1.6% between the two success rates), it is still an excellent performance from the
SAC algorithm. The success rate did not reach the symbolic 100% barrier during this training
phase, but the task was as good performed as during the previous testing phases. The PID
controller saved more energy than the SAC on all episodes, but it is the contrary if
we take into account only the successful episodes. For us, the mean of

∑
‖u‖ computed

on the successful episodes is more meaningful than when it is computed on all the episodes:
it allows to better compare the tracking ability of the controllers, without being biased by the
episodes where the AUV goes outside of the box, or stagnates without reaching the target
waypoint. We can also note that the SAC had surprisingly better success rates during
the testing phase than during the training phase, where it reached 96% at most.
The SAC algorithm is still able to learn the waypoint tracking task and to under-
stand the AUV dynamics without any velocities information (neither angular nor
linear).

6.3.2.7 Removing the measure of the yaw tracking error

For this trial, we removed the yaw tracking error ψe from St, leaving the state vector with only
9 dimensions:

St = [ xe, ut−1 ]T (6.19)
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Figure 6.19. Total reward per episode and loss functions after removing the yaw error from the state vector.

After 1500 training episodes, the SAC had the following number of success during the
training phase:

Number of success for each 100 episodes: [3, 4, 2, 0, 2, 0, 0, 0, 0, 1, 2, 2, 0, 3, 1]

The SAC algorithm did not manage to converge towards a good behaviour.
The total reward per episode plot found in the Figure 6.19 confirms that the learning
process failed: the curve is most of the time in the negative values. This failure is proba-
bly due to the lack of information given by the environment within the state vector.

Considering the extremely low values of the success rates obtained during the learning phase,
we did not test any models for this trial.

6.3.2.8 Removing the values of the previous inputs

After the failure of the previous trial, we restored the yaw tracking error ψe and removed the
vector of the past inputs ut−1 from St, leaving the state vector with only 4 dimensions:

St = [ ψe, xe ]T (6.20)
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Figure 6.20. Total reward per episode and loss functions after removing the past inputs from the state vector.

After 2500 training episodes, the SAC had the following number of success during the
training phase:

Number of success for each 100 episodes: [6, 16, 45, 67, 65, 70, 70, 65, 68, 68, 71, 77,
52, 53, 54, 58, 45, 45, 57, 36, 53, 73, 63, 63, 46]

The learning process did not managed to get more than 80%, so we cannot say that the
SAC’s agent converged towards a satisfactory behaviour. However it still reached more
than 75% and it is still worth to compare it with the PID controller. We can also
see on the Figure 6.20 that the total reward per episode has a large variance, since the plot
spent almost an equal amount of time steps inside the positive values and the negative values.
This confirms that this state vector configuration made the agent struggle during
the training phase.

We chose to test the model 1100: during the training phase, the success rate reached 71%
before the episode 1100 and 77% after it. Here is the corresponding results table.
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Metrics PID SAC

Success rate (%) 97.8 75.4
Collision rate (%) 2.0 16.4

Timeout failure rate (%) 0.2 8.2

Mean of dδ (m) 2.42 6.36
SD of dδ (m) 2.53 3.94

Mean of ‖u‖ 532.78 427.06
Mean number of steps 202 354
Mean of

∑
‖u‖ (.105) 1.075 1.512

(Success) Mean of dδ (m) 1.50 4.81
(Success) SD of dδ (m) 1.23 2.74

(Success) Mean of ‖u‖ 532.74 430.42
(Success) Mean number of steps 204 295
(Success) Mean of

∑
‖u‖ (.105) 1.082 1.265

Table 6.15. Testing phase of a model after removing the linear speeds from the past inputs, trained on 1100
episodes.

Compared to results of the section 6.3.2.6 (where the SAC obtained a success rate of
97.6%), removing the past inputs from the state vector made the success drops to
75.4%. The collision and timeout failure rates strongly increased, which further confirms the
drop in performance. Moreover the SAC-based controller was not able to save more
energy than the PID controller, making it worst than the PID on all the criteria.

Even if the PID did better on this trial, the SAC algorithm still managed to a sub-optimal
behaviour with a state vector of only 4 dimensions. A success rate of 75.4% is still better than
the results if the sections 6.3.2.5 and 6.3.2.7, where the SAC did not managed to converge at
all, despite having a larger state vector.

6.3.2.9 Replacing the position tracking errors with the pitch error

After failing to make the SAC algorithm learn the control task in the previous trial, we restored
the vector of the past inputs ut−1 in the vector St, and we replaced the position tracking vector
xe with the pitch tracking error θe. The vector St has now 8 dimensions:

St = [ θe, ψe, ut−1 ]T (6.21)

After 800 training episodes, the SAC had the following number of success during the
training phase:
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Figure 6.21. Total reward per episode and loss functions after replacing the position errors with the pitch
error.

Number of success for each 100 episodes: [1, 0, 1, 2, 2, 0, 0, 0]

The SAC algorithm did not manage to learn the control task and the dynamics
of the RexROV 2. The 6 successes obtained during the first 500 training episodes did not
give enough information to the SAC to converge, which is due to the fact that the state vector
do not contain enough useful variables. The Figure 6.21 was generated after 500 episodes
and do not seem different from the previous training plots, even if the learning process was
catastrophic here.

We did not run testing phases, because of the too low amount of successes obtained during
the training phase. Moreover, we did not test other state vector configurations, because we
judged that the vectors from 6.3.2.6 and 6.3.2.8 were the minimum acceptable configurations
we implemented.

6.3.3 Sum up of the results on the simpler task

Thanks to this sensitivity analysis of the size of the sate vector, the SAC algorithm managed to
fulfill this simplified task with a reduced state vector St. In the section 6.3.2.6, the state
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vector of the SAC algorithm was set to its smallest size while still allowing the
controller to perform as good as the PID controller. The state vector was reduced from
23 to 10 dimensions and was composed of the following variables:

St = [ ψe, xe, ut−1 ]T (6.22)

In almost all cases until this configuration, the SAC algorithm managed to equalize the
success rate of the PID controller, and very often it had a slightly better one. Even if the
PID controller was always closer to ideal trajectory, the SAC almost always saved more energy
than the PID, by generating lower cumulative inputs during the test episodes. It could allow
to perform longer missions.

In the section 6.3.2.8, the SAC managed to converge towards a sub-optimal
behaviour despite having a state vector with only 4 dimensions, which shows its
learning abilities. During the testing phase, the PID controller outperformed the SAC on all
aspects, but the SAC-based controller still reached a success rate of 75.4% with the following
state vector:

St = [ ψe, xe ]T (6.23)

The best success rate was obtained by the model 1300 tested in the section
6.3.2.3. The state vector of the SAC algorithm was then composed of 16 dimensions:

St = [ v, ω, ψe, xe, ut−1 ]T (6.24)

The best energy saving performance is assigned to the model achieving the lowest
mean of

∑
‖u‖. It corresponds to the model 2500 of the section 6.3.2.1, trained with the initial

23-dimensional state vector:

St = [ x, Θ, v, ω, θe, ψe, xe, ut−1 ]T (6.25)

Based on all these results, we can also note that the number of training episodes does
not influence the performance after a certain threshold. Once the SAC algorithm
converged towards a satisfactory behaviour, training on more episodes did not improve the
success rates of the SAC-based controller. This threshold can be found in the array of the
Number of success for each 100 episodes metric: once the training reach more than 70% of
success several times in a row, we can consider that the model have been sufficiently trained.
If the performance of a given model is not suitable or if we want to see that a model can have
better results, we can try another model, by selecting it among the ones beyond the threshold.
This process of selecting the right model is rather empirical and task-dependant.

Finally, we saw that the training plots (composed of the total reward per episode
and the three loss functions of the neural networks of the SAC) do not help in
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supervising the training process better than with just having the Number of success for
each 100 episodes. The figures remained quite similar during all the training phases, even when
the SAC algorithm did not manage to converge towards a satisfactory behaviour like in the
section 6.3.2.5.

6.4 Improving the performances on a harder task using

advanced training techniques

After successfully making the SAC algorithm learn to perform the simpler task (the task with
target waypoints placed closer from the initial target waypoint), we are going to try to improve
the performance on the harder task. We want to see if the use of advanced techniques can
improve the training of the SAC algorithm when it is struggling to learn a waypoint tracking
task.
From now, all the trials will be done on the same task as in the section 6.2 (the harder task):
the waypoints will be randomly placed inside a large box with the ranges [-50: 50] on the X
and Y axes and [-60: -1] on the Z axis. The collision failure events will only happen when the
AUV is leaving the boundaries [-60: -1] (the collisions events on the X and Y axes has been
removed, compared to the previous section), since we do not want to add additional difficulty
to this long distance waypoint tracking task.
For all the next trials, we will use the initial state vector taken from the subsection 6.3.2.1:

St = [ x, Θ, v, ω, θe, ψe, xe, ut−1 ]T (6.26)

where x = (x, y, z) is the position vector of the RexROV 2, Θ = (φ, θ, ψ) is its orientation vector
(the Euler angles), v is the linear velocity vector, ω is the angular velocity vector, θe and ψe
are respectively the tracking errors of the pitch and the yaw angles, xe is the error between the
position vector x and the position vector of the waypoint, and ut−1 = (u1, u2, u3, u4, u5, u6) is
the action vector of the inputs sent at the previous time step. This vector is composed of 23
dimensions. We are keeping the same state vector configuration as during our first trial in the
section 6.2 in order to not complicate too much this harder task (less components means less
information for understanding the task and the AUV dynamics). This section is independent
from the sensitivity analysis of the state vector performed in the section 6.3.
More, we kept some changes made to the simulation setup in the section 6.3.1. The simulation
is kept in real-time configuration in order to better transfer the SAC algorithm to embedded
systems. We are also keeping the following reward function structure (we replaced each constant
by its numerical value for more clarity):
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rt =


500 if dt < 3 (success)
−550 if z /∈ [−60 : −1] (collision)

40. exp
(
− dt

20

)
if dt < dt−1

−10 if dt ≥ dt−1

(6.27)

where dt is the distance between the position of the AUV and the waypoint at the time step t.

In the following subsections, we propose to improve the learning process of this harder task
by using advanced training techniques.

6.4.1 Initial trial on the harder task

We first trained normally the SAC algorithm on this new harder task. We kept all the changes
described previously and we followed the same procedure as in the previous sections.
After 2500 training episodes, the SAC had the following number of success during the training
phase:

Number of success for each 100 episodes: [0, 8, 21, 29, 44, 49, 62, 66, 83, 54, 37, 71,
70, 74, 79, 60, 75, 67, 52, 20, 8, 51, 20, 51, 52]

We can see that the SAC algorithm took much more time to converge towards a suf-
ficient behaviour since it passed the 50% of success after 700 training episodes, while this
threshold was reach during the 200 first episodes in the previous section. Moreover, it did
not manage to reach more than 90% of success rate during the whole training phase.

The Figure 6.22 shows the cumulative rewards and the loss functions obtained during
the training phase. The three plots of the loss functions are very similar to those found
in the Figure 6.3.2.2, which means that the neural networks are learning new information
throughout the training process. However, the cumulative rewards plot looks very differ-
ent from the previous results, and did not converge towards an asymptote. The sum of
rewards per episode often fall in the negative values, meaning that the training is very
unstable, leading the agent of the SAC algorithm to not correctly maximizing the return
6.7. It is perhaps exploring too much its environment instead of seeking the best sum of rewards.

Since the model did not reach more than 80% before 900 episodes during the training
phase, we only selected two models for the testing phase: the models trained on 1300 and 2500
episodes. We followed the same testing method as for the simpler task, but with long distance
waypoints. Here are the two results tables.
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Figure 6.22. Total reward per episode and loss functions for a normal training on long distance waypoints.

