
HAL Id: tel-03250233
https://theses.hal.science/tel-03250233

Submitted on 4 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AN ENTERPRISE ARCHITECTURE AND MODEL
DRIVEN ENGINEERING BASED APPROACH FOR

SENSOR NETWORKS
Charbel Aoun

To cite this version:
Charbel Aoun. AN ENTERPRISE ARCHITECTURE AND MODEL DRIVEN ENGINEERING
BASED APPROACH FOR SENSOR NETWORKS. Computer Science [cs]. ENSTA Bretagne, 2018.
English. �NNT : �. �tel-03250233�

https://theses.hal.science/tel-03250233
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ECOLE NATIONALE SUPERIEURE

DE TECHNIQUES AVANCEES BRETAGNE

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Télécommunications, Informatique,

Par

Charbel AOUN

An Enterprise Architecture and Model Driven Engineering

Based Approach for Sensor Networks
Thèse présentée et soutenue à Brest, le 29 Janvier 2018
Unité de recherche : Lab-STICC UMR CNRS 6285 Pôle : Mocs

Rapporteurs avant soutenance : Composition du Jury :

M. Luc FABRESSE M. Reinhardt EULER

Prof, Ecole des Mines de Douai, France Prof, Université de Bretagne Occidentale, France

Mme Marie-Pierre GERVAIS M. Luc FABRESSE

Prof, Université Paris Nanterre, France Prof, Ecole des Mines de Douai, France

M. Hervé Leblanc Mme Marie-Pierre GERVAIS

MdC, Institut de Recherche en Prof, Université Paris Nanterre, France
Informatique de Toulouse, France
 M. Loic LAGADEC

 Prof, ENSTA Bretagne, France

 M. Joel CHAMPEAU

 MdC, ENSTA Bretagne, France

Contents

Contents ii

Abstract vii

Acknowledgements ix

List of Figures xii

Introduction xiii

General Context . xiii
Sensor Networks . xiii
Complexity and Challenges of Sensor Networks xv
Research Questions . xvi
Proposed Approach . xvii
Organization . xvii

I State of the Art 1

1 Sensor Networks Development Process 3

1.1 Sensor Networks . 3
1.1.1 Sensor Networks Life Cycles . 4
1.1.2 Design Phase of the Sensor Networks Life Cycles 5
1.1.3 Roles in the Sensor Networks Life Cycles 6

1.2 Sensor Networks Systems . 7
1.3 Fusion Algorithms . 9
1.4 Properties for Selecting a Data Fusion Architecture 9
1.5 Data Fusion Architectures . 10
1.6 Limits and Comparison among the Different Data Fusion Architectures . . 10
1.7 Requirements for Designing Sensor Networks Systems 13
1.8 Limits and Comparison among the Different Approaches of Sensor Networks

Design . 14
1.8.1 Approaches of Architectural Design Improvement 15
1.8.2 Approaches of Providing Multiple Viewpoints 16
1.8.3 Approaches of Offering Concepts Extensibility 16
1.8.4 Approaches of Supporting Heterogeneity 17
1.8.5 Approaches of Supporting Validation Tools 17

1.9 Discussion . 18

iii

2 Model Driven Engineering 21

2.1 Model Driven Engineering Fundamentals . 21
2.2 Model Driven Engineering Aspects . 22

2.2.1 Modeling Languages . 23
2.2.2 Model Heterogeneity and Quality . 24
2.2.3 Models Transformation . 25

2.3 Separation of Concerns in Model Driven Engineering 26
2.4 Model Driven Engineering Standards and Tools 27
2.5 Model Driven Engineering for Sensor Networks 28
2.6 Discussion . 29

3 System Architecture Modeling 31

3.1 Modeling Context . 31
3.2 Enterprise Architecture Types . 32
3.3 Enterprise Architecture Frameworks . 32
3.4 Domain Specific Concepts in Enterprise Architecture Frameworks 34
3.5 Enterprise Architecture Modeling Languages and MetaModels 35

3.5.1 ArchiMate . 35
3.5.2 TOGAF 9 . 38

3.6 Requirements for Selecting the Enterprise Architecture MetaModel 39
3.7 Comparison Among Enterprise Architecture MetaModels 39
3.8 Enterprise Architecture Frameworks and Design Tools for Sensor Networks 40
3.9 DeVerTeS: A Design and Verification Framework for Telecommunication

Services . 42
3.10 Discussion . 43

II Contributions 45

4 Sensor Networks Design Process 49

4.1 Context . 49
4.2 Software Development Processes . 50
4.3 Selected and Proposed tasks of the Sensor Networks Design Process 51

4.3.1 Concept and Challenges of Sensor Networks Design Phase 51
4.3.2 Requirements for Selecting or Proposing Tasks of the Sensor Net-

works Design Process . 52
4.3.3 Analyzing the Relation between the Tasks of the Software Develop-

ment Processes and the Identified Requirements 52
4.3.4 Proposed Tasks of the Sensor Networks Design Process 53

4.4 The Proposed Sensor Networks Design Process and Model Driven Engineering 55
4.5 Content of the Proposed Tasks of the Sensor Networks Design Process . . . 55

4.5.1 Modeling . 57
4.5.2 Ensuring Consistency . 58
4.5.3 Validating . 59

4.6 Discussion . 59

iv

5 Domain Specific Modeling Languages and Design Tools for Sensor Net-

works Design 61

5.1 ArchiMO Definition . 61
5.1.1 Marine Observatory Context . 61
5.1.2 Selected ArchiMate Concepts and Relationships 62
5.1.3 ArchiMO MetaModel . 64
5.1.4 ArchiMO MetaModel Layer Consistency 71
5.1.5 Formalization of Layers Interoperability 74
5.1.6 ArchiMO Design Tool . 75

5.2 Generation of Simulation Code . 80
5.3 ArchiMO and Iterative Approach . 82
5.4 Discussion . 84

6 Application of the Proposed Sensor Networks Design Process to a Case

Study 89

6.1 Underwater Object Localization Case Study 89
6.2 Modeling a Marine Observatory Case Study using ArchiMO DSML and

Design Tool . 91
6.2.1 The Business Model Design . 91
6.2.2 The Application Model Design . 92
6.2.3 The Technology Model Design . 93

6.3 Consistency between Model Layers . 93
6.4 Simulation Code . 95
6.5 Validation of Marine Observatory Model . 96
6.6 Iteration of the Proposed Sensor Networks Design Process 97
6.7 Discussion . 99

Conclusion and Perspectives 101

Answering the Research Questions . 101
Perspectives . 103
Bibliography . 103

v

vi

Abstract

Marine observatories (MO) based on sensor networks provide a continuous ocean
monitoring. These sensor networks contain several kinds of sensors including acoustic
hydrophones to detect and localize moving objects or animals like dolphins. In the
context of marine observatories, the sensor networks provide high level services and are
included in an information system to process, store and present the sensor data. This
kind of system is considered as complex system and is assimilated as enterprise system
with business rules and services and with several hypothesis to map these services to the
distributed enterprise infrastructure.

To specify, develop and deploy such systems remains a challenge to satisfy the
needs, and the associated requirements, with the respect of the platform constraints.
So, one of the questions is how to improve life-cycle of these systems to contribute the
architecture design which is one of the sensible phase. Because this phase is the crucial
one to obtain the best trade-of between the services and the infrastructure.

So in this work, we try to contribute a system life-cycle based on the use of a
model driven approach with an early validation phase to support ease up the development
and deployment phases. The use of the models provide the facility to apply an itera-
tive approach at system level which remains a challenge compare to the software processes.

In this document, we present our approach based on an Enterprise Architecture
Framework to take into account the complexity of the system. These frameworks provide
the capacity to model the system on several viewpoints to express the different concerns
of such systems. The choice to use an Enterprise Architecture Framework, and the
associated tool ArchiMate, seems to be the most relevant due to our system features
and the capacity to extend and specialize the associated tooling. The ArchiMate tooling
is built on top of MDE technologies which provide facilities to extend the language
definition with sensor network domain-specific concepts and constraints Thus, we propose
a metamodel to define the domain concepts, and the metamodel is the support to generate
a new design tool called ArchiMO. In addition, we specialize the mapping approach
between the layers of the ArchiMO tool with the domain constraints to guarantee the
model consistency regarding the domain. This resulting model is processed by a model
compiler to generate a simulator code to achieve a simulation execution. The results of
the simulation are used to analyze and validate the model of the system. After that, the
iterative approach can be applied to improve the model regarding the requirements of the
system, or to go forward in the development process.

Our approach and tooling are demonstrated with an example from the marine ob-
servatory domain on underwater moving object localization with several acoustics sensors.
This use case is used to validate our tooling to model the system, ensure consistency of
the model and finally simulate the model. Through this use case, we observe that our

vii

tooling helps to reduce the complexity with the three viewpoints in the model, to improve
the design activity via the domain constraints which ensure the model consistency of the
Marine Observatory.

As conclusion, this work aims to demonstrate that we can improve the develop-
ment process of complex system based on the use of MDE technologies and a domain
specific modeling language with the associated tooling. The major improvement is to
provide an early validation step via models and simulation approach to consolidate the
system design.

viii

Acknowledgements

ix

x

List of Figures

1.1 Conceptual Model of Architectural Description, from [THE16] 6
1.2 Centralized Fusion Architecture . 11
1.3 Hierarchical Fusion Architecture . 11
1.4 Distributed Fusion Architecture . 11
1.5 Comparison among SN Design Approaches according to the Requirements

of SN Designer . 15

2.1 Layered Architecture of MDE, from [Sof15] 23
2.2 Models Transformation . 25
2.3 Classification of Enterprise Architecture Viewpoints, from [THE16] 27

3.1 Architecture Development Method (ADM), from [Gro09] 33
3.2 The ArchiMate Business Layer Meta Model, from [Gro09] 36
3.3 The ArchiMate Application Layer Meta Model, from [Gro09] 36
3.4 The ArchiMate Technology Layer Meta Model, from [Gro09] 36
3.5 The Business ArchiMate Concrete Syntax, from [Gro09] 37
3.6 The ArchiMate Relationships Concrete Syntax, from [Gro09] 37
3.7 The ArchiMate Business-Application alignment, from [Gro09] 37
3.8 The ArchiMate Application-Technology alignment, from [Gro09] 38
3.9 Layers of TOGAF 9 MetaModel, after [Gro09] 38
3.10 Comparison among ArchiMate and TOGAF 9 MetaModels 40
3.11 Compatibility between TOGAF ADM and ArchiMate, after [Gro09] 41
3.12 Architecture of NesC@PAT, from [oS07][ZSL+11] 42

4.1 Proposed Tasks and Approaches of Sensor Networks Design Process 54
4.2 Features and Aspects of Model Driven Engineering 55
4.3 Proposed Tasks and Approaches to be Performed by the Different Sensor