Metrics PID SAC

Success rate (%) 93.8 76.0
Collision rate (%) 4.4 10.2

Timeout failure rate (%) 1.8 13.8

Mean of dδ (m) 1.71 8.14
SD of dδ (m) 1.95 5.60

Mean of ‖u‖ 529.14 393.19
Mean number of steps 406 503
Mean of

∑
‖u‖ (.105) 2.151 1.977

(Success) Mean of dδ (m) 1.25 5.46
(Success) SD of dδ (m) 1.37 3.26

(Success) Mean of ‖u‖ 528.59 404.05
(Success) Mean number of steps 405 421
(Success) Mean of

∑
‖u‖ (.105) 2.134 1.698

Table 6.16. Testing phase of a model trained normally on long distance waypoints for 1300 episodes.
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Metrics PID SAC

Success rate (%) 94.6 35.2
Collision rate (%) 4.2 58.2

Timeout failure rate (%) 1.2 6.6

Mean of dδ (m) 2.52 9.36
SD of dδ (m) 3.25 6.24

Mean of ‖u‖ 531.21 552.28
Mean number of steps 414 473
Mean of

∑
‖u‖ (.105) 2.197 2.611

(Success) Mean of dδ (m) 1.38 4.83
(Success) SD of dδ (m) 1.57 2.70

(Success) Mean of ‖u‖ 531.16 554.60
(Success) Mean number of steps 421 414
(Success) Mean of

∑
‖u‖ (.105) 2.230 2.288

Table 6.17. Testing phase of a model trained normally on long distance waypoints for 2500 episodes.

Both of the models had a smaller success rate than the PID controller, especially
the model 2500: it obtained 35.2% of success, which is very small. The model 1300 had 76% of
success which is better, but still less than the results of the section 6.2: the SAC had managed
to reach 86.4% of success on a long distance waypoints tracking task. This difference can
come from the real-time setup of the simulation, which change the rate at which the SAC
algorithm is sampling the environment and is sending its actions, resulting in a different AUV
behaviour. In this section the main focus will not be to beat the PID controller at
all cost (unlike the previous section), but to experiment new ways of improving
the learning of the task. Here we can say that letting the training phase running for more
episodes do not result in better performance: the model 2500 was trained on almost two times
more episodes than the model 1300, but the success rate was then divided by more than two.
Moreover, the collision rate and timeout failure rate are very high, compared to the previous
testing phases, which confirms that the learning of the task needs to be improved.
We can see that the waypoints are further away than before thanks to the mean number of
steps taken by the PID controller per episode: it was around 200 before, whereas now it is
around 400. It is logic since the maximum distance between the waypoints and the AUV was
doubled for this harder task.
Finally, only the model 1300 managed to save more energy than the PID controller by having
smaller means of

∑
‖u‖.

Starting from this baseline trial where the SAC-based controller struggles to achieve as good
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results as the PID controller, we now want to improve the learning of the task. These poorer
results let room for improvement, and will allow to better observe the impact of the advanced
training technique on the learning abilities of the SAC.

6.4.2 Learning from the PID controller

The first advanced learning technique we tried was Learning from demonstration (LfD), taken
from the subfield of Safe Reinforcement Learning and described in the section 5.2.1.2. These
techniques are mainly used in order to have a safer training phase, but can also allows to
converge faster towards a good behaviour. More specifically, these methods allow to derive a
policy from a finite set of demonstrations provided by a teacher, before continuing the training
in a normal way. The agent is then directly exposed to relevant regions of the state and action
spaces, which allows to speed up the learning and to avoid dangerous areas of these spaces.
Here the teacher will be a PID controller, establishing a link between the fields of control theory
and machine learning.

6.4.2.1 Learning only on PID controller episodes

We first try to train the SAC algorithm only on demonstrations from a PID controller. The
policy is not just initialize from the PID controller: it is entirely derived from it. During the
training phase, the PID controls the RexROV 2 and fulfill the control task, which allows the
replay buffer of the SAC to be filled exclusively with PID controller training samples. The
SAC is trained simultaneously on these samples, but is not able to interact with the RexROV
2. The testing phase remains the same as before: the SAC is now controlling the AUV and is
compared to the PID controller.

After 3000 training episodes, the PID controller had the following number of success during
the training phase:

Number of success for each 100 episodes: [98, 95, 94, 94, 98, 91, 88, 94, 94, 95, 94,
94, 95, 91, 95, 95, 95, 91, 92, 93, 92, 93, 95, 97, 98, 92, 96, 92, 96, 100]

These success rates were produced only by the PID controller during the
training phase, and are then as good as during the testing phase (since there is no difference
between training and testing, from the point of view of the PID controller). These numbers
do not provide any information about the convergence of the SAC algorithm trained in parallel.

The Figure 6.23 shows the cumulative rewards and the loss functions obtained during the
training phase. At the contrary of the Number of success for each 100 episodes, this figure was
produced by the training of the SAC algorithm. The total reward per episode corresponds

Yoann Sola - PhD Thesis 129/212 version: December 21, 2021



Chapter 6. Proposals for the development of deep reinforcement learning-based controllers for AUV

Figure 6.23. Total reward per episode and loss functions for a training only on PID controller episodes.

to the rewards obtained by the PID controlling the AUV, whereas the loss functions reflects
the training of the SAC. These plots are very similar to the Figure 6.22, except that the total
reward per episode is less often in the negative values of the graph.

Since the model 2500 completely failed to learn the task in the previous trial, we chose
to test the models 1300 and 1750. Since we do not have information about how the learning
process of the SAC went, we chose these models arbitrarily. Here are their respective results
tables.
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Metrics PID SAC

Success rate (%) 92.0 0.4
Collision rate (%) 7.2 48.8

Timeout failure rate (%) 0.8 50.8

Mean of dδ (m) 1.66 19.43
SD of dδ (m) 1.87 11.21

Mean of ‖u‖ 528.56 539.57
Mean number of steps 395 749
Mean of

∑
‖u‖ (.105) 2.087 4.040

(Success) Mean of dδ (m) 1.36 4.13
(Success) SD of dδ (m) 1.46 1.56

(Success) Mean of ‖u‖ 528.05 475.70
(Success) Mean number of steps 411 281
(Success) Mean of

∑
‖u‖ (.105) 2.164 1.332

Table 6.18. Testing phase of a model trained only on PID controller episodes, for 1300 episodes.

Metrics PID SAC

Success rate (%) 95.2 0.2
Collision rate (%) 4.2 91.8

Timeout failure rate (%) 0.6 8.0

Mean of dδ (m) 1.71 12.89
SD of dδ (m) 1.90 7.57

Mean of ‖u‖ 529.48 536.00
Mean number of steps 417 548
Mean of

∑
‖u‖ (.105) 2.205 2.938

(Success) Mean of dδ (m) 1.42 5.54
(Success) SD of dδ (m) 1.52 2.72

(Success) Mean of ‖u‖ 529.22 467.54
(Success) Mean number of steps 425 461
(Success) Mean of

∑
‖u‖ (.105) 2.246 2.151

Table 6.19. Testing phase of a model trained only on PID controller episodes, for 1750 episodes.

The SAC algorithms failed to learn the task from the PID training samples.
The model 1300 had 2 success out of 500 episodes, and the model 1750 only had one.
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Judging by the mean number of steps obtained during successful episodes, the only successes
the SAC had were by reaching only close waypoints. Since the waypoints are placed randomly
inside a given box, they can sometimes appears close to the AUV.

In the following trials, we will propose different implementations of the LfD in order to see
if this method can result in better performances.

6.4.2.2 Bootstrapping the learning with the PID controller

After the previous failures, we try to bootstrap the training phase of the SAC with PID
controller episodes. This means that the training phase will begin by a given number of PID
training episodes, before switching to regular SAC training episodes. As before, the PID will
first learn from training samples from the PID controller, before learning exclusively on its
own training samples. When the learning process switch from PID episodes to SAC episodes,
the replay buffer is emptied in order to not keeping the PID training samples, while the
parameters of the neural networks are kept unchanged. This is how the LfD methods are
usually implemented.
The threshold allowing to switch from PID to SAC is choose arbitrarily since no information
are available about the training of the SAC during the PID episodes. We chose to switch after
600 PID training episodes.

After the first 600 PID training episodes, the SAC had the following success rates during
2600 training episodes:

Number of success for each 100 episodes: [5, 12, 21, 43, 38, 47, 52, 37, 7, 6, 0, 1, 8,
25, 24, 18, 35, 11, 17, 14, 35, 40, 4, 11, 7, 1]

Even if the agent started to explore the environment during the episodes carried out by
the SAC algorithm, it did not managed to converge towards a good successful behaviour.
Initializing the parameters of the neural networks with PID examples did not
improve the classical SAC training phase, and even harmed the learning process.

The Figure 6.24 shows only the cumulative rewards and the loss functions obtained during
the SAC training episodes. The total reward per episode plot is more often in the negative
values than before. The Value Loss has only one peak on its plot, which is unusual. The
learning process seems to be less active.

Since the SAC did not converge after the switch operated during the training phase (from
PID episodes to SAC episodes), we did not lost time to test specific models from this trial. We
used this time to test new configurations of the LfD method instead.
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Figure 6.24. Total reward per episode and loss functions for a training bootstrapped by PID controller
episodes.

6.4.2.3 Learning only on softer PID controller episodes

During the trials from the subsections 6.4.2.1 and 6.4.2.2, we noticed that the inputs generated
by the PID controller during the training episodes were above the boundaries [-240: 240] of
the SAC actions (defined in 6.1.3.2). The inputs ui sent to the thrusters by the PID were
around the boundaries [-300: 300]. This can biased the learning, since the SAC algorithm is
learning inputs that sometimes cannot be replicated. This will lead the inputs computed by
the SAC to be saturated, which would be an unexpected behaviour to the SAC.
We decided to modify the PID controller in order to make it output softer commands: here
we call it the softer PID controller. The PID controller provided by the UUV Simulator has
a parameter called the max thrust in the thruster manager files, having a default value of
1540.0. We found experimentally that setting the max thrust to 1000.0 would lead the output
of the PID to be around the boundaries [-240: 240]. This modification is only valid for the
learning process: max thrust is set to 1000.0 during the training phase (in order to not biased
the learning process), and is set back to 1540.0 during the testing phase (in order to compare
the SAC with the same PID controller as in all the previous trials).

In this section, we decided to make the SAC algorithm learn only on softer PID controller
episodes, similarly to the subsection 6.4.2.1. We want to see if the use of a softer PID controller
can impact the results of the LfD approach.

Yoann Sola - PhD Thesis 133/212 version: December 21, 2021



Chapter 6. Proposals for the development of deep reinforcement learning-based controllers for AUV

Figure 6.25. Total reward per episode and loss functions for a training bootstrapped by PID controller
episodes.

After 2500 training episodes, the PID controller had the following number of success during
the training phase:

Number of success for each 100 episodes: [87, 87, 90, 93, 100, 97, 99, 98, 96, 90, 91,
93, 93, 88, 88, 86, 83, 97, 84, 94, 95, 91, 92, 93, 91]

Like in the section 6.4.2.1, these success rates are generated by the PID controller
and do not give any information on the learning process of the SAC algorithm.

On the Figure 6.25, we can see the total reward per episode generated by the PID, and
the evolution of the three loss functions of the SAC. The plots are more similar to the Figure
6.24 than to the Figure 6.23, except that the peak of the learning is at the beginning of the
training phase and not at the end.

We only chose to test the model 1300 in this trial, because of time limitations. Here is the
corresponding results table.
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Metrics PID SAC

Success rate (%) 94.8 0.2
Collision rate (%) 4.6 93.8

Timeout failure rate (%) 0.6 6

Mean of dδ (m) 2.64 17.93
SD of dδ (m) 3.48 11.42

Mean of ‖u‖ 528.89 561.40
Mean number of steps 406 521
Mean of

∑
‖u‖ (.105) 2.150 2.925

(Success) Mean of dδ (m) 1.22 3.61
(Success) SD of dδ (m) 1.31 1.21

(Success) Mean of ‖u‖ 528.74 516.74
(Success) Mean number of steps 412 326
(Success) Mean of

∑
‖u‖ (.105) 2.172 1.679

Table 6.20. Testing phase of a model trained only on PID controller episodes, for 1300 episodes.

The SAC did not have better results in this configuration since it obtained a success
rate of 0.2% with a collision rate of 91.8%. This collision rate is the worst we get until now.
Using a softer PID controller did not improve the performance provided by the LfD approach.

6.4.2.4 Bootstrapping the learning with a softer PID controller

In this subsection we are going to try to use the softer PID controller to bootstrap the training
phase of the SAC. We kept the same max thrust parameter set to 1000.0 for the training and
1540.0 for the testing. This time we chose to switch from PID only episodes to SAC episodes
after 400 episodes.

After the first 400 PID training episodes, the SAC had the following success rates during
3000 training episodes:

Number of success for each 100 episodes: [4, 9, 20, 25, 28, 30, 30, 39, 38, 33, 46, 14,
1, 0, 34, 32, 47, 44, 13, 17, 17, 27, 30, 0, 11, 18, 21, 44, 34, 5]

Like in the section 6.4.2.2, the SAC did not manage to converge towards a good
behaviour, since it did not even reach 50% of success rate.

The Figure 6.26 shows only the cumulative rewards and the loss functions obtained during
the SAC training episodes. The plots are almost identical to the ones found in the Figure 6.24.
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Figure 6.26. Total reward per episode and loss functions for a training bootstrapped by a softer PID
controller.

Even if the training of the SAC algorithm did not go well, according to the results above,
we tried to test two models in order to observe any changes in the performance. Here are the
results tables of the models 1000 and 1750.
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Metrics PID SAC

Success rate (%) 90.6 42.6
Collision rate (%) 8 16.6

Timeout failure rate (%) 1.4 40.8

Mean of dδ (m) 1.77 11.26
SD of dδ (m) 1.98 7.23

Mean of ‖u‖ 529.40 414.21
Mean number of steps 406 729
Mean of

∑
‖u‖ (.105) 2.151 3.021

(Success) Mean of dδ (m) 1.43 5.90
(Success) SD of dδ (m) 1.56 3.23

(Success) Mean of ‖u‖ 528.99 400.63
(Success) Mean number of steps 418 506
(Success) Mean of

∑
‖u‖ (.105) 2.205 2.024

Table 6.21. Testing phase of a model trained using the bootstrap of a softer PID controller, for 1000 episodes.

Metrics PID SAC

Success rate (%) 91.2 50.2
Collision rate (%) 8 29.6

Timeout failure rate (%) 0.8 20.2

Mean of dδ (m) 2.98 11.64
SD of dδ (m) 3.98 8.41

Mean of ‖u‖ 528.62 553.28
Mean number of steps 391 592
Mean of

∑
‖u‖ (.105) 2.066 3.274

(Success) Mean of dδ (m) 1.23 5.35
(Success) SD of dδ (m) 1.30 3.10

(Success) Mean of ‖u‖ 528.32 553.83
(Success) Mean number of steps 406 440
(Success) Mean of

∑
‖u‖ (.105) 2.139 2.431

Table 6.22. Testing phase of a model trained using the bootstrap of a softer PID controller, for 1750 episodes.

Learning from demonstration They reach a success rate of 42.6% and 50.2% respectively.
This is a great improvement, since the others tested models had less than 1% of success rate.
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However it remains clearly worst than the 76% of success rate obtained by the model 1300 in
the section 6.4.1. We can also note that, at the contrary of the results found in the section
6.4.1, the model trained on the greater amount of episodes (1750) performed better here.
The use of LfD technics did not improve the initial performance of the SAC algo-
rithm of the section 6.4.1.

6.4.3 Adding the batch normalization algorithm to the learning pro-
cess

After trying the Learning from Demonstration approach, we try to use the Batch Normalization
technique (described in detail in the section 3.1.2.3). The batch normalization method is an
algorithm very used in the Deep Learning subfield, allowing to make the training of neural
networks faster and more stable. The principle is to standardize the outputs of all the layers
of the neural network with respect to each mini-batch.
It is not very often implemented in the neural networks composing the Deep Reinforcement
Learning algorithms. The most known case is its implementation inside the neural networks
of the Deep Deterministic Policy Gradient (DDPG, described in the section C.2.2). We want
to see if batch normalization can affect the learning process of the SAC algorithm.

We simply applied the batch normalization method to the soft Q-value network, the soft
value network and the policy network. We used the default implementation provided by
Pytorch for each layer of these neural networks. Its implementation is the same as explain in
the section 3.1.2.3, without the optional fifth step. We have the following hyperparameters
values: ε = 10−5, γ = 1 and β = 0. The remainder of the training and the testing phases is the
same as in the section 6.4.1.

After 5000 training episodes, the SAC had the following number of successes during the
training phase:

Number of success for each 100 episodes: [4, 6, 10, 18, 34, 41, 56, 62, 67, 61, 65, 73,
72, 71, 72, 82, 78, 77, 79, 74, 79, 77, 86, 81, 90, 76, 86, 77, 76, 70, 77, 81, 79, 80, 82, 80, 81,
93, 86, 77, 80, 80, 83, 75, 84, 79, 81, 80, 84, 83]

We let the training phase continue until the maximum number of training episodes (5000)
in order to see if the Batch Normalization affect the stability of the learning phase. We can
see that the value of the success rate never decreased drastically during the whole training
phase. In the previous trials, we could often observe several success rate drops in the middle
of the learning process. Here the learning process has been stabilize thanks to the
use of the Batch Normalization algorithm.
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Figure 6.27. Total reward per episode and loss functions for a training using batch normalization.

The training plots of the Figure 6.27 are classical. The total reward per episode is especially
noisy.

Since we let the training process go very far for the first time, we tested a model trained on
3750 episodes. We want to see if such a large number of training episodes can lead to a good
behaviour. We also tested the model 1300. Here are the results tables.
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Metrics PID SAC

Success rate (%) 94.1 72.9
Collision rate (%) 4.7 6.7

Timeout failure rate (%) 1.2 20.4

Mean of dδ (m) 4.48 6.46
SD of dδ (m) 6.74 4.25

Mean of ‖u‖ 528.21 347.51
Mean number of steps 401 570
Mean of

∑
‖u‖ (.105) 2.119 1.981

(Success) Mean of dδ (m) 1.21 4.23
(Success) SD of dδ (m) 1.35 2.14

(Success) Mean of ‖u‖ 527.65 349.97
(Success) Mean number of steps 406 480
(Success) Mean of

∑
‖u‖ (.105) 2.140 1.676

Table 6.23. Testing phase of a model trained using batch normalization, for 1300 episodes.

Metrics PID SAC

Success rate (%) 92.6 83.2
Collision rate (%) 5.2 5.8

Timeout failure rate (%) 2.2 11

Mean of dδ (m) 4.48 6.04
SD of dδ (m) 6.27 4.14

Mean of ‖u‖ 530.18 370.59
Mean number of steps 412 483
Mean of

∑
‖u‖ (.105) 2.186 1.791

(Success) Mean of dδ (m) 1.42 4.47
(Success) SD of dδ (m) 1.52 2.57

(Success) Mean of ‖u‖ 529.19 376.38
(Success) Mean number of steps 413 431
(Success) Mean of

∑
‖u‖ (.105) 2.179 1.620

Table 6.24. Testing phase of a model trained using batch normalization, for 3750 episodes.

The model 3750 obtained better results than the model 1300 in all aspects of the perfor-
mance: it had better success, collision and timeout failure rates, while having better mean
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and standard deviation for the distance error dδ, as well as a better mean of
∑
‖u‖ (.105).

Unlike the results of the section 6.3, letting the SAC train on more episodes led to better
results. It confirms that the batch normalization algorithm allowed to stabilize the
training process: the greater number of training episodes did not result in a drop
in performance during the testing phase.
The model 3750 really succeeded to learn the task and the dynamics of the RexROV 2,
compared to the previous models. It achieved a success rate of 83.2% which is the
best one of the section 6.4 so far. It did not beat the PID controller on the success rate
metric, but it managed to save more energy according to the mean of

∑
‖u‖ metric.

Moreover the SAC had here its least number of collisions (5.8%) on this harder task, which
means that the testing phase is safer than before.
The success rate of this model is slightly lower than the one of the initial trial (86.4%) from
the section 6.2, however the PID controller did also worse in this trial (92.6%) than during the
initial trial (96%). The comparison is then biased, since these controllers were not exposed to
the exact same test episodes. If we compute the difference between the success rate of the PID
and the success rate of the SAC in both trials, we have a difference of 9.4% for this trial and
a difference of 9.6% for the initial trial. It means that the SAC algorithm is almost as
close to the PID controller as it was in the initial trial.

Unlike the Learning from Demonstration approach, the batch normalization algorithm
allowed to greatly improve the performance of the SAC algorithm on this task.
These improvements come from its ability to stabilize and speed up the learning process of neu-
ral networks, like in Deep Learning tasks. The original paper of the DDPG [212] also explains
that the use of batch normalization in robotics allows to normalize the different
physical units found inside the state vector and to be robust to the parameters
variations which can appear across multiple robotic platforms.

6.4.4 Using the Batch Normalization with the Learning from
Demonstration approach

We previously tested two advanced training techniques in order to improve the learning process
of the SAC algorithm, which did not give the same results. The Learning from Demonstration
approach used with the PID controller as a teacher failed completely, and even made the
performance of the SAC much worst. Conversely, the Batch Normalization really improved the
learning of the task. In this subsection, we want to try to implement both of them at the time
during the training phase of the SAC algorithm.
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6.4.4.1 Learning only on PID controller episodes, with the batch normalization

For this trial, we simply implemented the same Learning from Demonstration approach from
the section 6.4.2.1 with the default PID controller: the SAC algorithm is learning only on
PID controller episodes during the entire training phase. We also add the batch normalization
method to the layers of the three neural networks of the SAC algorithm, like in the section 6.4.3.

After 5000 training episodes, the PID controller had the following number of success during
the training phase:

Number of success for each 100 episodes: [91, 91, 95, 84, 96, 93, 91, 93, 92, 94, 89,
90, 91, 88, 94, 92, 93, 91, 93, 95, 91, 92, 94, 89, 93, 85, 91, 93, 93, 92, 89, 91, 92, 88, 92, 94,
88, 95, 96, 97, 91, 93, 92, 85, 93, 93, 92, 95, 97, 92]

Like previously, these success rates are generated by the PID controller and do not
give any information on the learning process of the SAC algorithm.
In the Figure 6.28, the total reward per episode plot were generated by the PID, whereas the
loss functions corresponds to the SAC. These plots are similar to the previous ones, except the
policy loss which shows a large peak in the negative values. All the non-zero values of these
loss functions means that the learnng process is working.

We tested three models: the models 600, 1300 and 3750. Here are the results tables of the
models 600 and 1300.
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Figure 6.28. Total reward per episode and loss functions for a training using batch normalization with only
PID episodes.

Metrics PID SAC

Success rate (%) 96.4 0.4
Collision rate (%) 2.2 49.2

Timeout failure rate (%) 1.4 50.4

Mean of dδ (m) 1.75 16.43
SD of dδ (m) 1.98 9.12

Mean of ‖u‖ 528.85 395.03
Mean number of steps 410 780
Mean of

∑
‖u‖ (.105) 2.169 3.083

(Success) Mean of dδ (m) 1.41 7.90
(Success) SD of dδ (m) 1.54 3.48

(Success) Mean of ‖u‖ 528.47 340.28
(Success) Mean number of steps 408 555
(Success) Mean of

∑
‖u‖ (.105) 2.149 1.883

Table 6.25. Testing phase of a model trained only on PID controller episodes and using batch normalization,
for 600 episodes.
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Metrics PID SAC

Success rate (%) 91.0 0.0
Collision rate (%) 6.6 37.4

Timeout failure rate (%) 2.4 62.6

Mean of dδ (m) 3.96 19.15
SD of dδ (m) 5.63 11.35

Mean of ‖u‖ 528.75 427.58
Mean number of steps 411 844
Mean of

∑
‖u‖ (.105) 2.175 3.611

(Success) Mean of dδ (m) 1.12 X
(Success) SD of dδ (m) 1.24 X

(Success) Mean of ‖u‖ 527.58 X
(Success) Mean number of steps 415 X
(Success) Mean of

∑
‖u‖ (.105) 2.185 X

Table 6.26. Testing phase of a model trained only on PID controller episodes and using batch normalization,
for 1300 episodes.

We did not show the results table of the model 3750, because we noticed during the testing
phase that the SAC algorithm only had 1 success out of 225 episodes. We chose to stop the
testing phase before its end, in order to save time for running other trials. The
results of this model were not worth the computing time of the simulations.