Networks Designers using ArchiMate Layers 57

5.1 ArchiMate Business Layer . 65
5.2 ArchiMate Application Layer . 65
5.3 Communication Constraint between two Smart Sensors 65
5.4 Extended Relationship between Smart Sensor and Data Fusion Server . . . 66
5.5 Conceptual ArchiMate Relationships . 70
5.6 Extended Relationship . 71
5.7 Consistency between Business Layer and Application Layer 72
5.8 Generated MO Concepts and Relationships in the Application and Tech-

nology Layer . 73
5.9 Generated ArchiMO Design Tool after the Extension of ArchiMate 76
5.10 Business and Application Layers (Palettes) 77

xi

LIST OF FIGURES

5.11 Extended SDR Relationship in Palette . 77
5.12 Association and Assignment Relationships 79
5.13 Smart Sensor and Data Fusion Relationship is allowed 79
5.14 Smart Sensor and Data Fusion Relationship is not allowed 80
5.15 Generated MO concepts, Relationships and Constraints in the Application

Layer after Entering a Proper Value . 81
5.16 Mapping of Business and Application Viewpoints with Network Simulator . 82

6.1 Structure of MeDON - An Example: N=6, Y=3 90
6.2 Underwater Object Localization according the three ArchiMate Layers . . . 91
6.3 Model of a Dolphin Localization that is presented in the ArchiMate Business

Layer . 92
6.4 Model of a Dolphin Localization that is presented in the ArchiMate Appli-

cation Layer . 93
6.5 Model of a Dolphin Localization that is presented in the ArchiMate Tech-

nology Layer, from [All16] . 94
6.6 Consistency between Business and Application Layers 95
6.7 The corresponding MO concepts in NS-3 . 96
6.8 A part of the animation through NetAnim tool after running NS-3, from

[All16] . 97
6.9 An example of an error detection in design model of Marine Observatory

system, from [All16] . 98

xii

Introduction

GENERAL CONTEXT

A central concern in the area of computing has been the integration of digital artifacts
with the physical world and vice-versa. However, recent developments in the field of
embedded devices have led to smart things increasingly populating in our daily life: home
automation (e.g. electrical objects control such light, gate alarm, heater, air conditioning,
etc), smart cities (e.g. metro autopilot, real time error detections in the factory, etc),
mobile apps (e.g. object localization) and earthquake detection. And not to forget the
environmental monitoring context (e.g. ocean monitoring, atmosphere monitoring, etc).

All these systems are closed to the Web of Things (WoT) architecture and mostly
relies on sensor networks (SN). SN are the base of infrastructure of the environmental
monitoring systems. In [YZL+08], an environmental monitoring system is based on
an integrated sensor concept that is structured to gather important data with signal
processing hardware in one compact device. And these smart sensors are naturally
integrated in a distributed system to manage the data processing, data storage and data
presentation, mostly web oriented.

These systems present on the web clients various sensor data such as pressure,
temperature, humidity, smoke, gas, and sound [LGS+05]. These presentation capabilities
are coupled with data processing to provide high level services (e.g. localization of moving
objects) based on the composition of basic functions. This means, multiple device types
are configured on the SN, and we face set of different roles of each device, and different
services according to each device.

Accordingly, the design of these systems has become increasingly complex accord-
ing to the growing number of functionalities, processing tasks, sensors and the integration
in an information system, including Internet. The design phases in the entire life cycle of
such systems are concerned by the difficulties and challenges to map high level services
and the set of functions on the SN architecture. These design difficulties may induce the
designers to make architectural design errors during the design phase. More specifically,
any error in the design phase can have serious consequences on the functioning and
performance of the system.

In order to avoid the architectural design troubles, we tried to early validate the
design of such created complex. For this purpose, we try to provide an approach that
allows the SN designers to create consistent models to reduce the complexity of the design
phase.

xiii

SENSOR NETWORKS

SENSOR NETWORKS

SN is applied and adopted in a wide range of applications in various areas (e.g. Smart
Building, Transportation and Industrial Applications, Precision Agriculture and Animal
Tracking, etc). The sensor networks term includes a wide scope and contexts, and it is
difficult to define what exactly SN means [Cuz09][Mit04][Roo08].

Sensor Networks Definitions

[Cuz09] defines the Sensor Networks (SN) as "in which sensed data are periodically
gathered at a single point, or sink, for external transmission and processing". This
definition could be considered as an operation of two phases [SHL12]: (1) the observa-
tion/measuring, which means the accumulation of the gathered data at each sensor node;
(2) transferring the collected data to some processing center (e.g. fusion servers) within
the SN.

The scope of this thesis is the ocean survey which provides a continuous way of
observing and monitoring underwater moving objects. This observation requires under-
water environmental measurements and set of estimated states of the variable object
[?][ZCKA09]. So in this context, Underwater Sensor Networks (UW-SNs) are required
to be used. The UW-SN performs functions such as data acquisition, combining then
transferring data from a device to another for all forms of underwater environmental
monitoring [LKS08].

Sensor Networks Implementation

We distinguish several types of SN (e.g. non underwater wireless and wired, and the
underwater wired). In order to implement these networks, series of connected monitoring
equipments are required such as sensors, servers and communication infrastructure.
These equipments have many requirements which vary according to the environmental
constraints.

According to our thesis scope, we are involved in the underwater environmental
constraints. For this purpose, during the implementation of the UW-SNs, several
underwater environmental constraints should be taken into consideration. We cannot
ignore the presence of underwater communication constraints that should be respected
during the UW-SNs implementation, such as the type of the cable (marine cable) to
connect a sensor to a server (physical constraint) or the required cable length between
a sensor and a server (logical constraint). Otherwise, this may negatively affect the
performance and tasks of the underwater communication, such as the delay while
transferring data between sensors and servers [Ree15]. Thus, to deploy the UW-SNs with
the necessary equipments, several requirements are needed [HLS+05][HYW+06]: acoustic
communication such as marine cables between sensors (hydrophones) and workstation
(fusion servers); network configuration (e.g. configuration of sensors and fusion servers);
application (e.g. trilateration algorithm).

xiv

INTRODUCTION

Adopted Definition of Underwater Sensor Networks

In order to fulfill the requirements of the connected monitoring equipments that are briefly
presented in the previous section, we try to find the adequate definition. Relying on
[EVG07a][MRI12][HSZ12], we can consider the following: (1) the set of the mobile/fixed
nodes of UW-SNs reflect set of fixed software and hardware components that are connected
together (e.g. sensors, hydrophones, algorithmic servers); (2) the data transfer between
the different components reflects that the network is configured; (3) the monitoring of
underwater moving objects reflects that a detection and localization algorithm should be
deployed in order to process the location of this object. Based on these approaches, our
definition relatively to our context:
"Underwater Sensor Networks is a set of anchored sensors with an underwater communica-
tion infrastructure which is designed to: get, exchange, control and combine data between
different nodes. Then, processing and relaying information to provide high level of services
such as the monitoring or the localization of an underwater moving object".

COMPLEXITY AND CHALLENGES OF SENSOR NETWORKS

In order to achieve the observation and monitoring missions of a given area, the
implementation of SN is required. SN is based on a set of specialized sensors with a
communications infrastructure designed to monitor and record data at various locations.
It consists of components (software/hardware) with varying levels of computational and
communication capabilities with different communication protocols. It performs multiple
functions that are assigned to each component [Mit04]. Therefore, SN is considered in
[SCK11] as a complex distributed system.

Relying on [Cuz09][Roo08][BDF+05][LWW11], we distinguish three sources of com-
plexity in the life cycle: the complexity of the system itself is related to the provided
services and number of functions; the specification and design activities; and the system
deployment. This complexity is related to:

1. Many different services could be defined with several quality of services on a large
number of sensors and servers. Thus, SN designers face difficulties in satisfying the
requirements of the SN design process.

2. Architecture of the system which contains different heterogeneous devices deployed
on a distributed architecture to operate all the SN services.

3. Interactions and integrations between the software/hardware components and the
core network (SN) that relies on communication protocols, such as exchanging and
transmitting high number of messages between the different existing nodes/compo-
nents in order to provide a high level service.

[Sri10] presents two challenges that face the SN implementation: (1) the system archi-
tecture, since there is no unified system and networking architecture to build different
applications on top; (2) the hardware cost, since the current cost of each individual sensor
unit is still very high. Therefore, and as we are involved in the underwater environment,
the deployment of the set of underwater sensors (hydrophones) is a costly operation.

xv

COMPLEXITY AND CHALLENGES OF SENSOR NETWORKS

Also, this is due to the necessary equipments such as: specific boats, marine cables and
experts in diving, etc. Additionally, we cannot ignore that the deployment operation is
risky and the position of sensors and servers underwater should be in the right position
where an error in meters may cause troubles in the algorithms.

Many stakeholders are involved in the SN implementation and they take part of
sensor network’s life cycle. A stakeholder is defined in [RW11] as: "a person, group, or
entity with an interest in concerns about the realization of the architecture".

The design phase of the SN life cycle is divided into two main levels: behavioral
(logical analysis) and networking architecture. Each level requires a designer that is
different from the other one and this is for better network technologies deployment of
a system. The design phase requires having different stakeholders according to their
domains [Com]. In this document, among these stakeholders we focus on SN designers.

In order to face the complexity and the challenges of the design of such distributed system
architecture, a support on design level should be provided to the SN designers to cover,
elaborate and analyze all the aspects of a SN.

The goal of the design phase is to provide an architecture which includes all the
aspects for our service architecture definition to the physical network infrastructure. To
achieve this goal, one of the relevant approach is to provide abstractions of the final
system to focus on the architectural purpose.

In this context, using a modeling language is adequate to focus on our purpose if
this modeling language includes the appropriate abstractions. Several modeling languages
are candidates to support the modeling phase from general purpose languages like UML,
to more dedicated languages focused on network services like Enterprise Architecture
Modeling Language (EAML) or a really focused one with a Domain Specific Modeling
Language (DSML). DSML are really efficient if the focus of the model is clearly defined
and accessible with a relatively small number of concepts.

We have seen that SN are dedicated context but many architecture purposes are
related to the standard networks which support application services. Thus, an adequate
trade-of for the modeling approach is to reuse existing or standard modeling language
with a specialization on our SN context. In this case the models must be efficient to have
early validation on the architectural hypothesis. In our context, the validation phase can
be achieved by a network infrastructure simulation supporting the high level services
of our application. This modeling and simulation phases could be iterative to improve
the services mapping on the network infrastructure. For this purpose, we must have a
powerful tooling to ease the modeling and simulation phases.

RESEARCH QUESTIONS

The research problem that drives this thesis deals with reducing the time and complexity
of the design phase. To tackle this wide topic, we divide it into three research questions:

xvi

INTRODUCTION

1. RQ 1 Design Process: To face the design complexity of SN applications, how can
we provide an assistance to guide the design phase?

2. RQ 2 Modeling Language Definition Specialization: Is it relevant to use a
domain specific language to enhance and increase the consistency and unity of the
design?

3. RQ 3 Tool Building Process: How an efficient tooling support can be produced
to achieve the main concerns of the design process?

PROPOSED APPROACH

We apply our proposed Sensor Networks development process to a complete SN case
study. These types of applications can include underwater SN that consists in a variable
number of sensors that are deployed to gather scientific data in collaborative monitor-
ing missions [ZCKA09]. These applications aim to perform a continuous ocean monitoring.