The models 600 and 1300 had very poor success rates (0.4% and 0% respectively),
we are not going to described further these results. Since the model 1300 had 0% of success
rate, the (Success) version of the metrics have no values in the SAC column of the results
table.
Despite the good results provided by the batch normalization algorithm imple-
mented alone, this technique is not sufficient to compensate the poor results of the
Learning from Demonstration approach used with the PID controller.

6.4.4.2 Learning only on softer PID controller episodes, with the batch normal-
ization

In this trial, we did the same implementations as during the previous section but with a softer
PID controller: its max thrust parameter is set to 1000.0 instead of 1540.0. Here we combined
the approaches from the sections 6.4.2.3 and 6.4.3.
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Figure 6.29. Total reward per episode and loss functions for a training using batch normalization with only
softer PID episodes.

After 4000 training episodes, the PID controller had the following number of success during
the training phase:

Number of success for each 100 episodes: [94, 89, 88, 88, 83, 91, 91, 85, 90, 87, 91,
85, 81, 88, 85, 85, 92, 91, 87, 93, 94, 86, 90, 91, 92, 86, 92, 98, 96, 100, 97, 96, 97, 87, 98, 97,
96, 96, 98, 98]

Like usually, the PID controller generated the success rates above and the total
reward per episode plotted on the Figure 6.29, while the SAC algorithm generated the three
other plots of its loss functions.

We chose to test the models 600 and 1300. Here are their results table.
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Metrics PID SAC

Success rate (%) 97.4 0.2
Collision rate (%) 1.4 7

Timeout failure rate (%) 1.2 92.8

Mean of dδ (m) 1.39 18.99
SD of dδ (m) 1.60 11.37

Mean of ‖u‖ 527.97 397.43
Mean number of steps 415 967
Mean of

∑
‖u‖ (.105) 2.189 3.841

(Success) Mean of dδ (m) 1.16 3.39
(Success) SD of dδ (m) 1.29 1.36

(Success) Mean of ‖u‖ 527.66 423.97
(Success) Mean number of steps 414 662
(Success) Mean of

∑
‖u‖ (.105) 2.177 2.802

Table 6.27. Testing phase of a model trained only on a softer PID controller episodes and using batch
normalization, for 600 episodes.

Metrics PID SAC

Success rate (%) 96.0 0.0
Collision rate (%) 3.0 47.0

Timeout failure rate (%) 1.0 53.0

Mean of dδ (m) 2.62 20.04
SD of dδ (m) 3.35 12.28

Mean of ‖u‖ 529.34 413.50
Mean number of steps 427 770
Mean of

∑
‖u‖ (.105) 2.260 3.185

(Success) Mean of dδ (m) 1.37 X
(Success) SD of dδ (m) 1.48 X

(Success) Mean of ‖u‖ 528.86 X
(Success) Mean number of steps 431 X
(Success) Mean of

∑
‖u‖ (.105) 2.273 X

Table 6.28. Testing phase of a model trained only on a softer PID controller episodes and using batch
normalization, for 1300 episodes.

We stopped the testing phase before the 1000 episodes (500 for each controller), since we saw
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that both of these models had poor results again. The metrics of the model 600 were computed
on 419 episodes for each controller, whereas the metrics of the model 1300 were computed on 406
episodes for each controller (instead of 500). Moreover, since the model 1300 had 0% of success
rate, the (Success) version of the metrics have no values in the SAC column of the results table.

Like in the previous subsection, both trained models obtained very poor results. The
use of a softer version of the PID controller did not manage to make the Batch
Normalization and Learning from Demonstration techniques work together.

6.4.5 Sum up of the results on the harder task

The Batch Normalization algorithm was the only advanced learning technique
which allowed to improve the performance of the SAC algorithm on the long
distance waypoint tracking task (the harder task). With the model 3750, it reached a
success rate of 83.2% while managing to save a lot of energy by having one of the lowest mean
of
∑
‖u‖ (1.620 ∗ 105) of the section 6.4, if we only take into account the successful episodes.

Batch normalization managed to stabilize the learning process (training on more
episodes did not result in drop in performance), while allowing to be robust to the
parameters variations which can appear across multiple robotic platforms. This is
a really useful technique for controlling a robot with deep reinforcement learning algorithms.

The Learning from Demonstration (LfD) approach did not work at all. The
SAC is an entropy-regularized deep RL algorithm, meaning that its main equations have been
modified in order to take an entropy term into account (see section 3.2.3.3). The LfD methods
described in the section 5.2.1.2 have all been applied to non-entropy-regularized algorithms.
We came to the the conclusion that the initialization methods like the LfD approaches cannot
be straightforward applied to entropy-regularized algorithms.
Indeed, the entropy term is used in order to encourage the exploration of the environment,
while maximizing the cumulative rewards at the same time. When the neural networks of the
SAC are initialized with PID controller examples, these examples shows only the best way
to go towards the target waypoints. These examples display how to get the large cumulative
rewards but not how to better explore the environment. In conclusion, the SAC expects to
get training examples displaying these two objectives, so the LfD methods need
to be modified in order to take the exploration of the environment into account.
After investigating the literature, we found [155]: a very recent work (currently in preprint)
proposing an entropy-aware model initialization method for deep RL. This can be a good start
in order to understand how to modified the initialization methods in order to apply them to
entropy-regularized algorithms.

Even if the best models of this section obtained lower success rates than the models found in
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the section 6.2, these results were obtained with a real-time simulation. This allows
to facilitate the transfer from simulation to real-world.

6.5 A methodology for the end-to-end control of AUVs

based on deep RL

Thanks to all the trials performed in this chapter, we can now propose a methodology for the
training of deep reinforcement learning algorithms in order to perform AUV waypoint tracking
tasks. After choosing the deep RL algorithm we want to apply to this control task, we can
follow the following steps:

1. During the first trials, the chosen DRL algorithm should be implemented using the default
configuration proposed by its corresponding reference paper. After several trials, we can
start to adapt either the hyperparameters of the DRL-based controller, or elements of the
environment, in order to improve the learning process.

2. After determining the main hyperparameters and environment settings, we can add the
Batch Normalization algorithm to the implementation. Batch Normalization will always
provide better results and cannot harm the learning process.

3. When the number of successful episodes starts increasing during the training phase, we
can test some models. We can successively test models taken from different times of the
training phase, in order to cover a broader range of trained models.
The trained models should be selected using the success rates obtained during the training
phase (defined in the section 6.1.3.3). The higher the success rate is during the training
phase, the better the model will probably be during the testing phase. Beyond a training
sucess rate of 70%, we can start to expect great results from the model during the testing
phase. Below a training sucess rate of 40%, the test of the model may not be worth, and
can constitute a waste of time and computational resources.

4. If the success rates obtained during the testing phases do not match our expectations, the
control task can be decomposed in multiple simpler tasks. For example if the DRL-based
controller is not able to make the AUV reach long range waypoints, we can try to make it
reach several intermediate waypoints instead. If the SAC is not able to reach waypoints
located at 50 meters, it can instead try to reach two successive waypoints located at 25
meters. If it still does not work, we can further decomposed the task, by trying to reach
two waypoints located at 20 meters, then one waypoint located at 10 meters, and so on.

5. Once we managed to obtain satisfactory success rates during the testing phases, we can
try to improve other performance metrics such as the power consumption, the tracking
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abilities or the time needed to fulfill the test episodes. Moreover we can also try to reduce
the size of the state vector in order to eventually remove sensors from the robot and to
reduce the production costs.

The previous methodology can be used in order to perform an end-to-end control of the AUV:
the deep RL algorithm is simultaneously performing the low-level control and the high-level
control (or guidance) of the AUV. During our trials, the SAC-based controller was performing
end-to-end control since no guidance algorithms were used: the SAC were generating the tra-
jectories which must be followed by the AUV.
This end-to-end control approach worked well on the simpler task (section 6.3), but failed to
match the performance of the PID controller during the harder task (section 6.4). When the
deep RL algorithm fails to match the PID controller, we can add intermediary waypoints to
the task: instead of reaching one target waypoint, the AUV has to successively reach closer
waypoints. The original path is divided into several smaller trajectories. On each of these small
trajectories, the deep RL algorithm can perform an end-to-end control. An additional objective
of the training procedure can be to determine the maximum range until which the deep RL
algorithm can perform an end-to-end control of the AUV successfully.
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Chapter 7

Conclusions

The first part of this concluding chapter aims to further analyze the results obtained during
this work, and to make the link between our proposals and the existing state of the art. It
answers the questions raised in the introduction about the objectives we defined. The second
part describes the main ideas about what we expect to do in the future in order to further
improve this work.

7.1 Summary of the objectives fulfilled by our proposals

In this section, we are going to summarize our results and to compare them with the introduction
chapter and the state of the art. Our observations have been grouped into several thematic
sections, in order to segment our contributions based on the objectives they aim to fulfill.

Developing a simulation architecture for the application of RL to marine robotics

At the beginning of this work, we did not have a simulation tool responding to all
our needs. We had to connect together existing components and to adapt them to our
problem. Now we have a customizable simulation platform based on the tools described in the
section 6.1.1. This platform can be reusable for a variety of tasks involving marine robotics
and/or reinforcement learning.

Making the SAC converge to a correct behaviour

First of all our main objective was to analyze if the SAC algorithm is able to under-
stand the dynamics of an AUV and to learn how to perform a waypoint tracking task, while
dealing with the varying ocean currents and the noises found in the sensors and the actuators
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of the RexROV 2.
In all of our tests, we managed to make the SAC successfully converge towards a correct
behaviour a great number of times, especially in the section 6.3. During the testing phases of
this simplified task (where the waypoint is at a distance of at most 20 meters from the AUV
on the X and Y axes, instead of 50 meters), it reached a success rate of more of 90% for a lot
of trials.
Moreover, the SAC is able to understand the dynamics induced by the particular layout of the
AUV thrusters (described in the section 6.1.2.1), without the need of a thruster manager and
a thruster allocation matrix like the implementation of the PID controller found in the UUV
Simulator (see the section 6.1.3.1). This demonstrates the effectiveness of the learning abilities
of the SAC algorithm.
We can also note that the SAC algorithm is a model-free algorithm, which means that the
Fossen’s models (described in the section 4.1.1) are not needed during the design of this AUV
controller. This is a great feature, since it allows this controller to be applied to other type of dy-
namical systems (not only to AUVs). It will only required to tune some of the hyperparameters.

Before our first publication [309], the SAC had never been tested for the control of AUV:
our first objective has been achieved, allowing to state that an AUV can be controller by a
SAC-based controller. We managed to found a reward function that is able to match the needs
of the control task and the AUV.
Moreover the waypoint tracking task is a very general task. Since this SAC-based controller
is able to reach target waypoints, it can be applied to any control tasks involving waypoint
tracking or path-following. Indeed, any trajectory can be decomposed in several waypoints.

Outperforming the PID controller

During all of our trials, the SAC-based controller has been compared with PID con-
trollers. Several performance metrics were used in these testing phases in order to measure
various aspects of the performance: the percentage of success computed from the number of
reached waypoints, the power consumption, the deviation from the expected paths, etc.
In many tests presented in section 6.3, the SAC algorithm managed to equalize and even
sometimes to surpass the PID controller in terms of success rate. Moreover, even if the
SAC-based controller took systematically more time to reach the waypoints than the PID, it
almost always consume less energy. This was due to the fact that the SAC generated average
thrusters input signals of smaller magnitudes. For a given test episode, the sum of all the
inputs sent by the SAC to the AUV remained smaller than the PID controller’s inputs.
We can also note that generally the SAC algorithm deviates more from the expected path
(what we named the ideal trajectory) than the PID controller. These deviations (measured in
our results by the distance error dδ metric) are due to the sudden variations found in both the
magnitudes and the directions of the ocean currents. The SAC was able to adapt its behaviour
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to these unexpected external disturbances and to still reach the waypoints despite these large
deviations. Moreover, the SAC-based controller was also able to control the AUV despite the
noises added to the sensors and actuators variables. All these disturbances have been detailed
in section 6.1.2.2.

Even if the target waypoints can take more time steps to be reached, the SAC managed to
outperform the PID controller in terms of power consumption, while still having at least as
much of success rate as it. It was able to find a trade-off between performance and consumption.

Reducing the size of the state vector

One of the main goals of the section 6.3 was to analyze how the composition of the
state vector St given to the SAC agent can affect the performance of the deep reinforcement
learning-based controller. A detailed sum up if these trials can be found in the section 6.3.3.
During the simplified task where the target waypoints are closer to the initial position of the
AUV, we began our trials with an initial 23-dimensional state vector. This vector included
typical AUV sensor measurements (measuring the variables described in the section 6.1.2.1),
as well as information about the tracking errors with respect to the target waypoints (usually
given by a guidance algorithm).

We managed to progressively reduce the size of the state vector by removing variables trials
after trials, and the SAC-based controller could still fulfill the waypoint tracking task in most
cases. The lowest configuration was reached by setting the state vector to 10 variables (section
6.3.2.6):

St = [ ψe, xe, ut−1 ]T (7.1)

where ψe is the tracking error of the yaw angles, xe is the error vector between the position
vector x and the position vector of the waypoint, and ut−1 is the vector of the past inputs (the
inputs sent by the controller at the previous time step). In this configuration, the controller
was able to obtained a success rate of 97.6%, which is almost a perfect score.
As stated in section 6.1.2.2, we focused only on low-level control, meaning that we assume that
the variables found in the state vector are provided by guidance and navigation algorithms
from other works. We designed a deep reinforcement learning-based controller, which is one of
the component of the GNC system of the AUV (see section 2.1.2.2).

We can compare our results with some of the deep reinforcement learning-based controllers
presented in section 4.2.2.
For example, the authors of [51] used the DDPG algorithm in order to control the low-level
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variables of an AUV, such as the linear and angular velocities. They used the state vector
detailed in the equation 4.7, which was composed of 23 variables. The state vector of [51]
has the same size as our initial state vector. Both of the tasks deal with the low-level control
of an AUV equiped with six thrusters. The only difference is that the authors of [51] are
applying velocities regulation to their AUV, whereas we are applying position regulation to
the RexROV 2.
In [125], the authors applied the PPO algorithm to an AUV in order to perform high-level con-
trol (or guidance) tasks such as path-following and collision avoidance. The state vector given
to the agent was composed of 14 dimensions, which is bigger than our smallest 10-dimensional
vector. Moreover, the PPO implemented in [125] needed the velocity vector of the surrounding
ocean currents in order to generate correct trajectories, whereas our SAC-based controller was
able to reach the target waypoints without any information about varying ocean currents.
The guidance algorithms generally need fewer information than the controllers, since they
do not need control data such as the past inputs or the tracking errors. They have to take
high-level decisions and to generate reference signals for the low-level controllers. The low-level
controllers need more variables than the guidance component, in order to control the dynamics
of the AUV and to follow these reference values.
Being able to perform a waypoint tracking task with a state vector composed of only 10
variables is a great improvement, since we managed to perform a low-level control task with
fewer variables than a lot of guidance algorithms.

This study also allowed to state that the presence of the yaw error ψe and the past inputs
ut−1 inside the state vector is really important for the success of the learning process. When
the yaw error ψe was removed from the state vector (in section 6.3.2.7), the learning process
completely failed and the SAC algorithm was not able to converge towards a satisfactory
behaviour. When the vector of the past inputs ut−1 was removed from the state vector (in
the section 6.3.2.8), the SAC converge towards a sub-optimal behaviour and the success rate
obtained during the testing phase dropped to 75.4%.
In our last trial (presented in the section 6.3.2.9), we also saw that the SAC cannot learn to
reach the waypoints with only the pitch error θe and the yaw error ψe. It will always need to
know the position tracking errors xe.

Finally we can also add that with a reduced state vector, less sensor measurements are
needed. This means that we can equip the AUV with fewer sensors, which will reduce the
production costs.

Experimenting advanced techniques for the learning process

In section 6.4, we experimented advanced learning techniques in order to improve the
training and the performance of the SAC algorithm in a harder task than before. The target

Yoann Sola - PhD Thesis 153/212 version: December 21, 2021



Chapter 7. Conclusions

waypoints were placed to a distance of 50 meters from the AUV (on the X and Y axes), instead
of 20 meters as in the section 6.3. Two main approaches were tested: the use of the Batch
Normalization (BN) algorithm and the Learning from Demonstration (LfD) method.

BN is popular among the deep learning community, since it allows to avoid the gradients
to converge towards extreme values during the backpropagation of the neural networks (see
section 3.1.2.3). BN is rarely used in deep RL, and we could only found it in the implementation
of the DDPG algorithm (see section C.2.2).
In section 6.4.3, the use of BN allowed to improve the performance of the SAC-based controller
on this harder task and to stabilize the learning process: no more drops were found in the
success rates obtained during the training phases, as it was the case before.
Moreover the application of the BN algorithm to be robust to the variations which can appear
in some parameters when the controller is applied to different robots.
It seems that BN can never harm the learning process and that it should be always implemented
inside deep reinforcement learning algorithms.

LfD is an approach allowing to derive a policy from a set of demonstrations. These demon-
strations are produced by a teacher, which can be a human, as well as another algorithm. We
tried to apply LfD to the learning process of the SAC algorithm, by setting the PID controller
as the teacher.
During the trials of the sections 6.4.2 and 6.4.4, the SAC algorithm was trained with episodes
generated by a PID controller. We tried multiple methods in order to LfD to this task:

• Training the SAC only on PID episodes during the entire training phase.

• Bootstrapping the training phase with PID episodes, before continuing the learning pro-
cess with normal SAC episodes

• Coupling the LfD approach with the BN algorithm

• Using a PID controller generating lower inputs (called the softer PID controller).

Despite all our efforts, we could not make the SAC algorithm converge towards a satisfac-
tory behaviour using the LfD approach. The best case was achieved when we bootstrapped
the learning process with 400 episodes of a softer PID controller (in the section 6.4.2.4), where
one of the model obtained a success rate of 50.2%.
We concluded that this approach can only skew the learning process of the SAC algorithm.
As explained in section 3.2.3.3, SAC is an entropy-regularized algorithm. This means that a
new term (based on an entropy measure) was added to the traditional reinforcement learning
objective function in order to encourage the exploration of the unknown environment. The
SAC algorithm has thus to simultaneously maximize the cumulative rewards (by fulfilling
the task) and the entropy (by exploring its environment). The problem is that the episodes

Yoann Sola - PhD Thesis 154/212 version: December 21, 2021



Chapter 7. Conclusions

produced by the PID controller only show how to fulfill the task (by reaching directly the
target waypoints). Consequently, when the SAC algorithm wants to maximize the entropy
by exploring the environment, the PID controller never offers this opportunity. The PID
controller only wants to fulfill the task and has no notion of entropy regularization. This
causes the failure of the learning process.
The LfD approach cannot be applied to entropy-regularized reinforcement learning algorithms
the same way as the others RL algorithms. As explained in section 5.2.1.2, LfD approach
has only been applied to non-entropy-regularized reinforcement learning algorithms and its
application to SAC is not as straightforward as in the literature.

A methodology for the training of deep reinforcement learning algorithms for the
end-to-end control of AUVs

In section 6.5, we proposed a methodology allowing to perform the end-to-end con-
trol of AUV: our SAC-based controller was able to fulfill the features of both the low-level
control and high-level control of the AUV. If this end-to-end control is too difficult to maintain
for long range waypoints, the task can be decomposed in multiple simpler tasks by inserting
closer waypoints along the original path.

Being able to carry out an end-to-end control of the AUV is an advantage over the PID
controller, since the PID is only performing a low-level control. In our testing phase, we paired
the PID with a simple guidance method consisting in straight lines going from the initial
position of the AUV to the target waypoints. This guidance approach does not allow the
controller to be flexible and the AUV cannot adapt to the marine environment.

This methodology could be generalized to other types of robots (aerial, terrestrial) and to
other type of control task. All control tasks involving to produce a movement from a given
system could be suitable to the procedures we defined.

Facilitating the transfer towards real-world robots

Since the beginning of this work, efforts have been made in order to facilitate the
transfer of our results from our simulation tools to real-world robotic platforms.

First of all, we chose the ROS middleware (described in section 6.1.1) which is known for
providing a great flexibility and for allowing to easily transfer its software components (the
nodes) towards embedded systems. Its component-based architecture also allows to easily
change the type of robot, sensors and of actuators we are using, as well as the guidance and
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the navigation algorithms of the GNC system (see section 2.1.2.2).

Moreover as explained in section 6.3.1, we set the simulation to be computed in real-time.
After many observations, we noticed that changing the speed at which the simulation is
computed can change the behaviour of the SAC algorithm. This is due to the fact that ROS
is executing its nodes in an asynchronous way: when the simulation is computed at a different
speed, the SAC (executed in an independant node) is sampling the environment at a different
rate than before the change, and its actions are not maintained during the same number of
time steps.
This means that a DRL-based controller which obtained good results during the simulated
testing phases will not necessarily perform the same when it will be embedded on a real robotic
platform. From the point of view of the agent of the DRL algorithm, the environment is not
acting the same as during its training phase.
Executing the simulation in real-time is guaranteeing that the behaviour of the SAC-based
controller will be the same on a real-world robot as during our simulation results.

Finally, the three neural networks (NN) implemented by the SAC algorithm (detailed in
section 6.1.3.2) are shallow networks: they are all composed of only two hidden layers of 256
neurons. These are very light NN in terms of the amount of parameters needed to be updated
during the learning process.
Moreover the smaller the state vector is (like during the results of section 6.3), the smaller
the input layer of these NN will be. This means that less memory usage and computational
resources will be needed.
These two elements allow the SAC algorithm to be embedded inside platforms with fewer
memory (RAM) and computational (CPU) resources. This DRL-based controller can thus be
applied to a broader range of robots. In order to give an idea to the reader of the memory
usage taken by this DRL-based controller, the SAC algorithm took 3,6 GB of RAM and 600
MB of V-RAM (the RAM dedicated to the GPU).

We also recall that the Batch Normalization technique we implemented inside the SAC
algorithm allows to be robust to the changes appearing for some parameters, when the controller
is applied to different robots.

7.2 Future works and openings

We managed to achieve good results and to propose a general training methodology for the
end-to-end control of robots. Here is a list of the short-term and medium-term objectives we
would like to achieve based on this work:

• To implement more realistic external disturbances inside the simulations. During this
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work, the angles and the magnitudes of the ocean currents were randomly sampled :
these parameters were updated every 100 time steps using a uniform probability distri-
bution across their whole ranges of value. This does not reflect the real-world marine
environment, and realistic hydrodynamics models should be try for generating the ocean
currents of the simulation. Moreover, the noise values added to the sensors and actuators
signals were also randomly sampled every 100 time steps, and more characteristic models
of noise should be used. These models could be found by investigating more deeply the
hydrodynamics literature.
Another interesting approach could be tried by using unrealistic disturbances during the
training phase, and realistic disturbances during the testing phase. The SAC algorithm
could be trained using randomly sampled ocean currents and noise signals (like we did
during this work), before being compared to the PID controller using realistic hydrody-
namics models. This method could allow to evaluate if the SAC is able to generalize the
learnt behaviour from unrealistic simulations to realistic simulations. This could consti-
tute an intermediary step before deploying the controller on a real-world robot. If this
method would give poor results during the testing phase, realistic hydrodynamics models
should be implemented during both the training phase and the testing phase (in order to
facilitate the transfer from simulation to real-world).

• To implement the SAC-based controller we developed inside a real-world AUV. Thanks to
our efforts for facilitating the transfer towards the real world, we will only have to change
several hyperparameters in order to make the transfer from simulation to real world, even
if the real AUV would not be the same as the RexROV 2.

• To test more advanced training techniques in order to compare their impact on the learn-
ing process with BN and LfD methods. One of the first approach we would like to
experiment is implementing new types of experience replay mechanisms [82][376], such as
Prioritized Experience Replay (PER) for example. The principle of PER [292] is to give
a greater probability of being sampled from the replay memory buffer to the transitions
having the largest TD errors (these definitions are explained in section 3.2.2.3). The
sample that got a large TD error, means that there is a lot of knowledge to learn from
this transition.