To elaborate this process, we provide a modeling approach based on separation of
concerns coupled with validation step based on a network architecture simulator. This
model is an input to a model compiler to generate simulation code that runs directly
in NS-3 network simulator [AKR13]. An early validation of the model is interesting in
order to have during the development phase, a formal and validated model. The resulted
simulation helps to obtain an early validation of the design model before any prototype
or deployment.

ORGANIZATION

We present in Chapter 1, the state of the art in SN development process and the current
approaches to answer the research questions. We present the SN life cycle, we categorize
and compare the existing approaches to answer the requirements of the methods and
frameworks for SN design, and we indicate their limits.

One of the main features of these frameworks is the treatment of the complexity
through viewpoints. We present two fields: Model Driven Engineering, in Chapter 2, and
that of Enterprise Architecture Frameworks, in Chapter 3. One of the main requirements
of methods for SN design, regarding the SN development environment, is to have an
overall model of SN design process which integrates all business, and technical activities.
This type of representation is one of the goals of Enterprise Architecture Frameworks
and modeling languages (Chapter 3). Here, we present and discuss the main frameworks
and Modeling Languages of Enterprise Architecture, from which we select TOGAF and
ArchiMate as the most appropriate for our purpose. Both advantages and limitations of
applying Enterprise Architecture to SN development process are discussed.

Another main concern of both methods and frameworks for SN design process is
related to have specific languages for their tasks and domain in order to facilitate the
task of the SN designer. One manner of producing these languages is through the

xvii

ORGANIZATION

Model Driven Engineering approach, presented in Chapter 2. Moreover, Model Driven
Engineering is based on models and generative techniques; hence it enables to rapidly
obtain prototypes of SN models to validate it. The chapter ends with a general discussion
on the advantages and limitations of using Model Driven Engineering for SN.

We continue by presenting our proposals to answer the identified research ques-
tions in Chapter 4 as an answer to RQ 1 Design Process, we introduce a SN design
process inspired from a software development life cycle. In order to design, domain
specific modeling languages are proposed for the designers of SN, in Chapter 5; it’s an
answer to RQ 2 Modeling Language Specialization. As an answer to RQ 3 Tool

Building Process, we build a dedicated tool for each role of the process stakeholders,
we propose a model-driven tool building process, in Chapter 5. In fact, this process can
be used to extend a standard modeling language by several DSMLs and associated tools.
To validate the proposed tool process in the SN Environment and demonstrate their
capabilities, we provide an application of the SN design process and tools to a complete
marine observatory case study from a modeling phase to a validation phase based on a
network simulator, in Chapter 6.

And finally, we conclude the document by an analysis of our results and by sug-
gesting some future works.

xviii

PART I : STATE OF THE ART

To answer the research questions identified in Section
Research Questions. First, we survey the current ap-
proaches for sensor networks development, in Chapter
1. Then, we identify the limits of these approaches and
inquire two fields, that of Model Driven Engineering, in
Chapter 2, and that of Enterprise Architecture, in Chap-
ter 3, that can supply solutions to cross them.

1 Sensor Networks
Development Process

Reminders and Objectives

Based on the concept of SN (Sensor Networks) defined in the introduction, we state that
SN are mainly software intensive systems with a network infrastructure having a central
place. This kind of systems requires the definition of the life cycle, with a main focus on
the software development life cycle. In this chapter, we present the entire SN life cycle
and emphasize the importance of specification, design and development phases. Next,

we motivate the focus on the design phase including early validation. Then, we present
the different stakeholders involved in the phases of SN life cycle and especially for the
design phase. Later, we elaborate on the roles of each stakeholder in the life cycle, to
specify the context of our concerned stakeholders. Next, we detail the structure of SN
systems to identify their software and hardware components. After, we present and

discuss the algorithms and the approaches that are adopted while providing the services
of SN by using the identified components. Then, to design the specified application, we

specify the needs of the selected stakeholders such as software designer or network
designer. Next, we select the requirements regarding to design tools, according to these
needs. After, relying on the identified needs, we compare the existing approaches that
satisfy our requirements of the concerned stakeholder and analyze the limits of these

approaches. According to these comparisons, we suggest possible solutions and
methodologies to fit the stakeholder’s unsatisfied.

1.1 SENSOR NETWORKS

Sensor Networks (SN) are made up of heterogeneous sensors with communication capabili-
ties and heterogeneous components dedicated to an or several application domains. These
systems are positioning on a large spectrum of domains like the environment monitoring,
home monitoring, city monitoring, transport monitoring and so on. Nowadays this kind of
systems includes more and more intelligence and becomes smart cities, smart transports
and so smart systems.

To provide a generic definition of these systems, we are relying on the Systems of
Systems (SoS) definition proposed by Jam al [Jam08], SoS are:"large-scale integrated
systems which are heterogeneous and interdependently operable on their own but are
networked together for a common goal".

3

1

1.1. SENSOR NETWORKS

This goal is defined and achieved with the support of a system engineering process
which is based on [RWO03]:

1. The requirements or needs that the solution should fulfill, must be explicitly defined.

2. We design and develop the system to cover the defined requirements.

3. We verify that the system meets the defined requirements.

Based on this generic approach, requirements are allocated to the system conceptualization
which starts by a functional analysis with the associated modelling activity. Then, an
allocation of the functions on a logical and physical architecture is performed to take into
account functional and architectural aspects.

1.1.1 Sensor Networks Life Cycles

One of the crucial phases in the SoS life cycle, is the allocation of the functional
architecture on the SoS architecture which is logical and physical one. This phase
includes an architecture exploration to target the requirements of the SoS. Due to the
problematic and the definition of SoS in [Jam08][CF01], SoS are: "large-scale concurrent
and distributed systems that are comprised of complex systems", and the associated
life cycle is considered as a distributed systems life cycle (DSLC) to take into account
the geographic, operationnal and managerial independence and the different temporal
evolutions. This latter can be considered as a distributed systems life cycle (DSLC).

To define a DSLC life cycle, we should take into consideration two main types of
phases: (1) for development purposes such as the design and analysis phases; (2) for
implementation purposes such as the deployment phase. Accordingly, we distinguish
several definitions of the DSLC. These definitions are closed to the definition of [GBN10]
which defines a typical development process with seven phases:

1. Set Up Development Environment: preparing the needed frameworks and the tools
to apply the designed models.

2. Connect Hardware: preparing the hardware platforms, the connection between the
concerned devices such as the SN.

3. Prepare Interfaces/Libraries: preparing the libraries and the operating systems that
are compatible with sensor nodes hardware versions.

4. Compile Code: use the compilers of the programming languages in order to build
the executable code.

5. Implement Code to Hardware: deploy the executable code on devices/nodes.

6. Evaluate Effects: testing the functionalities of each node and node networks.

7. Repeat from the Fourth Phase: continuing by iteration from the phase 4 till the end
while errors are detected in order to fit the application requirements.

4

CHAPTER 1. SENSOR NETWORKS DEVELOPMENT PROCESS

1

Several SN life cycles adopt similar phases to the ones listed above using different names
and/or numbers. For example, [EG10] adopts eight phases which are similar to the
adopted phases in [GBN10]. Also, it adopts the iteration action between the different
phases.

More to identify the preferable life cycle that can be performed for our SN context, we
want to highlight some suggestions that [GGB+10] insists on:

• The need for several distinct forms of testing during the design phase. So, a de-
signer can apply within the same model different assumptions, architectures and
parameters.

• The focus on the deployment evaluation, avoiding the mistakes and complexity in
deployment phase and including an evaluation phase at the end of the life cycle to
check how successful the deployment actually is.

• The importance of iteration: errors are detected during testing or deployment re-
quires to re-implement modules of the system, an iteration can continue until ap-
plication requirements are satisfied. There are different possibilities of iteration
between the different phases. For example, in case the detected errors are related
to the architecture defined in the design phase, they can be reconsidered rapidly by
iterating.

The presented suggestions above elaborate the issues that can be occurred during the
design and deployment phases of the SN life cycle. Also, they elaborate that, by adopting
the iteration approach, the errors that may be happened in the deployment phase can be
prevented by detecting them in the design phase. This reflects the need of having a efficient
support for the tasks that should be performed during the design phase, in order to reduce
the complexity of performing these tasks. This support can be provided by emphasizing
on the allocation of software functional components on the physical architecture with
minimum architectural errors. Then, by having a tool to validate the defined physical
architecture. For this purpose, we focus on the design phase among the different phases
of the SN life cycle, in the next section.

1.1.2 Design Phase of the Sensor Networks Life Cycles

The allocation of the software functional components on the physical architecture, is
considered as a complex task to be performed. This due to the different concerns (view-
points) that are involved to perform this task. Relying on IEEE Standard 1471-2011, a
viewpoint "codifies a way of addressing some architectural concerns in terms of notations,
kinds of models or other forms". And, it is defined as: "a collection of patterns, templates,
and conventions for constructing one type of view". A view is specified by a viewpoint,
which prescribes the concepts, models, analysis techniques, and visualizations that are
provided by the view. A view is conformed to the definition of a viewpoint (see. Figure
1.1). In general, a system architecture description is defined in a view that addresses a
set of related concerns related of stakeholders.

5

1

1.1. SENSOR NETWORKS

An architecture concern is defined in [RW11] as: "about an architecture is a re-
quirement, an objective, an intention, or an aspiration a stakeholder has for that
architecture". [KK07][KK03] define architectural concern as: "groups aspect designs and
can be seen as a software architecture view-point". Thus, we need different experts in
software architecture who have different domains of experience in order to address the
different view-points. And also relying on [RW11], we consider that a software architecture
is related to several stakeholders that have different roles in the life-cycle related to
their domains of experience. If the separation of concern is efficient to model software
architectures, one of the drawbacks is to ensure consistency between these viewpoints, for
example to allow the mapping between the logical and physical components.

Figure 1.1: Conceptual Model of Architectural Description, from [THE16]

1.1.3 Roles in the Sensor Networks Life Cycles

As we have just described before, different stakeholders are involved in the life-cycles and
their roles are tightly connected with the view-point definition that are related to. To
refine our definitions related to the SN life-cycle we identify the stakeolders and their
roles particularly involved during the design phase which remains a critical phase of these
systems.

Zuniga and al, [ZD13], identified clearly the main contributors in this phase with
the following stakeholders:

6

CHAPTER 1. SENSOR NETWORKS DEVELOPMENT PROCESS

1

1. Domain Expert: provide the technical specific events, actions and services that are
related to the domain, to be used by all applications in the domain.

2. Software Designer: define an architecture of the sensor network applications by
specifying software components, distribution of actions, events, services such as a
service includes functions and procedures, and relationships between components.

3. Network Designer: design the required network and deploy it on hardware compo-
nents on the whole system. We cannot ignore the possibility of generating binary
codes and configurations of the hardware components.

All these stakeholders with their own expertise, contribute to the design of the SN system.
However, to improve the definition of their roles and tasks, we will look for the use of
several SN systems in SoS.