• To test more approaches from the subfield of Safe RL presented in chapter 5. We al-
ready took the idea of LfD methods from this chapter, but we would like to couple safety
approaches with the SAC algorithm. These methods could add safety and stability guar-
antees to the learning process. For the example, the Lyapunov Neural Networks (LNN)
described in section 5.2.3 seems to be a promising algorithm. We could for example
compare the Lyapunov functions estimated by the LNNs with the ones estimated by the
computational methods mentioned in section 2.3.4.
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• To experiment the advanced versions of the SAC algorithm mentioned at the end of
section 3.2.3.3. These new versions designed by the same authors as in [116] seemed to
improve the performance of SAC on several tasks. We would like to see if the changes
made inside the algorithm can impact the performance of our DRL-based controller for
the AUV waypoint tracking task.

From a long-term perspective, our work falls within the project of facilitating the control of
AUVs thanks to the use of ML. The proposals made here represent a first step towards this goal
and allow to identify the most important aspects to handle during the implementation of RL
algorithms for the end-to-end control of AUV. We think that this goal can be achieved thanks to
the progressive integration of elements taken from the control theory or robotics inside the ML
methods. We would like to have the best of both worlds: the adaptability and the innovative
control approaches achieved by the ML, as well as the guarantees and the knowledge provided
by the control theory and robotics. A lot of the RL methods presented in chapter 5 are based
on elements from the control theory and show that this unification is possible. The integration
of expert knowledge in ML could result in the creation of hybrid methods.
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Appendix A

Additional elements of traditional
machine learning

A.1 Traditional machine learning

As explained in the introduction, there was an era called the traditional machine learning before
the emergence of deep learning approaches. Many well-known algorithms were developed at
this time for supervised and unsupervised learning tasks: k-nearest neighbors, k-means, support
vector machine, decision trees, random forest, etc. In this appendix, we are going to described
the major elements of traditional machine learning, which have been later reused by deep
learning and reinforcement learning algorithms. We will focus our presentation on supervised
learning tasks, because similar ideas are often found in deep reinforcement learning algorithms
like the SAC. However, a few works mixing unsupervised learning and reinforcement learning
can be found in the literature [153][379], but they represent a minority of the tasks so they
will not be presented here. Finally, the books [36], [124] and [154] are three useful resources
allowing researchers to have an exhaustive point of view on the field of traditional machine
learning.

A.1.1 Preprocessing

In traditional machine learning, a preprocessing step needs to be performed before beginning
the training phase. The raw data are prepared in order to extract the most useful features from
them. These extracted features will constitute the inputs of the machine learning algorithm,
instead of the raw data.
This preprocessing step is carried out using technical knowledge from the application domain
of the task: image processing, signal processing, statistics, etc. An expert from the given
application domain is needed in order to choose the most representative features with respect
to the type of dataset and the type of task, so as to achieve the best possible performance. This
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expert can be a different person from the data scientist, allowing to separate the application
domain work and the machine learning work.
This preprocessing step is no longer found in the deep learning approaches, where the raw data
are directly sent to the input layers of neural networks (see the section 3.1.1).

A.1.2 Training set, development set and test set

In supervised learning tasks, the initial dataset is always divided into several independent
subsets:

• The training set: the labeled data contained in the training set are used to carry out the
training phase of the algorithm. This is the phase where the learning process occurs, by
updating the parameters in order to fit the data.

• The development set: The data found in the development set allows to find the right
hyperparameters, by comparing different configurations of a same algorithm. Each version
of the chosen algorithm is initialized with different values of hyperparameters, before
training all versions on the same training set.
After that, their performance are evaluated on the data of the development set. It is
the first time that the algorithms encounter these specific data, since the data from the
development set are not used during the training phase. These data represent unknown
data from the point of view of the algorithm and allows to evaluate their ability to
generalize their predictions to new data. The learning is here disabled, which means that
the parameters of each algorithm are fixed.

• The test set: the role of the test set is to make an assessment of the final performance of a
trained algorithm. After the training and choosing the hyperparameters, the performance
of the final algorithm is assessed on new data that were never been encountered during the
training of the algorithm and the choice of its hyperparameters, in to have an unbiased
evaluation.

The initial dataset must be splitted randomly into these three subsets, and the class dis-
tribution over data inside each subset must be the same as inside the initial dataset. This is
called stratified sampling [297]. When the amount of data is inferior to 100 000 examples, the
distribution between the subsets is generally 60% for the training set, 20% for the development
set and 20% for the test set. When it is above 100 000 examples, the repartition of data become
something close to 98% for the training set, 2% for the development set and 2% for the test
set. 2% of a very large amount of data is still sufficient to assess correctly the performance of
the algorithms, which allows to keep a maximum of data for the proper learning of the task.
Ither advanced methods of performance evaluation can be found in the literature, such that
the cross-validation method for example [291][27].
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Figure A.1. An example of confusion matrix for a spam recognition task.

A.1.3 Assessing the performance with the good metrics

Each machine learning task needs its own metrics in order to evaluate the performance
of the learning algorithm on each subsets [53]. In supervised learning, the most common
representation of the performance evaluation is the confusion matrix [223][343]. An example
of a confusion matrix is given in Figure A.1 1, in the case of a binary classification task of
spam recognition used in emailing system. This representation sums up different aspects of the
performance of a given algorithm, according to the definitions shown on the Figure A.2 (taken
from [270]). Depending on the nature of the task, these aspects will have different importance.
For example for a critical system such as a military radar, minimizing the number of false
negatives becomes more important than minimizing the number of false positives: it is more
important to not miss a true target (a false negatives), than to eventually signal nonexistent
targets (false positives). The false positives can be manually invalidated afterwards.
In multiclass classification task, the size of the confusion matrix increases in order to show all
the possible combinations of classes regarding the actual and predicted classes. The Figure A.3
2 shows the confusion matrix of a handwritten digit recognition task, expressed in percentages.

Several metrics can then be compute based on the different components of the confusion
matrix (we kept the notation of the Figure A.2):

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• Accuracy = TP+TN
TP+TN+FP+FN

• F1 score = 2
1

Precision
+ 1
Recall

1Taken from What Is a Confusion Matrix?, Aman Goel, https://magoosh.com/data-science/what-is-a-
confusion-matrix/

2Taken from Recognizing hand-written digits, Official scikit-learn documentation, https://scikit-
learn.org/stable/auto examples/classification/plot digits classification.html
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Figure A.2. The definitions of the components of a general confusion matrix.

Figure A.3. The confusion matrix of a handwritten digit recognition task, in percentages.
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Figure A.4. Overfitting and underfitting for a binary classification task example.

Figure A.5. Overfitting and underfitting for a regression task example.

The simultaneous use of several metrics during the training process of a model can help the
data scientist to choose the right hyperparameters and to choose among different approaches.

A.1.4 Overfitting and underfitting

Overfitting and underfitting are concepts used in supervised learning in order to described how
well the machine learning algorithm managed to fit the training data [152][370].
In statistics, overfitting means that a statistical analysis or a model is too close from its
training data, which will result in the model not fitting new data. Overfitting prevents the
model from correctly predicting data coming from the development set and the test set. The
model is mapping too closely the data from the training set, even if outliers can be found
inside.
At the opposite, underfitting means that the model is not fitting enough the training data,
and is not correctly learning the task. It is not able to retrieve the correct labels of neither the
training data, nor the development/test data.

The Figure A.4 3 shows an example of a binary classification task: the algorithm has to

3 Taken from Underfitting and Overfitting, https://www.geeksforgeeks.org/underfitting-and-overfitting-in-
machine-learning/
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classify the data as cross or a circle. If the model is underfitting, the decision boundary
allowing to differentiate the two classes is coarse and not precise enough. In the case of
overfitting, the decision boundary is too close to the outliers (the two crosses found among the
circles are outliers, they should not be labeled as cross). In the case of an appropriate fitting,
the model is able to recognize the outliers and to rectify their classes (it classifies the crosses
as circles, which is what would be expected at these two locations).
The Figure A.5 3 shows an example of a regression task: the algorithm has to estimate
a function (the red line) fitting several training data (the green crosses). In the case of
underfitting, the estimated function is a straight line that is not following the shape drawn by
the data points. In the case overfitting, the model is taking too much liberty and the estimated
function is composed of unrealistic curvatures. In the case of an appropriate fitting, the model
is able to produce a function fitting the data point locations.

Specific statistical terms can be employed to further analyse the algorithm behaviour: if
the model is underfitting, the algorithm is said to have high bias and low variance; if it is
overfitting, it has high variance and low bias. During each machine learning task, a trade-off
must be found between the bias and the variance. In traditional machine learning, the final
model cannot have simultaneously low bias and low variance. The deep learning approaches
make it possible to get away from this trade-off and allow to produce low-bias-low-variance
models.
Very often, a model is underfitting because it is too simple for the learning task. An algorithm
with more modelling abilities is then needed, including more nonlinearities. At the contrary,
a model can overfit because it is way too complex for the task. Overfitting can also happen
because there are not enough training data. Moreover, if several classes are not well represented
in the dataset, more impact can be give to potential outliers or inconsistent data.

A.1.5 Logistic regression

The logistic regression [177][137] is a well-known traditional machine learning algorithm and
will be presented here. It is a fundamental building block of deep learning, since each neurons
found in a neural network can be viewed as a modified logistic regression (see section 3.1).
Logistic regression is used for binary classification tasks in the subfield of supervised learning.

A.1.5.1 Inputs and outputs

The input received by the logistic regression algorithm is composed of multiple vectors xi,
where i ∈ [1,m]. Each xi is a data sample taken from the training set, the development set
or the test set (depending of which stage of the training process is carried out), and all these
vectors are stacked in order to form the input matrix X. A label yi is assigned to each input
xi in order to form a pair (xi, yi). The label yi is a scalar representing the number of the class
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Figure A.6. The sigmoid function

to which the sample xi belongs. All the labels yi can also be stacked together in order to form
a vector y. The use of matrices and vectors allows to speed up the computations by applying
linear algebra operations. The computations can be performed on all the training samples
together, instead of being handled individually by the algorithm.

The output of the logistic regression is defined as a real scalar ranging from 0 to 1, called
ŷi, and corresponding to an estimation of the true label yi assigned to the input xi. We can
scaled this output interval in order to fit the range of yi, by multiplying the output by a factor
and adding a real value.
If the use case is a binary classification task, a threshold is used in order to differentiate the
two classes: {

if ŷi < 0.5 then ŷi = class 0
if ŷi ≥ 0.5 then ŷi = class 1

(A.1)

A logistic regression has only two parameters that are updated during the training process:
a vector w called the weight and a scalar b called the bias.
The output ŷi is computed from a given input xi using the following equation:

ŷi = sigmoid
(
wT xi + b

)
(A.2)

with sigmoid(z) =
1

1 + e−z
(A.3)

An example of sigmoid function is plotted on the Figure A.6 4. This function allows to
keep the value of the output ŷi inside the interval [0,1]. Moreover, this function is nonlinear

4Taken from Logistic regression, https://en.wikipedia.org/wiki/Logistic regression
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and adds some complexity in the decision making process of the logistic regression, compared
to a linear regression for example. This ability is illustrated on the figures A.7 (taken from
[80]) and A.8 5, which represent respectively the decision boundaries of a linear regression and
a logistic regression on a binary classification task. We can see that the decision boundary of
the logistic regression have a form more complex than the one of the linear regression

In practice, the previous equations are adapted in order to be able to compute the estimated
labels ŷi of several input data xi at the same time, using linear algebra calculation rules and
vectorization. This allows to recude the computational time.

Figure A.7. The decision boundary generated by a linear regression on a binary classification task.

Figure A.8. The decision boundary generated by a logistic regression on a binary classification task.

5Taken from Basics of Classification Models, https://antoniohila.medium.com/basics-of-classification-
models-20487d4d6498
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A.1.5.2 Loss function

Once all the ŷi have been estimated, the learning process needs an error measure in order to
figure out the classification or regression performance of the machine learning algorithm. This
performance measure is called the loss function L [314][156] when the performance is assessed
on only one example and the cost function J when it is done on a whole set of data. The goal
of the algorithm is to update its parameters in order to minimize the loss and the cost functions.