1.2 SENSOR NETWORKS SYSTEMS

To consider the use of SN systems, we can try to know how the sensor datas are used
to provide a higher level service to target customer needs. The systems or SoS which
deliver continuous customer services are like NEPTUNE Canada, American GPS System
and European GALILEO System and Russian GLONASS System. Such systems provide
important information on the properties and behavior of complex systems [VG09]. High
level services, such as continuous observations and processing of weather parameters, or
continuous observations of moving objects, and many others [VG09], are based on a wide
range of functions [Mil07] on data like acquisition, tracking, routing, fusion, distribution,
storage and querying. The resulting information can be consider as unlimited sequence of
complex data items obtained from the sensor nodes and ready to be analysed and stored
[Mil07][VG09].

For example, NEPTUNE Canada (North East Pacific Time-series Undersea Net-
worked Experiments) enables real-time study of: tectonic plates; the movement of fluids
on the ocean floor and the effects of climate change on marine ecosystems. Also, it will
help accurately locate earthquakes and observe the resulting seismic stress. In addition,
it measure salinity, carbon dioxide and even movement of organisms in sediments.
Then, The multitude of data collected will be transmitted via optical fiber to the Port
Alberni station on Vancouver Island, which will connect them via a broadband internet
connection at the University of Victoria. They will be available on the NEPTUNE
website (Canadaneptunecanada.ca). The data archiving and management system used
by NEPTUNE, also collects information from VENUS (Victoria Experimental Network
Under the Sea), a coastal network of cable-linked underwater observatories. Thus,
NEPTUNE Canada is the largest ocean observatory in the world.

In order to provide these services, NEPTUNE Canada deploys set of connected
nodes and instruments that must be anchored to optical cables on a SN. These nodes
and instruments can be: Hydrophones, seismometers, video cameras and high resolution
cameras. Also, several other sub-systems are deployed and connected to the SN, such
as: database, database replication and web server. A Database is deployed to fuse the

7

1

1.2. SENSOR NETWORKS SYSTEMS

sequence data items that are coming from different sensors. A Database replication is
deployed to have a copy about the entire collected and analyzed data. A web server is
deployed to diffuse and display the data on web. Regarding the router, is deployed to can
access the internet network.

Therefore, such systems are not only a simple SN, they are systems equivalent to
enterprises with high level services delivered by a high number of interconnected het-
erogeneous components (software and hardware) [Mil07]. For example Neptune system
is not only a SN, it can be considered as enterprise system since they require several
heterogeneous components (software and hardware) with communication constraints to
be deployed on the SN in order to provide services that are similar to the mentioned above.

These information systems are categorized according to two main types: wireless
outdoor and underwater [Wan08][WBH+13][MMD15]. Such information systems can be
divided into non-acoustic and acoustic types [Ini12]. In both types, a service of localiza-
tion and tracking moving objects is available through a set of sensors and appropriate
algorithms. These systems adopt two main approaches [Wan08][Ini12]:

1. Identifying the cell (circle or sphere) in which the mobile object is located. The
position is calculated relying on one sensor.

2. Identifying the area of the moving object which is deduced by the intersection of a
minimum of three cells. The position is calculated relying on two or more source
(receivers) independently of the sensor technology [CGLP05].

Based on these approaches, high level services like series of moving object localization
can be provided by elementary services gathering. Mainly these services include data
fusion approaches that require a set of receivers (sensors) [CL10]. This approach is used
in many applications (e.g. localization systems) where a large amount of data must be
combined or fused to obtain relevant information [LCD+14].

Data fusion algorithms are differentiated and categorized according to the source
number (two, three or many receivers) [Hot13][BONL08][Wan08][SHS01]. Relying on
[KH05], the position accuracy of mobile object increases with the number of receivers.
The efficiency of the localization service is highly correlated with the increasing of the
number of sensors. For this purpose, we find out several types of fusion algorithms that
are differentiated by the number of sensors in the network.

In addition, we focused our interest on the fusion algorithms and the associated
services because they are quite representative services included in the SN and the
extended systems. Indeed, they provide a high level service in many SN and they are
based on a undetermined number of sensors and several deployments of elementary
algorithm nodes exist. This means that, we exploit many aspects of SN, and many
aspects of information system to display and store the different results (locations) that
are provided by performing the different localization services.

8

CHAPTER 1. SENSOR NETWORKS DEVELOPMENT PROCESS

1

1.3 FUSION ALGORITHMS

To provide a pertinent example of a high level service for the SN, we study fusion
algorithms as a representative service in a SN. Effectively by nature, this kind of
algorithm is necessarly highly distributed based on heterogeneous components (sensor
nodes and fusion nodes) and several architectures are possibly déployed on a selected
network infrastructure. Due to all these features, it seems to us that fusion algorithms
are good candidates as representative SN applications and so by extension how can we
manage the design of this kind of application.

On this hypothesis, we distinguish several fusion algorithms such as: trilateration
[HJS+12], triangulation [EVG07b][CGLP05][HJS+12], Bounding-Box [EVG07b][HJS+12],
set-membership [CGLP05], and Dive’N’Rise(DNR) [EVG07b][HJS+12].

As the extension of trilateration to more than three sources is possible, we select
it to be adopted while providing the localization service of moving objects [ASMT+12].
This selection provides us the possibility of increasing the accuracy of the determined
position of a moving object. For this purpose, the trilateration algorithm is used by the
most relevant positioning system in the world such as, the GPS [RZ00][Wan08]. This
algorithm combine and integrate information from a number of different sources (sensors)
using an architecture for data fusion approach [Cas13].

However, several Data Fusion Architectures (DFA) are possible to be used while
performing the fusion algorithm. This diversity of DFA types generates the possibility
of creating different models by SN designer according to each type, with a difficulty to
choose the most convenient one. This designer should select the adequate architecture
for the components that are required to perform this algorithm. So, the decision of this
designer is totally oriented toward selecting the appropriate data fusion architecture
among several. In order to select the appropriate one, the properties that can fit with
these architectures should be identified. Then, the SN designer checks the availability
of each property in the different data fusion architectures, in order to select the most
satisfied architecture. For this purpose, we present these properties, in the next section.

1.4 PROPERTIES FOR SELECTING A DATA FUSION ARCHITEC-
TURE

Several challenges face the SN designer to adopt the data fusion approach and its logical
architecture and the relevant mapping on the distributed network infrastructure. We
distinguish the following difficulties and challenges:

1. Different heterogeneous components should be deployed on a SN by adopting a
data fusion architecture. Multiple functions are assigned to each component on
the SN [Mit04]. This requires a communication infrastructure with varying levels
of computational and communication capabilities according to each communication
protocol.

9

1

1.5. DATA FUSION ARCHITECTURES

2. The number of sensors should increase upon the needed degree of object localization
accuracy. This may cause the needs of increasing the number of other components
such as the fusion servers. Thus, the number of the heterogeneous components on
the SN is dynamic and can be increased at any time without component constraints.

3. The impacts of the sensor failures on the network should be minimized. This due
to the long life duration that is required by the sensor networks systems [RGK+11].
This failure can affect the entire or a part of network. So, the lifetime of SN can be
optimized.

Accordingly, we can detail the properties that are required by the SN designer, in order
to select the appropriate data fusion architecture. This last should provide the capacity
of adding a large number of sensors and fusion servers on SN. This capacity increases
the accuracy of localizing a moving object, or enlarges the covered observed area. Also, it
minimizes the network failure by replacing the failed components (sensors or fusion servers)
by stable and functional ones. In addition relying on [KH05], more sensors and fusion nodes
are required to be deployed on the SN to perform and optimize the fusion service. So,
the SN designer requires an architecture which has enough flexibility to cover the needs
of adding or removing components with the less impact on the localization application.
These modifications on the application architecture must be performed without calling
into question the system architecture and are inevitable on a long time period of the
system life cycle.

1.5 DATA FUSION ARCHITECTURES

In the SN domain, the sources of information are the sensors and the fusion algorithm
is often done in a fusion center that collects this information [EZ14][Mit07][LIHL17], but
it can be also decentralized [EZ14] with many possibilities between these two kind of
architectures. The main possibilities for the architecture categories are centralized, hier-
archical and distributed [And13]. In a centralized architecture, there is a single fusion
node [LLL09][LCD+14][LCK+97], see Figure 1.2. Sensors acquire data and transfer them
directly to a central single fusion node. In a hierarchical architecture, figure 1.3, the fusion
nodes are classified in a hierarchy with the higher level nodes processing results from the
lower level nodes and possibly providing some feedback [LLL09][LCD+14][LCK+97]. In a
fully distributed architecture, see. Figure 1.4, there is several fusion nodes. Each fusion
node sends information to the other fusion nodes [KGC][CM05][Pao94]. There is no pre-
determined hierarchical relationship so each fusion node can communicate with any other
node.

1.6 LIMITS AND COMPARISON AMONG THE DIFFERENT DATA FU-
SION ARCHITECTURES

In a fully distributed architecture, the number of sensors and fusion nodes that is
deployed on the network can be changed as required [And13]. More we add sensors, more
the accurate position of moving object increase, or more the observed area is enlarged
[KH05][Vey16]. Consequently, the distributed fusion architecture allows to add sensors
and fusion nodes on SN as much as it is required to enhance the results of the provided

10

CHAPTER 1. SENSOR NETWORKS DEVELOPMENT PROCESS

1

Figure 1.2: Centralized Fusion Architecture

Figure 1.3: Hierarchical Fusion Architecture

Figure 1.4: Distributed Fusion Architecture

11

1

1.6. LIMITS AND COMPARISON AMONG THE DIFFERENT DATA FUSION

ARCHITECTURES

services such as the localizations of moving objects.

In a centralized architecture, the number of sensors and fusion nodes that is de-
ployed on the network cannot be changed as required [LLL09][LCK+97]. This is due to
the structure of the centralized architecture as one single fusion node is allowed to be
deployed on the SN. So, this architecture cannot contribute by increasing the accuracy of
object localization result. Consequently, with the centralized fusion architecture is not
possible to deploy more sensors and fusion nodes on SN.

In a hierarchical architecture, we can add more sensors and fusion nodes but it is
a complex task. This is due to the required feedback scenario (communication constraint)
that should be performed between the sender fusion node and receiver fusion node
[LLL09][LCD+14][LCK+97]. So, the communication constraints increases in parallel with
the number of added sensors and fusion nodes. Also, due to the required hierarchical
order of the location of fusion nodes presented above. So, in case we add more nodes, we
face a problem in the location of these added nodes as we should respect their order of
communication, from the higher to the lower nodes. It is not an easy task as any error in
the location of the added nodes may affect negatively the performance and the result of
the object localization.

Consequently adding sensors and fusion nodes in a hierarchical fusion architecture
is allowed but faced up to several difficulties in locating the newly added nodes in the
right positions on the SN.

Accordingly, the property of adding several components on the SN is available in
the hierarchical and distributed fusion architectures. In the distributed ones, the fusion
nodes can be added at any location on the SN without any hierarchical level of execution.
This means all the fusion nodes can communicate together without any execution
cauisality. So the distributed architecture provides the more flexible approach when we
take into accounts the long time period of the system life cycle.

Relying on the analysis and the comparison discussed above, the SN designer should take
into consideration the distributed fusion architecture to perform the trilateration fusion
algorithm. Thus, the distributed fusion architecture is the most generic architecture
related to our requirements.

In addition, the selected architecture should be compatible with the selected trilat-
eration fusion algorithm [LCK+97]. According to [AR07], this algorithm adopt and use
the distributed fusion architecture.

Making a SN durable in the case of individual sensor failures is another main ad-
vantage of selecting the distributed architecture. In a distributed environment,
the loss of one sensor does not affect the entire SN [KGC][CM05][Pao94]. So, there is
no component that constitutes a weak point whose stopping paralyzes the system [And13].

For the purposes presented above, the distributed fusion architecture is the prefer-

12

CHAPTER 1. SENSOR NETWORKS DEVELOPMENT PROCESS

1

able one among the others. This due also, to the provided advantages by this architecture
such as reliability and energy efficiency [LCK+97][Vey16][KGC][CM05]. Therefore, it
seems to us that consider a system example based on a trilateration algorithm (with
minimum three sources) performed by a distributed fusion architecture is a relevant and
generic example for illustrating the design problematics.

1.7 REQUIREMENTS FOR DESIGNING SENSOR NETWORKS SYS-
TEMS

The distributed fusion architecture is adopted by the most SN systems. In order to
perform the design phase of such systems, several challenges face the concerned SN de-
signers. A model should be defined to describe and analyze how the provided service (e.g.
localization of moving objects) can be mapped on a SN. This requires the intervention of
different SN designers that are experts in different domains of experience. The provided
service is required to be described in a model by a SN designer which is an expert in
the business process of such service. To perform such service, a model that contains the
corresponding software components and relationships is required to be defined by another
SN designer which is an expert in the application process. To implement these software
components and relationships, a model that contains the corresponding technology
platform is required to be defined by an expert in network infrastructures. In addition, as
the SN designers define models in a complex context, they may make architectural design
errors. So, the created models must support the analysis of architectural constraints
which must help the designers and avoid errors that would be detected during the next
phases of process development.

For this purpose, while designing such systems, the SN designer should take into consid-
eration two parts: (1) services that are related to business domain such as localization of
moving objects; (2) information systems to support the deployment of these services and
to provide enough flexibility to take into consideration the long life cycles of these systems.

In order to design such information systems, the SN designer must be supported
by an appropriate tooling [HML02]. Due to the analysis of [RBR10][DNR03], we can
consider that the design approaches could be supported by graphical modeling languages.
These approaches and their related tools aid in the design and deployment of SN
applications [RBR10][MFHH02]. These tools provide the ability for the SN designer
to analyze and model complex systems such as Neptune Canada [ZSL+11]. Thus, the
requirements of SN designer can be coupled with the requirements of this tool. These
requirements are identified as:

1. Requirement 1 - Improving Architectural Design: Possibility of preventing
the architectural errors that may be made by the SN designer. These errors can
occurred while defining the provided services that are performed by the adopted
SN architecture regarding the communication constraints. For example, we prevent
architectural errors by avoiding connection of two sensors, or a connection between

13

1

1.8. LIMITS AND COMPARISON AMONG THE DIFFERENT APPROACHES OF

SENSOR NETWORKS DESIGN

a sensor to a database server without any processing node.

2. Requirement 2 - Multiple Viewpoints: Providing each designer the ability to
work independently in a viewpoint (cf. section 1.1.3), in order to have his proper
model according to his domain of experience. The different concerned designers co-
operate together in order to share the design of the same system. And these different
viewpoints must correlated in order to have a consistent model. For example, the
domain expert, software designer and network designer create their models in their
independent viewpoints (cf. section 1.1.3), so they cooperate together by interrelat-
ing their models to obtain this consistent model. This interrelation can be created
by using specific relationships to ensure model consistency of this unique model.

3. Requirement 3 - Extensibility: Ability of adding new SN specific elements, con-
straints and relationships in the design tool. The absence of such components while
defining the scenario of the provided services affects negatively the design phase,
by increasing the number of required components, communication constraints and
relationships that should be performed manually by the SN designer. For example,
by using an added specific SN component or relationship to the design tool in a
viewpoint, the SN designer can get automatically the corresponding related com-
ponents and relationships in another viewpoint. These generated components and
relationships can be built-in or added in the design tool to help the designer related
to the complexity of the resulting information system.

4. Requirement 4 - Heterogeneity Supported: Ability of having different types of
components and communication types in the same defined SN model. As the SN
is an information system which is set of heterogeneous devices and communication
protocols, the presence of this ability while defining the scenario of the provided
services is necessary. The defined SN model contains different communication types
between different heterogeneous components. For example, the communication pro-
tocol between a sensor and a database server is different than the one between a
server and a web server.

5. Requirement 5 - Validation Tools Supported: Ability to verify the created SN
models by simulation. This ability is required in order to detect the architectural
errors during the design phase, and to validate the created models as early as possible
in the development life cycle. For example, using a network simulation tooling could
efficient to evaluate the mapping of a service on a SN infrastructure.

1.8 LIMITS AND COMPARISON AMONG THE DIFFERENT AP-
PROACHES OF SENSOR NETWORKS DESIGN

In order to select the proper approaches to design then implement a SN system, we discuss
a comparison between the different approaches regarding our requirements, identified pre-
viously. Our comparison is based on the most relevant approaches regarding our context:
SimStudio [TTH11], CA-PSCF (Context-Aware Pervasive Service Creation Framework)
[AYG10], DSM (Domain-Specific Model) [VMP14], ITSML (Intelligent Transportation
Systems Modeling Language) [FIFF15] and SysWeaver [RBR10]. The results of our com-
parison is summarized in the Figure 1.5 and detailed in the next sections.

14

CHAPTER 1. SENSOR NETWORKS DEVELOPMENT PROCESS

1

Figure 1.5: Comparison among SN Design Approaches according to the Requirements of
SN Designer

1.8.1 Approaches of Architectural Design Improvement

This section presents the five approaches regarding the improvement of the architectural
design of SN. The five approaches aim at integrating in a single environment, tools for
modeling and validating high level of pervasive services. These services can be related to
complex contexts such as SN. These approaches proposed new specific SN concepts that
are implemented in different frameworks and tools. According to each approach, these
concepts are dedicated to be used while designing SN systems by the SN designer.

The SimStudio concepts are built by developing the generic DEVS (Discrete Event
System Specification) concepts [TTH11]. The CA-PSCF concepts are based on the
EMF-based concepts [AYG10]. The DSM concepts rely on Jersey JAX-RS [VMP14].
The ITSML concepts have been developed using the infrastructure of INGENME
[PGSP11][FIFF15]. Therefore, during the design phase, the SN designer can use these
new specific defined concepts. These concepts are created for specific domains and not
for general purposes.

However, they did not propose constraints on these concepts or on the communi-
cation between them. The implementation of such constraints in the concerned design
tool can help the SN designer to improve the architectural design by preventing architec-
tural design errors that maybe made by him. For example, the SN designer is not able
to connect two sensors together, but he is able to connect a sensor to a fusion server by
respecting the required criteria to establish this connection.

Consequently, these five approaches help the designer by providing the ability to

15

1

1.8. LIMITS AND COMPARISON AMONG THE DIFFERENT APPROACHES OF

SENSOR NETWORKS DESIGN

have SN concepts and not only general purposes concepts. However, the lack of the
implementation of domain specific constraints applied on the domain concepts and
relationships is not powerful support for the designer. With this kind of tooling, the
designer hasn’t enough support to prevent the architectural design mistakes.

1.8.2 Approaches of Providing Multiple Viewpoints

This section presents one main approach that enables the SN designer to define a SN
model that contains different viewpoints. These viewpoints are defined by the different
concerned SN designers according to their different domains of experience. This approach
is SysWeaver [RBR10].

SysWearver is a very effective approach, it aims at controlling the sensor networks
by controlling its programming. It seeks to go up in abstraction, it works from top
to bottom. It focuses on the application level that is based on programming, and
the technology level that is based on simple network components. However, it misses
advanced and complex networks components. Accordingly, a main question could be
asked here which is: is SysWeaver can manipulate information systems (e.g. SN systems)?

SysWeaver cannot be the proper approach to be adopted by the SN designer. This is
due to the two main issues that are required to implement such information systems
(e.g. NEPTUNE localization systems): (1) advanced and complex networks components
(e.g. web servers, routers, database replication server) should be implemented in the
technology level of SysWeaver design tool, which are required to be used when the
designers describe the business process of a complex service such as localization of moving
objects; (2) the descriptions of all the possible provided services are required to be
defined using one or the different data fusion architectures. The second issue requires a
business level design that contains specific SN components (e.g. fusion algorithm, data
acquisition) to be used while designing such services. Therefore, a business level design
and advanced IT components are required to be used while designing localization systems.

Consequently, as a solution, we can exploit SysWeaver by extending with a busi-
ness level that meets the needs (e.g. specific SN components and relationships) to
describe a complex service. And, by adding to the technology level, IT components that
can be the correspondences of specific SN components in the business level. Another
approach can be proposed, which is to reuse a design tool that contains business,
application and technology levels. Then, each level can be extended and specialized by
adding new SN concepts and relationships that can be implemented in the concerned
design tool. Therefore as we present later, it seems to us that this last solution is less
complex if the tooling respects the extensibility requirements.

1.8.3 Approaches of Offering Concepts Extensibility

This section presents the five selected approaches regarding the ability to extend new
concepts while designing a SN. These approaches enable the extensibility by adding
new concepts (e.g. Sensors, Servers, Relationships) to the concerned frameworks or

16

CHAPTER 1. SENSOR NETWORKS DEVELOPMENT PROCESS

1

design tool. This is similar to [CAKR11][CKR12]. Due to the created or generated
editors/design tools that are used to create models according to each approach, these new
concepts can be new SN specific elements, constraints and relationships in these design
tools. This gives the SN designers an easy way to use the new specific added components
and constraints.

Consequently, these five approaches help the SN designer by providing the ability
to use built-in SN components and relationships from the SN generated design tools.
However, modifying a tooling remains difficult when we want to respect the semantics of
the added concepts and relationships.

1.8.4 Approaches of Supporting Heterogeneity

This section presents the five selected approaches regarding the support of the concepts
heterogeneity while designing a SN. The approaches provide the SN designer the possi-
bility to use heterogeneous components (software and hardware)and relationships while
designing SN systems. According to each approach, this possibility is provided by using
the generated SN editors/design tool that contains different types of components, such as
sensor, database server, fusion algorithm. These components perform different functions
and provide different services.

Consequently, by supporting the heterogeneity of concepts and relationships that
can be implemented in the SN design tools, these five approaches help the SN designer
by providing the ability to define SN models that contains different types of components
and relationships.

1.8.5 Approaches of Supporting Validation Tools

This section presents only the three approaches that provide tools to validate the
defined SN models. These approaches are: SimStudio [TTH11], ITSML (Intelligent
Transportation Systems Modeling Language) [FIFF15] and SysWeaver [RBR10].

These approaches enable the SN designer to validate the defined models by detect-
ing the architectural design troubles prior to the implementation phase. This early
validation is performed by simulating the defined SN models.

Consequently, these three approaches help the SN designer by validating and veri-
fying the result of the design phase (defined SN models). This can be performed by
using a specific simulator that has the ability to provide results of the simulation task.
Therefore, these approaches integrate the possibility to improve architectural design
models after the analysis of the simulation result.