In the case of the logistic regression, the loss function is defined as follows:

L(ŷi, yi) = − (yi log(ŷi) + (1− yi) log(1− ŷi)) (A.4)

It is called the cross-entropy loss function [241] and is a very well-known loss function in
the ML community. We are going to explain the utility of the cross-entropy loss function for
binary classification tasks:

• If the true label yi of the input data xi is equal to 0, the equation A.4 becomes:

L(ŷi, 0) = − log(1− ŷi) (A.5)

In this case, minimizing the loss function is equivalent to maximizing the term log(1− ŷi),
and consequently the term (1 − ŷi). This means that when the algorithm is minimizing
the loss function, it is minimizing the estimated label ŷi. Given that ŷi is composed
of a sigmoid, as defined in the equation A.2, the estimated label tends to 0 when it is
minimized. By applying a threshold as in A.1, the algorithm ends up by classifying the
input as belonging to the correct class 0.

• If the true label yi of the input data xi is equal to 1, the equation A.4 becomes:

L(ŷi, 1) = − log(ŷi) (A.6)

By following the same reasoning, minimizing the loss function is equivalent to maximizing
the term log(ŷi), and consequently the estimated label ŷi. Given that ŷi is composed of
a sigmoid, as defined in the equation A.2, the estimated label tends to 1 when it is
maximized. By applying a threshold as in A.1, the algorithm ends up by classifying the
input as belonging to the correct class 1.

A.1.5.3 Cost function

The cost function is simply defined as the mean loss function over the set of all data inputs, for
a given configuration of the parameters of the logistic regression. For a given weight w, a given
bias b and a given set of input data xi composed of n samples, the cost function J is defined as:
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J(w, b) =
1

m

m∑
i=1

L
(
ŷ(i), y(i)

)
(A.7)

The equation A.7 is valid for all possible definitions of the loss function cited previously.

A.1.5.4 Gradient descent

In ML, he training process consist of updating the parameters of the learning algorithm in
order to fit the training data. In the case of the logistic regression, the weight w and the bias
b must be updated in order to minimize the cost function A.7. Indeed, the cost function is an
error measure reflecting how a given model is fitting the dataset by measuring the differences
between the true labels and the predicted labels of all the data.

The gradient descent is used in order to update of the parameters of the logistics regression:
w = w − α ∂ J(w,b)

∂w

b = b − α ∂ J(w,b)
∂ b

(A.8)

where α is a real scalar called the learning rate.

The weight w and the bias b are updated in the equation A.8 in order to follows the
direction given by the partial derivative of the cost function at a given point in the space of
the parameters. The sign minus in front of the learning rate indicates that the parameters are
updated in order to move towards the minimum of the cost function.

The learning rate α is a hyperparameter allowing to adjust the steps between each parameter
updates, in order to control the speed and the precision of the convergence towards the minimum
of the cost function. To summarize, the gradient descent updates the parameters proportionally
to the errors made in the estimates of the true labels.
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Additional elements of Deep learning

This appendix will described additional techniques used in practice in the deep larning com-
munity: the initialization and the regularization of the neural networks, as well as other opti-
mization algoritms.

B.1 Regularization

As explained A.1.4, overfitting can sometime occur during the training of Machine Learning
algorithms. This will lead the neural networks too stay ”too close” to the training data, and
they will not be able to generalize well to new data: they will have a high variance.

The regularization techniques were created in order to avoid overfitting as much as possible.
One of the most known regularization technique is the L2 regularization [61][340]. The idea of
this method is to reduce the magnitude of the weights W of the neural network.
The L2 regularization simply redefined the cost function as:

J(W,b) =
1

m

m∑
i=1

L
(
ŷ(i), y(i)

)
+

λ

2m
||W||2

2 (B.1)

where λ is a hyperparameter alowing to control the trade-off between minimizing the
classification error and the norm of the weights parameters.

In this way, the L2 norm of the weights W is minimized at the same time as the classic
loss function, and it prevents the weights W too explode to extreme magnitude.
For this reason, the L2 regularization is sometimes called the weight decay technique.

Other regularization techniques exist [61][250]: the L1 regularization [186], the dropout
regularization [347], the early stopping [267], the data augmentation [132], the model ensembles
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[57], etc.

B.2 Initialization of the neural networks

As the training process progresses, the magnitude of the parameters update can become very
small, or very large. This will leads the gradients to explode or to vanish: they become so
large or so small, that they will interfere with the training process, and the gradient descent
will take too small steps, or too large steps.
In order to avoid that, a special initialization method is needed for the weights of the neural
network.

The He initialization method [126] initializes the weight matrix Wi of the layer i by ran-
domly initialize its values using a standard normal distribution with a variance σ2 defined
as:

σ2 =
1

n[i−1]
(B.2)

where n[i−1] is the number of neurons found in the layer (i− 1).

The Xavier initialization method [106] initializes the weight matrix Wi of the layer i by
randomly initialize its values using a standard normal distribution with a variance σ2 defined
as:

σ2 =
2

n[i−1] + n[i]
(B.3)

The idea of these two initialization methods is to scale the magnitude of the weights of a
given layer according to the number of neurons found in this layer and in the previous layer.
The bias bi are initialized to zero.

B.3 Optimizers

The Adam optimizer described in the section 3.1.2.2 is the most common optimizer found in
the literature, but other optimizers exists. All of the following algorithms are evolutions of the
basic gradient descent.

B.3.1 Mini-batch gradient descent

As explained in the section 3.1, neural networks require very large amounts of training data
in order to perform well. When the gradient descent is applied to neural networks during the
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Figure B.1. An example of a gradient descent algorithm. It is updating two parameters q1 and q2 in order to
minimize a function h(q1, q2).

backpropagation (as defined in 3.1.1), the more data are involved, the more computation time
it will take to perform one step of gradient descent.

We recall that the goal of the gradient descent algorithm is to seek the minimum of the
cost function J(W,b). It starts from an initial point (W0,b0) and modifies the parameters
W and b in order to move towards the local minimum of the function, by taking the direction
given by the gradients ∂ J(W,b)

∂W
and ∂ J(W,b))

∂ b
. The Figure B.1 1 shows an example of a gradient

descent algorithm.

The principle of mini-batch gradient descent [279] is to divide the training dataset into
smaller datasets called mini-batch, and to perform a step of gradient descent on each mini-batch
independently.
Since the gradient descent is performed on a smaller amount of data samples, less computations
are necessary and one step of gradient descent is faster, reducing the time taken by the deep
learning algorithm to converge.
The downside of this is that, because of the fact that less data samples are used to compute
the gradients during the backpropagation, the gradient descent is more sensible to ouliers

1Taken from 01 and 02: Introduction, Regression Analysis, and Gradient Descent,
http://www.holehouse.org/mlclass/0102Introductionregressionanalysisandgr.html
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Figure B.2. Illustration of the impact of the mini-batch gradient descent on the loss function of a neural
network.

data (similarly to the outliers discussed in section A.1.4): these outliers will indicate a wrong
information and are considered as an error in the dataset. The gradient computations applied
to outliers data will not give a correct direction and will not make the gradient descent
converge towards the minimum of the cost function. The less data are taken in mini-batches,
the more these incorrect outliers will have weight in the final direction taken by the gradient
descent in the parameter space.
This effect is illustrated on the Figure B.2 2, where the cost function appears to be noisier
during the use of mini-batch gradient descent. This noise come from the outliers found in the
mini-batches, making the neural network predict wrong labels and causing the loss function to
not decrease monotonically.

Once the gradient descent has been performed on all the different mini-batches, we say that
one epoch has been performed. The number of epochs and the size of the mini-batches are two
additional hyperparameters which need to be tuned.
A practical rule concerning the size of the mini-batches is that it has to be a power of 2, similarly
to the way the computer memory is constructed.

B.3.2 Gradient descent with momentum

As explained previously, the approach of training a neural network on less data samples by
using mini-batches makes the gradient descent more sensitive to outliers. This causes the loss
function to not decrease monotonically, and the gradient descent to not modify the parameters
of the neural network in the correct way: some steps of the backpropagation (that is supposed

2Taken from Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization,
https://www.coursera.org/learn/deep-neural-network?specialization=deep-learning
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Figure B.3. Illustration of the impact of the gradient descent with momentum algorithm on the convergence
towards the minimum of the cost function. Blue: mini-batch gradient descent; green: gradient descent with

momentum.

to minimize the loss function as explained in section) do not allow the loss function to converge
directly to its minimum.
The algorithm called gradient descent with momentum is an improvement of the mini-
batch gradient descent aiming to make the loss function converge more directly towards the
mininmum. It first appeared in [280] and is usually combined with mini-batch gradient descent.

The idea of gradient descent with momentum is to update the parameters of the neural
network by using a moving average of the partial derivatives of the loss function, instead of
directly using the raw partial derivatives.
During the training of a given neural network, the equations 3.4 are replaced by:

MAWi
= β MAWi

+ (1− β) ∂ J(Wi,bi)
∂Wi

MAbi
= β MAbi

+ (1− β) ∂ J(Wi,bi)
∂ bi

Wi = Wi − α MAWi

bi = bi − α MAbi

∀ i ∈ [1, N ] (B.4)

where MA stands for Moving Average and is implementing an exponentially weighted
moving average of the partial derivative of the cost function J with respect to both parameter
vectors Wi and bi of the i-th layer of the neural network. β is a hyperparameter included in
the interval [0,1], α is the learning rate and N is the number of layers of the neural network.
The hyperparameter β is often set to 0.9 in the deep learning community, and allows to define
an exponentially weighted moving average taken for the last 10 samples: by definition, an
exponentially weighted moving average with a given hyperparameter β is operating an average
on the last 1

1−β entries.
This operation is repeated for each mini-batches of each epoch.
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The Figure B.3 3 illustrates the impact of the gradient descent with momentum, compared
to the mini-batch gradient descent. We can see that the parameters are updated in order to
converge more directly towards the minimum of the loss function. The gradient descent steps
are smoothed by the gradient descent with momentum, due to the fact that one step is now
the result of an average on multiple partial derivatives. Less weight is given to the outliers.

B.3.3 RMSprop

RMSprop stands for Root Mean Square Propagation and is an optimizer which was first found
in [134]. It is very similar to gradient descent with momentum. Its purpose is also to make
the convergence of the gradient descent faster and to smooth the steps taken in the parameter
space towards the minimum of the loss function.

The gradient descent update equations 3.4 become:

SMAWi
= β SMAWi

+ (1− β)
(
∂ J(Wi,bi)

∂Wi

)2

SMAbi
= β SMAbi

+ (1− β)
(
∂ J(Wi,bi)

∂ bi

)2

Wi = Wi − α
∂ J(Wi,bi)

∂Wi√
SMAWi

+ ε

bi = bi − α
∂ J(Wi,bi)

∂ bi√
SMAbi

+ ε

∀ i ∈ [1, N ] (B.5)

where SMA stands for Squared Moving Average and is implementing an exponentially
weighted moving average of the square of the partial derivative of the cost function J with
respect to the parameter vectors Wi and bi of the i-th layer of the neural network. β is a
hyperparameter included in the interval [0,1], α is the learning rate, ε is a small real number
avoiding the denominators of the fractions to be equal to zero, and N is the number of layers
of the neural network.
Like previously, β is set to 0.9 in order to operate a moving average on the last 10 samples. ε
can be set to 10−8. The squaring operation is applied element-wise to the vectors of the partial
derivatives.

The goal of gradient descent with momentum was to converge faster by taking larger steps
of gradient descent. This was achieved by taking the mean of the directions suggested by

3Taken from Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization,
https://www.coursera.org/learn/deep-neural-network?specialization=deep-learning
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the partial derivatives of the loss function. With RMSprop the goal of taking larger steps in
order to converge faster is the same, but the way to achieve it is different: the variance or the
oscillations of the steps are reduced, in order to make them larger. The oscillations of the steps
(which are induced by the transverse directions given by specific partial derivative values) are
reduced by normalizing the partial derivatives with the square root of the mean of the square
of themselves.
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Additional elements of Reinforcement
learning

In this appendix, we are going to detail several algorithms mentioned in the section 3.2,which
will belong to either the Temporal-Difference learning approach or the policy gradient approach.

C.1 Temporal-Difference learning

Temporal-Difference (TD) learning is a family of algorithms based on the TD errors (defined
in the section 3.2.2.1). SARSA and Q-leanring are two basic TD learning algorithm on which
the DQN algorithm is based (described in the section 3.2.2.3).

C.1.1 SARSA

SARSA [281] is the name of a classic TD learning algorithm. Its name comes from the typical
sequence of operations followed by an agent: . . . , St, At, Rt+1, St+1, At+1, . . .