17

1

1.9. DISCUSSION

1.9 DISCUSSION

According to the presentation of the previous section on the existing SN approaches and
the associated tooling, we conclude the following:

1. Requirement 1: Improvement of architectural design of SN is available in all the
presented approaches. Mainly, the frameworks are based on the defintion of domain
concepts which is efficient support for the designer. However, we have noticed that
these approaches lack the domain constraints relative to the domaine concepts and
relationships. To improve the lack in the actual tooling and to keep the domain
concept definition, we will looking for the relevance of Model Driven Engineering
approach relative to our context, in the next section.

2. Requirement 2: Multiple Viewpoints is addressed by only one approach of all the
presented approaches, the SysWeaver. It provides separate viewpoints according to
each domain of experience, with the ability of inter-relating these viewpoints, in
order to have one unique model. However, this approach is mainly focused on the
design of limited scale SN and does not satisfy the requirement to design complex
information systems such as Neptune. This is the reason why we study and analyze
Enterprise Architecture frameworks in chapter 3 to try to identify a system approach
including SN and the necessarily associate IT infrastructure.

3. Requirement 3: Extensibility is possible in all the presented approaches even if
the associated tooling remains difficult to extend. Moreover, we notice that some
tools are based metamodeling approach which guaranty a clear language definition
to ease the language extensibility. However, this possible extension is not a guaranty
to have a generating approach for the extended design tool with the added concepts
and constraints. Once again to improve the extensibility and face this requirement,
we will try to apply a Model Driven Engineering approach, introduced in chapter 2.

4. Requirement 4: Heterogeneity of components and communications in the design
tool is well supported in the presented approaches. But multiple heterogeneous
components is really available when the associated constraints are also supported to
prevent design mistakes, as we noticed in the text relative to the requirement 1. So
this requirement should be really satisfied in association with the requirement 1.

5. Requirement 5: Validation step is available in three approaches by using network
simulators and indubitably these simulators improve the quality of the models and
the resulting system. So we keep this kind of simulator to satisfy the requirement 5
and will try to include the simulation in our future approach and tooling.

Consequently, regarding the presented comparison and analysis; proposing a design
process and tooling for the SN life cycle must take the best of each approach and propose
a contribution which satisfy all the identified requirements and firstly the RQ 1 Design

Process. Our contribution will be elaborated and presented in chapter 4.

18

CHAPTER 1. SENSOR NETWORKS DEVELOPMENT PROCESS

1

Synthesis

In this chapter, we presented the concept of SN life cycles with their advantages,
features and options. Then, we pointed out our interest in the design phase of SN life
cycle. Next, we defined the roles of the involved stakeholders in the SN life cycle, and

we extracted that the SN designer is the proper stakeholder to be involved in the design
phase. Then, we presented the structure of complex information system, and the

challenges that may face the development of such systems. Thus, we identified that the
SN is an information system and no only a simple SN, it is a complex distributed

system. After, we selected that the distributed fusion architecture is the appropriate
architecture that can be adopted for our SN context. Also, we specified that the

trilateration algorithm can be implemented on the selected architecture. Next, we
extracted the requirements of SN design. Then, the comparison between the existing

approaches based on the specified requirements, shows that there is one approach which
fulfills completely the identified requirements, but it is not enough according to our

context, which is the SysWeaver approach. The Requirement 2 Multiple

Viewpoints is satisfied by the SysWeaver approach where the system to be designed is
only a simple SN. However, this requirement is not satisfied where the system to be

designed is a complex information system. To fit the satisfied and non satisfied
requirements, in the next two chapters, we study and adopt the fields of Model Driven

Engineering and Enterprise Architecture. We propose a process for SN Design, in
Chapter 4. We provide a domain specific modeling language for SN, which is needed by
the designer in order to create his specific model, in chapter 5. Also, we propose for the
designer, a tool building process for SN design in order to have a design tool where he
invokes the proposed metamodel, in chapter 5. Finally, to point out the applicability of

our SN Design Process, we use it in Chapter 6 to model a marine observatory case
study.

19

20

2
Model Driven Engineering

Reminders and Objectives

We detailed the requirements of SN Design in the previous chapter, and we identified
that Req 1 Improving Architectural Design, Req 3 Extensibility and Req 4

Heterogeneity Supported are not covered by all the presented approaches. In this
chapter, we focus on existing approaches that handle Req 1, Req 3 and Req 4. In
order to satisfy these requirements, we are looking for the Model Driven Engineering
(MDE) benefits and try to identify the obtained benefits from using such approach.

First, we give an overview of the MDE approach, to illustrate its capacity and to obtain
models with an high level of abstraction. Then, we present the remaining MDE

challenges related to our needs, in order to have an earlier validation of SN models.
Next, we present the separation of concerns which is a key support in MDE and for SN

development process. This support and our analysis lead us to think that MDE is a
relevant approach for SN development. Next, we present and analyze the standards and

tools of MDE. This analysis enables us to identify the relevant features of the tools
required by SN design. Finally, we identify the advantages of using MDE related to our

requirements of SN design.

2.1 MODEL DRIVEN ENGINEERING FUNDAMENTALS

Regarding our context and the achieved tooling analysis described previously, we present
in this chapter how Model Driven Engineering can contribute to improve the design of
the SN and the associated information system. The fundamental concepts of MDE are:
model, metamodel and model transformation [Par12][vdB09].

A Model is a simplified view of a system for a targeted concern. The goal of a
model is to describe and to improve the understanding of the system often on several
abstraction levels. A model selects interesting concepts on view points for a given context,
and provides a representation of the reality for a dedicated purpose [Par12][vdB09].

As we previously presented in chapter 1 (cf. section 1.1.2), to create models, the
SN designers need to use modeling languages. Therefore, we will elaborate on the main
existing modeling languages in the section 2.2.1. Modeling languages are defined by

21

2

2.2. MODEL DRIVEN ENGINEERING ASPECTS

semantics, an abstract syntax and a concrete syntax. There are several approaches
to formally define an abstract syntax of languages [KRV07]. In the modeling context,
metamodels are used to define the abstract syntax of modeling languages.

A metamodel is defined in [GKH07][OMG15] as: "a model that defines the lan-
guage for expressing a model". Metamodeling is a popular method that define the
abstract syntax of domain specific modeling language (DSML), because the language
designer can directly map the classes of a domain analysis to classes in the metamodel
[EIS]. Associations and inheritance of domain classes are also mapped to the lan-
guage definition. For this purpose, in order to define Modeling Languages such as UML
or DSML, we can adopt the metamodeling method [GKH07][OMG15][CEKS01][KBJV06].

Based on this metamodel definition for a specific domain of interest
[PMDC+07][Par12][vdB09], we can instantiate a large number of models that con-
form to this metamodel [Béz04][Par12].

Precisely, a metamodel is not a model of model and is not strictly a language. A
metamodel is a model that defines a language to define models, an explicit and concrete
definition of a language. In the four layers approach (Model0, Model1, Model2, Model3
in figure 2.1) promoted by OMG standard organization, each layer is conformed to the
upper layer, from the real system to reflexive layer (Model3 layer of the figure 2.1).

Model Transformations (MT) is a set of rules applied to parts of a metamodel ele-
ments [vdB09]. The transformation engine reads a source model, which must conform to
a source metamodel, and applies the rules defined in the transformation model to create
the target model that will conform to the target metamodel.

According to [FR07], we distinguish two main kinds of transformations: Endoge-
nous, where the source and models conform to the same metamodel such as UML Model
to another UML model [vdB09]; Exogenous, where the source and target are defined in
different metamodels such as UML Model to java program [vdB09].

2.2 MODEL DRIVEN ENGINEERING ASPECTS

Van Der Straeten and al have identified major aspects in MDE which are [VDSMVB09]:

1. Requirements Modeling: transferring the specified business requirements to func-
tional requirements that describe the functionality of the system (each role/func-
tion), using modeling languages. The created models may contain different types of
elements and relationships, such as functions, data, actors, association relations and
triggers.

2. Modeling Languages: necessary needed languages, methods and principles to design
specified metamodels in order to build domain specific modeling language (DSML),
and to provide specific concepts for designing complex systems [FR07].

22

CHAPTER 2. MODEL DRIVEN ENGINEERING

2

Figure 2.1: Layered Architecture of MDE, from [Sof15]

3. Model Heterogeneity and Quality: developing models by different stakeholders in
a distributed architecture, using multiple viewpoints that utilize possibly heteroge-
neous modeling languages. In other words, models could be built using a variety
of domain specific modeling languages [FR07]. Also, ensuring a correspondence be-
tween inconsistent quality aspects in and between viewpoints [Rec08][FR07].

4. Models Validation: verifying and testing the models and the code generated from
those models. This topic will be elaborated on and discussed in chapter 6.

5. Models Transformations: converting models from one type to another, from one
extension to another.

6. Run-time Models: executing models during analysis, design, implementation, and
deployment phases of development life cycle [FR07].

Related to SN design, we will focus on three aspects in the coming sections: Modeling
Language, Model Heterogeneity and Quality, and Model Transformation.

2.2.1 Modeling Languages

We distinguish two types of modeling languages: the ones that are used for general
purpose such as UML, which could be adopted in any domain; and Domain Specific

23

2

2.2. MODEL DRIVEN ENGINEERING ASPECTS

Modeling Language, which is used in specific domains [MT11]. To create an under-
standable model for a system in a specific domain, using a general purpose modeling
language, is difficult due to the complexity of describing the precise meaning of domain
concepts and inter-related concepts in the entire model. Consequently, general purpose
modeling languages such as UML, are not well-suited to cover some of the SN designer
requirements. However, Domain Specific Modeling Language (DSML) is specifically
designed for a technical domain or business domain, generally comprise a small number of
concepts, and they are used by a small number of specialist and expert users [VDKV00a].
These languages provide a targeted and effective solution to a restricted and specific set
of modeling problems [VDKV00b].

A large number of DSMLs with very different levels of abstraction exist. Various
studies, including the one documented in [KMB+96][GK03], ensure that specific lan-
guages allow specialists and experts to increase productivity and efficiency in dealing with
problems over the use of General Purpose Languages. In addition, DSML allows to have
specific components of a domain in the abstract syntax, concrete syntax, and semantics of
the modeling languages. These components could be ready to be used during the design
phase. Thereby, DSML facilitates the job of the domain experts such as the designers
[VDKV00b].

The definition of a language involves various kinds of activities that are complementary
to each other: (1) defining the abstract syntax of a language, and the corresponding
graphical representation of this abstract syntax which is the concrete syntax; (2) defining
the meaning of the language, the semantics [KRV07][HR04]. Defining the abstract syntax
consists in defining the concepts used in the modeling language. Defining the concrete
syntax, consists in defining the use of the concepts of the abstract syntax. Usually an
abstract and a concrete syntax are developed first, and then a semantics to define the
meaning of the language [KRV07].

To formalize the definition of the modeling language, the abstract syntax is de-
fined as a metamodel, as we have explained before. And also we add constraints relative
to the metamodel concepts and relationships between these concepts. The OCL (Object
Constraint Language) [CT07][Mar08] is used in this case to express the constraints in
declarative formulas. These OCL constraints are the relevant support to encode specific
domain constraints associated with the concepts of the DSML. In our case, we use
the OCL language to provide specification of our domain constraints before providing
implementation conforms to these specifications, see the section 5.1.3.2. The same
activities provide the definition of a DSML which is used to describe a domain system
with high level of abstraction [KBJV06]. These activities reflects the metamodeling
approach to define a DSML [KBJV06][CEKS01].

2.2.2 Model Heterogeneity and Quality

The use of viewpoint models in the process of building a complex software design phase,
become a standard fact [GR04]. The problem is to deal with heterogeneous models and
the need for integration at the model level, in order to get an integrated and coherent

24

CHAPTER 2. MODEL DRIVEN ENGINEERING

2

model. Thereby, at the system level, it is well accepted and understood that during the
development of a complex software system such as SN, an integration in and between
the created models is required. The components of complex (software and physical
components) systems interact together once the integration is applied. Some components
are bought, some are taken over from older systems, and some are newly developed.
The components (physical and logical) are configured and implemented with different
languages.

A complex system could be represented by sets of heterogeneous viewpoint models
and eventually different modeling languages are used [GR04]. The decomposition of the
design process into heterogeneous viewpoints models is similar to the decomposition of
the complex system into several modules. Thus, to have a unique and consistent model
for a complex system, a viewpoint model may also be a supplement to another one by
interrelate these two viewpoints. In this sense, we can have one consistent model by
having a coherency between the different created viewpoints models [BBD+00][BBDS99].

2.2.3 Models Transformation

A model transformation (MT) is a set of rules that describes and controls the transforma-
tion process of one model, in the source language into a target language [Par12][vdB09],
see. Figure 2.2. For example, we can give a model as input (source language) for a code
generator, in order to get a C++ code (desired language) as output. In this case, the
model transformation is named as model to text transformation. And it is possible to
have a transformation between two models that is named model to model transforma-
tion. Atlas Transformation Language (ATL) is a model transformation tool, a part of
the Eclipse Modeling project. It supports XMI Ecore models (format from the Eclipse
Modeling Framework) as input format and metamodels and generates the model resulting
from the processing to XMI [BJKV06].

Figure 2.2: Models Transformation

25

2

2.3. SEPARATION OF CONCERNS IN MODEL DRIVEN ENGINEERING

2.3 SEPARATION OF CONCERNS IN MODEL DRIVEN ENGINEER-
ING

As we see in the previous section, the system architecture description is based on several
concerns and viewpoints. One of the key feature of the MDE approaches is to provide
languages and tooling which defines viewpoints and views on the system. The modeling
framework must take into account this definition to provide a modeling approach based
on separation of concerns.

The separation of concerns appears in the different stages of the system life cycle,
and thus takes many forms. Separation of concerns may deal with the time separation of
each step of the development process from design to realization. Also, for each step of
the process, several viewpoints are needed to describe several concerns of the design, such
as for example the logical and physical architecture of the system.

In order to accomplish the separation of concerns process, several stakeholders and
viewpoints must be identified. As an example, Figure 2.3 shows the viewpoints according
to the purpose and the abstraction level. The top half of this figure shows the designing,
deciding and informing viewpoints which are relative to the enterprise architecture design,
analysis and dissemination. The stakeholders are identified relative to the view point
definition or exactly the stakeholders impose the defintiion of the view points. In our
context, we previously analyzed that our main concerned stakeholder is the designer, (cf.
section 1.1.3), and also several designer skills are necessary in the SN system context.

The bottom half of the figure 2.3 shows a simple view of the level of abstraction
from details to an overview. This part of the figure highlights also the coherence between
the levels of abstraction. This aspect is unavoidable to guarantee the consistency of the
system model on all the levels of abstraction. Several modeling languages are useful
and available to define the models of each view-points. We divide them into two main
categories: (1) for general purposes such as UML; (2) for specific domains such as DSML.
However, the use of generic languages to describe specific domains such as UML, does
not ensure the application of specific constraints during the process of the design phase.
Except if like UML, the language provides the capacity to be specialized or extended.

In this case, the semantics of the concepts is respected but in many cases the as-
sociated tooling remains with the look-and-feel of the host language. Due to the design
complexity of SN, many specific constraints should be respected by the SN designers
during the design phase, otherwise too many architectural errors may occur. To improve
the architectural design quality during the design phase, these constraints could be
introduced into DSML for different levels of abstraction. This improvement is performed
by preventing the architectural errors that may occur using DSML. In addition, by
adopting the use of DSMLs during the design phase, the created models at different
levels of abstraction can be effective [VDKV00a] [CM98]. For all these purposes, the use
of Domain Specific Modeling Language (DSML) for our context involves advantages to
apply separation of concerns and to ensure model consistency through domain constraints.

26

CHAPTER 2. MODEL DRIVEN ENGINEERING

2

Figure 2.3: Classification of Enterprise Architecture Viewpoints, from [THE16]

2.4 MODEL DRIVEN ENGINEERING STANDARDS AND TOOLS

Model Driven Architecture (MDA) is an approach proposed and supported by the Object
Management Group (OMG). This approach can be viewed as a specialization of the MDE
[OMG03]. Its goal is to develop the software design practices based on a model-centric
approach and not on code. The OMG has defined a typology of models and a set
of transformation relations that allow to go from the application requirements to the
implementation. In order to describe the defined models, OMG proposes to use Unified
Modeling Language (UML). MDA languages are based on a set of OMG standards
[OMG10], including UML (Unified Modeling Language), MOF (metaObject Facility) and
CWM (Common Warehouse Metamodel).

The MOF is an extensible model driven integration framework for describing, defining
and manipulating metamodels. We distinguish several tools that could be adopted for
MDE with different users’ concerns targets. Relying on the surveys for MDE tools
that are done in [HSM10][PMDC+07], we can consider that Eclipse IDE provides a
powerful environment which facilitates the modeling/metamodeling activities. The
Eclipse Modeling Framework (EMF), included in the IDE, is a framework developed by
the Eclipse Foundation as the foundation of the Modeling project [Ecl15]. The objectives
of this framework is to enable the automatic generation of a set of tools or to provide
facilities for model transformations and code generation.

27

2

2.5. MODEL DRIVEN ENGINEERING FOR SENSOR NETWORKS

2.5 MODEL DRIVEN ENGINEERING FOR SENSOR NETWORKS

Mainly, the approaches of SN system development focus on implementation issues,
and they rarely rely on software engineering methodology which supports their entire
development life cycle. However, various recent research approaches for developing SN
in [RKM02][MM07][BS08][SGV+06][BT10] deal with this problem, and most of these
approaches concentrate on the modeling of applications at different levels of abstraction
with subsequent code generation as in MDE. MDE can contribute to the SN context
by reducing the complexity of the design, by allowing designers to model their systems
at different abstraction levels. Also, it provides the designers an automatic model
transformations in order to convert the abstract models such as XMI files, into more
concrete ones such as C++ or Java program [LVCÁ+07][Sch06].

For this purpose, [LVCÁ+07] and [Sch06] showed the use of MDE to model SN life
cycle. In addition, a model driven performance engineering framework is proposed in
[BS10]. Hence, to model SN, it is useful for the SN designers to use and adopt the Model
Driven Engineering (MDE).

Regarding all the presented MDE features, the model transformation ability, the
definition of DSML using the meta modeling approach and the model heterogeneity; we
can extend existing design tool and then generate a new one that includes the new SN
elements and relationships of a new defined SN DSML like in [TTH11][AYG10]. This
means, it is realized, by extending the concepts of the initial metamodels (cf. section
5.1) by new components and constraints that are required by the model heterogeneity
aspect. Then, generating a new design tool that contains the concrete syntax. This
concrete syntax contains graphically the new added elements and relations in order to be
used by the SN designers during the design time. This new generated design tool will be
elaborated, in chapter 5.

By adopting MDE for developing SN, many facilities for the SN development pro-
cess could be provided. As MDE shifts the focus of software development from coding to
modeling, [LVCÁ+07] proposes a methodology for SN application development which is
to build a model of the target system using the SN DSL. The metamodel of this high level
of abstraction modeling language provides all the concepts and relationships commonly
used for specifying SN applications. This is a main advantage since specific SN concepts
and relationships are available to be used for the SN designer during the design phase
of the SN life cycle. Another provided advantage, is a new graphical modeling editor
which allows SN domain experts to graphically describe the structure and the behav-
ior of their systems that has been developed on the basis of this SN metamodel [LVCÁ+07].

The advantages of MDE that can be provided for SN [AGF05][Chi12] are:

1. Ability to have DSML for SN, SN elements and relationships by adopting the meta
modeling approach. Thus, we can introduce these elements and relationships inside
the concerned framework, in order to facilitate the modeling task of the SN designer.
And have design tools with concrete syntax that take into consideration the extended
and customized SN DSML.

28

CHAPTER 2. MODEL DRIVEN ENGINEERING

2

2. Diversity of SN elements and relationships within the same model from different
viewpoints and DSML by adopting the model heterogeneity aspect. This advantage
allows to have one consistent model that contains inter-relations between the different
viewpoints according to the concerned stakeholders.

3. Having generated code as output by adopting the model transformation aspect and
entering as input the created SN models. Code usable by a simulator could be
generated automatically using a code generator in order to verify the created models.
This advantage will be presented, in chapter 6.

In conclusion, MDE helps to facilitate the modeling task for the SN designers. This
helps appear while building separate models according to each viewpoint, and also while
building a consistent model from the different separately built models. In addition, MDE
can provide early validation support of the created models, thanks to the static model
checking and simulation code generation via model transformations.

2.6 DISCUSSION

Relying on the presented MDE benefits, MDE is expected to contribute toward satisfying
the following requirements:

1. Req 1 Improving Architectural Design: in order to model a SN model, specific
concepts in the IT domain are required. This domain is too wide and includes a large
number of complex concepts. It contains different types of devices with different op-
erating systems and different communication protocols, to exchange data between
these devices. For this purpose, we can avoid creating such complex concepts by
adopting a certain approach that allows the SN designer to reuse some existing spe-
cific IT concepts. Through the meta modeling approach for language definition (cf.
section 2.2.1), existing metamodels can be extended with new SN concepts, relation-
ships and constraints, to define the syntax and grammar of a SN specific DSML.
The architectural design errors that may be made by the SN designer, are avoided
by invoking the implementation of the constraints. These constraints are specified
in the OCL language and associated with metamodel defintion. For example, the
constraint which should be satisfied by the connection between a smart sensor and
a fusion server, can be added to the abstract syntax of the SN DSML.

2. Req 3 Extensibility: in order to model a SN model, the SN designer requires a
specific design tool that contains the existing specific IT concepts and the new ex-
tended SN concepts, relationships, and constraints. It is a complex and difficult task
to implement these new extended SN concepts in a design tool. For this purpose, we
can adopt a certain approach to facilitate the implementation of new SN concepts,
relationships, and constraints. Through the model transformation approach, the ex-
tensibility of the concepts appears by generating automatically a new design tool. It
allows the generation of a new design tool that contains the new added components,
relationships and constraints. For example, new elements or relationships with new
SN constraints, are available to be used by the SN designer during the design phase.