The pseudocode of the SARSA algorithm is (given for only one episode for this example):

1. Initialization of t = 0.

2. The agent starts with the state S0 and chooses the action A0 = arg maxa∈AQ(S0, a), by
applying the ε-greedy exploration strategy.

3. At time t, after applying action At, it observes the reward Rt+1 and gets into the next
state St+1.

176



Appendix C. Additional elements of Reinforcement learning

4. It pick the next action in the same way as in step 2, by applying the ε-greedy strategy:
At+1 = arg maxa∈AQ(St+1, a)

5. The Q-value function is updated using the TD error:

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) (C.1)

6. The time step is set to t = t + 1 and the loop is repeated from step 3, until reaching a
pre-defined time step T .

Once the Q-value function is considered to be approximated enough, the policy is derived
by acting greedily with respect to the Q-values: by taking the action leading to the maximum
Q-value in each state visited by the agent.

It is important to note that in the step 5, the Q-value function is updated using the TD
target Rt+1 + γQ(St+1, At+1), which is computed using the same action At+1 taken in the step
4 by the exploration policy.
We say that it is an on-policy algorithm: the policy used to compute the TD target (the target
policy) is the same policy used by the agent to explore the environment (the exploration policy) .

The SARSA algorithm is a model-free, value-based, on-policy TD learning algorithm.

C.1.2 Q-learning

Q-learning [355] is a TD learning algorithm very similar to SARSA.

Its pseudocode is (given for only one episode for this example):

1. Initialization of t = 0.

2. The agent starts with the state S0.

3. At time t, the agent chooses the action At = arg maxa∈AQ(St, a), by applying the ε-greedy
exploration strategy.

4. After applying action At, it observes the reward Rt+1 and gets into the next state St+1.
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5. The Q-value function is updated using the TD error:

Q(St, At)← Q(St, At) + α(Rt+1 + γmax
a∈A

Q(St+1, a)−Q(St, At)) (C.2)

6. The time step is set to t = t + 1 and the loop is repeated from step 3, until reaching a
pre-defined time step T .

Again, the final policy used during the deployment of the agent is derived by acting greedily
with respect to these estimated Q-values.

This time, the action used to compute the TD target is not choose by the exploration
policy (which applies an ε-greedy strategy), but is simply the action leading to the maximum
Q-value found in the state St+1 (it is the plain greedy policy). This action could be different
from the action At+1 that will be selected by the exploration policy in the next state.
The algorithm is said to be off-policy : the policy used to compute the TD target (the target
policy) and learn the Q-values is different from the policy used in the exploration process (the
exploration policy).

The Q-learning algorithm is a model-free, value-based, off-policy TD learning algorithm.

The opposition between on-policy and off-policy approaches is a key concept that will be
encountered with the state-of-the-art algorithms presented in the following sections.

C.2 Policy gradient

The polic-gradient (PG) algorithms presented here have greatly influenced the SAC algorithm
and are very popular among the deep RL community.

C.2.1 Deterministic policy gradient

In the PG methods presented in the section 3.2.3, the policy was always stochastic, meaning
that π(.|s) was a probability distribution over the possible actions A, given the current state.
In some algorithms, the policy becomes deterministic and the same action will be always
chosen for a given state (until the policy is updated). In the deterministic cases, the policy
will be noted µ and we will have a = µ(s).

Different notations will be used specifically for Deterministic Policy Gradient (DPG) algo-
rithms:
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• ρ0(s): it is the initial distribution over states.

• ρµ(s → s′, k): starting from state s, it the visitation probability density at state s′ after
moving k steps by following policy µ.

• ρµ(s′): it is the marginal of the state distribution induced by the policy µ and is defined
as:

ρµ(s′) =

∫
S

∞∑
k=1

γk−1ρ0(s)ρµ(s→ s′, k)ds (C.3)

where γ is the same discount factor as in the section 3.2.1.

In the case of DPG agents, the objective function 3.27 becomes:

J(θ) =

∫
S
ρµ(s)Q(s, µθ(s))ds (C.4)

Applying the chain rule to the gradients calculus, the policy gradient theorem 3.30 becomes:

∇θJ(θ) =

∫
S
ρµ(s)∇aQ

µ(s, a)∇θµθ(s)|a=µθ(s)ds

= Es∼ρµ [∇aQ
µ(s, a)∇θµθ(s)|a=µθ(s)]

(C.5)

It is called the deterministic policy gradient theorem [306].

C.2.2 Deep deterministic policy gradient

Deep Deterministic Policy Gradient (DDPG) [212] is one of the most used deep RL algorithm
in the literature. It is an off-policy PG algorithm based in an Actor-Critic architecture, and
combining the DPG [306] and the DQN [229] algorithms.

It implements an Actor-Critic architecture, but here both the policy and the value function
are modeled by a neural network, like for the value function found in the DQN algorithm (see
section 3.2.2).
The actor models a deterministic policy µ(s|θµ) using a neural network of parameters θµ.
The neural network parameters of the actor are updated using the backpropagation with the
deterministic policy gradient theorem C.5.
The critic models the action-value function Q(s, a|θQ) using a neural network of parameters
θQ. The neural network parameters of the critic are updated using the backpropagation with
the computation of TD errors.
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Like the DQN algorithm, both the actor and the critic have also target neural networks
used for computing the TD errors of the action-value function. The DDPG has four neural
networks: the policy network µ, the target policy network µ′, the Q-value network Q and the
target Q-value network Q′.
These target networks help to stabilize the learning of the Q-function, but also indirectly the
policy (since the Q-values are found in the deterministic policy gradient theorem).
Instead of being kept frozen for a certain number of steps before being updated (as in the
DQN), here the parameters of the target neural networks are slowly updated in a continuous
way, using an exponential moving average:

θ′ ← τθ + (1− τ)θ′ with τ � 1 (C.6)

It constrains the target network values to change slowly. We say that the DQN is
performing a hard update, whereas the DDPG is performing a soft update.

The DDPG algorithm is off-policy, meaning that the exploration policy (the policy collecting
the training samples) and the target policy (the policy used in the TD error) are different.
The exploration policy µexp(s) used by the DDPG is constructed by adding noise to the current
policy µ(s|θµ)

µexp(s) = µ(s|θµ) +N (C.7)

where N is a random process.

Like the DQN, DDPG implements the mechanism of experience replay: the policy network
and the Q-value network are trained using a batch of training samples taken from a replay
buffer D.
Moreover, DDPG uses the batch normalization technique [150] described in the section 3.1.2.3.

Here is the detailed pseudocode of the DDPG alogorithm:

1. Random initialization of the parameters θµ and θQ of the policy network µ(s|θµ) and the
Q-value network Q(s, a|θQ).
Initialization of the target networks µ′ and Q′ as follows: θQ

′ ←θQ , θµ
′ ←θµ

Initialization of the replay buffer D.

2. For episode = 1, . . . ,M :

(a) Initialization of the random process N .

(b) Initial observation of the state s1 given by the environment to the agent.
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(c) For t = 1, . . . , T :

i. Selection of the action at by the exploration policy: at = µ(st|θµ) +N
ii. Execution of the action at.

Observation of the reward rt and the next stat st+1 given by the environment
to the agent.

iii. The transition (st, at, rt, st+1) is stored in the replay buffer D.

iv. A random minibatch of N transitions (si, ai, ri, si+1) is sampled from the replay
buffer D.

v. Setting of the labels yi of all training samples using the TD error and the target
networks:

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′) (C.8)

Update of the parameters of the Q-value network Q(s, a|θQ) by the critic, using
a gradient descent and a backpropagation in order to minimize the loss:

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (C.9)

vi. The policy network µ(s|θµ) is updated by the actor using a gradient ascent
and a backpropagation in order to maximize the objective function C.4. The
deterministic policy gradient theorem allows to compute the gradients needed
by the gradient ascent:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|s=si (C.10)

vii. Update of the parameters of the target networks using τ � 1:{
θµ
′ ← τθµ + (1− τ)θµ

′

θQ
′ ← τθQ + (1− τ)θQ

′ (C.11)
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Titre : Contributions au développement de contrôleurs d’AUV basés sur de l’apprentissage profond par ren-

forcement

Mot clés : Véhicule Sous-marin Autonome, Contrôleur, Apprentissage Profond par Renforcement, Suivi de
Points de Repère, Soft Actor-Critic, Proportionnel-Intégral-Dérivé

Résumé : L’environnement marin est un cadre
très hostile pour la robotique. Il est fortement non-
structuré, très incertain et inclut beaucoup de per-
turbations externes qui ne peuvent pas être facile-
ment prédites ou modélisées. Dans ce travail, nous
allons essayer de contrôler un Véhicule Sous-marin
Autonome (AUV) afin d’effectuer une tâche de suivi
de points de cheminement, en utilisant un contrôleur
basé sur de l’apprentissage automatique. L’apprentis-
sage automatique a permis de faire des progrès im-
pressionnants dans de nombreux domaines différents
ces dernières années, et le sous-domaine de l’appren-
tissage profond par renforcement a réussi à conce-
voir plusieurs algorithmes très adaptés au contrôle
continu de systèmes dynamiques. Nous avons choisi
d’implémenter l’algorithme du Soft Actor-Critic (SAC),
un algorithme d’apprentissage profond par renforce-
ment régularisé en entropie permettant de simultané-
ment remplir une tâche d’apprentissage et d’encoura-
ger l’exploration de l’environnement. Nous avons com-

paré un contrôleur basé sur le SAC avec un contrô-
leur Proportionnel-Intégral-Dérivé (PID) sur une tâche
de suivi de points de cheminement et en utilisant des
métriques de performance spécifiques. Tous ces tests
ont été effectués en simulation grâce à l’utilisation de
l’UUV Simulator. Nous avons décidé d’appliquer ces
deux contrôleurs au RexROV 2, un Véhicule Sous-
marin Téléguidé (ROV) de forme cubique et à six de-
grés de liberté converti en AUV. Grâce à ces tests,
nous avons réussi à proposer plusieurs contributions
intéressantes telles que permettre au SAC d’accom-
plir un contrôle de l’AUV de bout en bout, surpasser
le contrôleur PID en terme d’économie d’énergie, et
réduire la quantité d’informations dont l’algorithme du
SAC a besoin. De plus nous proposons une métho-
dologie pour l’entraînement d’algorithmes d’appren-
tissage profond par renforcement sur des tâches de
contrôle, ainsi qu’une discussion sur l’absence d’al-
gorithmes de guidage pour notre contrôleur d’AUV de
bout en bout.

Title: Contributions to the development of Deep Reinforcement Learning-based controllers for AUV

Keywords: Autonomous Underwater Vehicle, Controller, Deep Reinforcement Learning, Waypoint Tracking,
Soft Actor-Critic, Proportional–Integral–Derivative

Abstract: The marine environment is a very hos-
tile setting for robotics. It is strongly unstructured, very
uncertain and includes a lot of external disturbances
which cannot be easily predicted or modelled. In this
work, we will try to control an Autonomous Under-
water Vehicle (AUV) in order to perform a waypoint
tracking task, using a machine learning-based con-
troller. Machine learning allowed to make impressive
progress in a lot of different domain in the recent
years, and the subfield of deep reinforcement learn-
ing managed to design several algorithms very suit-
able for the continuous control of dynamical systems.
We chose to implement the Soft Actor-Critic (SAC)
algorithm, an entropy-regularized deep reinforcement
learning algorithm allowing to fulfill a learning task and
to encourage the exploration of the environment si-
multaneously. We compared a SAC-based controller

with a Proportional-Integral-Derivative (PID) controller
on a waypoint tracking task and using specific perfor-
mance metrics. All the tests were performed in sim-
ulation thanks to the use of the UUV Simulator. We
decided to apply these two controllers to the RexROV
2, a six degrees of freedom cube-shaped Remotely
Operated underwater Vehicle (ROV) converted in an
AUV. Thanks to these tests, we managed to propose
several interesting contributions such as making the
SAC achieve an end-to-end control of the AUV, outper-
forming the PID controller in terms of energy saving,
and reducing the amount of information needed by the
SAC algorithm. Moreover we propose a methodology
for the training of deep reinforcement learning algo-
rithms on control tasks, as well as a discussion about
the absence of guidance algorithms for our end-to-end
AUV controller.
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