29

2

2.6. DISCUSSION

3. Req 4 Heterogeneity Supported: through the meta modeling approach for lan-
guage definition, we can have different components and relationship types that are
related to different contexts and activities. These extended components could be
software and hardware, and they could be related together such as Voice Detection
function, which is related to a Smart Sensor.

In conclusion, adding new extended concepts and constraints improve the architectural
design, enforcing the respect of the constraints, and the satisfaction of certain criteria
during the design phase. This prevents the SN designer from making errors that may
happen. Therefore, the meta modeling approach for language definition deals with the
Req 1 Improving Architectural Design. Using the model transformation approach,
the new specific extended concepts and relationships are generated automatically in
a new design tool. It allows the SN designer to use these specific SN concepts while
designing SN models. It also allows the creation of models from heterogeneous concepts
and relationships, and also the creation of model from several heterogeneous models
(different viewpoints). This is to ensure the ability for the SN designer to model complex
systems, and satisfy the Req 3 Extensibility and the Req 4 Heterogeneity Supported.

One of the key choice to apply an MDE approach, is to select the relevant Modeling
Language related to our SN domain. Regarding the application domain, general purpose
languages are too far from our dedicated concepts. Thus, the most relevant language
could be a DSML to have the appropriate concepts, and its associated tooling. How-
ever, DSML creation and its tooling is a huge task to cover all the purposes of SN systems.

Therefore, to optimize our development life cycle, we try to find a meet in a mid-
dle approach using a powerful DSML for systems as close as possible to SN. We can
apply a metamodel specialization to fit with accuracy to our SN domain. To target this
constraint, the next chapter presents modeling languages and their tooling related to
information systems based on a network infrastructure.

Synthesis

In this chapter, we presented aspects of Model Driven Engineering. Thus, between
several aspects we identified three: Modeling Languages, Model Heterogeneity and

Quality, and Model Transformations. Then, we justified our selection of adopting MDE.
Next, we identified the appropriate frameworks and tools that should be used during the
MDE approaches, EMF and ATL. Then, we extracted the advantages of adopting MDE
by supporting the viewpoint models. Thus, according to these advantages, we identified
that MDE satisfies Req 1 Improving Architectural Design, Req 3 Extensibility

and Req 4 Heterogeneity Supported. In order to optimize the Req 2 Multiple

Viewpoints related to our domain, we will present in the next chapter a Domain
Specific Modeling Language for information systems that relies on an MDE approach.

30

3 System Architecture
Modeling

Reminders and Objectives

In the previous chapter, we illustrated how MDE satisfies the requirements, Req 1,
Req 3 and Req 4. In order to improve the satisfaction of the Req 2 Multiple

Viewpoints, we try to identify the relevant and existing DSML. However, the Req 2

Multiple Viewpoints remain unsatisfied. In this chapter, we point out existing
approaches that handle Req 2 in the context of information systems. We consider
Enterprise Architecture (EA) frameworks and their capacities regarding the Req 2.

Hence, in relation to the needs of having practical framework for the developers of SN,
we seek to find a framework that relies on EA. Next, we compare common modeling
languages and EA modeling languages in order to verify how they can fit our needs.

Then, we study the advantages of EA for SN in order to check if we need to adopt EA
Frameworks for developing SN. At the end, we present how EA may contribute toward

satisfying Req 2 Multiple Viewpoints to argue the selection of the ArchiMate
framework as a baseline of our DSML.

3.1 MODELING CONTEXT

To design a SN system, different experts are required to be involved in the modeling phase
to cover the sensor integration in an IT system. Because as we defined previously our SN
systems the sensors are connected to dedicated algorithms and also IT infrastructure to
deliver high level services to the SN’s users.

The experts have different domains of experience in order to address the different
required viewpoints. For example, an expert in the business process, an expert in the
logical process and another one in the technical process, are required to design a SN
distributed architecture. Thus, the problematic of the modeling phase is to produce
relevant models according to the required viewpoints for distributed applications on
network infrastructure. Therefore, several viewpoints must be modeled to define and
choose mapping of software application on a given network architecture.

To build viewpoints, designers require a set of structured and domain specific con-
cepts. These concepts are provided mainly by frameworks. In order to handle the Req

2 Multiple Viewpoints, the designers need design tools that provide the ability to

31

3

3.2. ENTERPRISE ARCHITECTURE TYPES

define a model using different viewpoints. This capacity can be provided by Enterprise
Architecture (EA) frameworks which are based on several viewpoints on domain specific
concerns. Each viewpoint is defined by its own concepts and a framework aggregates the
viewpoints in a modeling language. For this purpose, we are interested to present and
study the existing EA frameworks, in order to select the most appropriate one.

3.2 ENTERPRISE ARCHITECTURE TYPES

[OLPW+08] defines EA as:"A coherent set of descriptions, covering a regulations-oriented,
design-oriented, and patterns-oriented perspective on an enterprise, which provides in-
dicators and controls that enable the informed governance of the enterprise’s evolution
and success". [JE14] proposes another definition of EA as: "The organizing logic for
business and IT infrastructure reflecting the integration and standardization requirements
of the firm’s operating model" . Hence, EA model is about dividing a model into several
inter-related models such as a model for business, and a model for IT. Each model is a
set of related elements and describes the activities and actions of a specific domain of
experience such as Business and IT.

According to [For99] and ISO 15704, there are two types of EA: (1) EA dealing
with the design of a system, called System Architecture; (2) EA dealing with the organi-
zation of the development and implementation of a project, called Enterprise-Reference
Projects. System Architecture describes the structure and the behavior of a system, such
as the information system of an enterprise. Enterprise-Reference Projects are frameworks
which target at structuring the required concepts and tasks to design and build complex
systems such SN. According to survey of EA in [CDV08], Enterprise-Reference Projects
are the most adopted and used to build such systems. For this purpose, we present some
of Enterprise Architecture Frameworks, in the next section.

3.3 ENTERPRISE ARCHITECTURE FRAMEWORKS

An Enterprise Architecture (EA) Framework is a set of models, principles, and methods
that are used for the implementation and use of EA [CM13]. The framework is built to
support the communication between the different stakeholders and different domains of
experience, within the same model, by providing specific relations [CM13]. In addition,
this framework allows describing a wide range of domains, it fits the problematic of our
SN modeling phase by [Chi12]: (1) producing relevant models according to the different
required domains of experience which is divided into different viewpoints; (2) providing
the ability to relate these models by specific relationships. Five major EA Frameworks can
provide the features listed above, which are: the Zachman Framework, the Open Group
Architecture Framework (TOGAF), Federal Enterprise Architecture Framework (FEAF)
and the Department of Defense Architecture Framework, and Gartner Framework [CM13].

Therefore, relying on previous studies in [Chi12][CM13][Sha06], the most useful
framework is TOGAF to: (1) build a model from different viewpoints; (2) interrelate the
business viewpoint to the technical one; (3) detail the technical viewpoint as it is required
to build complex systems such as SN.

32

CHAPTER 3. SYSTEM ARCHITECTURE MODELING

3

The Open Group Architecture Framework (TOGAF) defines, as part of its core, a
detailed method called Architecture Development Method (ADM) to design an enter-
prise architecture [TOG]. ADM defines a full life cycle process, and consists of the
following phases: planing, analysis, design, development, testing, deployment, and a
preliminary one. These phases should be performed in sequential order [BBL12], see.
Figure 3.1. In addition, TOGAF follows the strategy of simplifying the attachment of
the last phase (H) of an ADM cycle to the first phase (A) of the next cycle. This at-
tachment reflects that, ADM becomes an iterative and repeatable process [BBL12][Gro09].

This iteration feature satisfies the first requirement of the SN Design, Req 2 Im-

proving Architectural Design for detecting and minimizing architectural design errors
during the design phase (cf. section 1.3).

Figure 3.1: Architecture Development Method (ADM), from [Gro09]

33

3

3.4. DOMAIN SPECIFIC CONCEPTS IN ENTERPRISE ARCHITECTURE

FRAMEWORKS

3.4 DOMAIN SPECIFIC CONCEPTS IN ENTERPRISE ARCHITEC-
TURE FRAMEWORKS

In order to define models, the designers require modeling languages while their use of
frameworks. We distinguish some existent modeling languages such as UML and SysML
that are efficient to design general purpose applications using several viewpoints. General
purposes modeling languages contain concepts and relationships for general purposes
[MT11]. Thus, in case we need to define a model that is specific for a domain, specific
concepts and relationships are required to be introduced in the adopted modeling language.

According to our context, we define models for a specific domain which is the SN.
Therefore, in order to define such models, the designers require dedicated SN modeling
languages to be used while their use of the adopted frameworks such as TOGAF. This
due to the difficulties of having specific SN concepts in the general purpose modeling
languages. These concepts are the initial phase of building Domain Specific Modeling Lan-
guage (DSML) [KT08]. Furthermore, relying on [Chi12], to satisfy the requirements of the
modeling task in a specific domain, the adopted framework recommends the use of DSML.

Accordingly, and relying on our SN context, a SN DSML should be defined. This
definition should take into consideration the needs of SN designer. These needs are
concepts, relationships and constraints in the IT and SN domains such as servers, clients
and communication protocols to connect servers to clients, and exchange data between
them. Also, the designer needs to define a SN model from different viewpoints according
to different layers. Thus, to build such complex concepts and models is a hard and
difficult task to be performed. For this purpose, we can extend existing metamodels
that may contain the required complex concepts, and may allow to define a model from
different viewpoints according to different domains of experience. This extension is useful
as it enables the SN designer to reuse such concepts and features easily in the modeling
task and avoid their complex creation from scratch.

Hence, a main question can be asked here: What are the existing metamodels
that can be extended in order to define a SN DSML that satisfies the needs presented
above? the ideal answer on this question is to find an existing metamodel that contains
IT, SN concepts and enables the designer to build a SN model from different viewpoints.

We distinguish several SN metamodels such as SensorML [CCAN14], ThingML
[FMSB11], Deep Sea Observatory metamodel [ZCKA09], Heterogeneous Sensor Web
Node MetaModel [CWXG14], Wearable Markup Language (WML) [FDFL+14], SUM
MetaModel [Bur14] and GINPEX Sensor MetaModel [Hau14]. These SN metamodels are
already defined in previous researches and experiences. None of them contain structural,
behavioral and informational SN concepts. Also, they do not contain predefined IT
concepts, and they are not useful to define a model from different viewpoints. However,
the EA metamodels such as TOGAF 9 and ArchiMate rely on EA, so they fit the gap
presented of previous researches. Therefore, we elaborate TOGAF 9 and ArchiMate, in
the next sections.

34

CHAPTER 3. SYSTEM ARCHITECTURE MODELING

3

3.5 ENTERPRISE ARCHITECTURE MODELING LANGUAGES AND
METAMODELS

EA metamodels are the abstract syntax of EA modeling languages. Thus, to model
a complex system from several viewpoints by adopting EA Framework, the use of
EA Modeling Language is required [CKRS14][JLVB+04]. EA Modeling Language is a
conceptual or logical representation of EA with high abstraction level [Kim07].

ArchiMate and TOGAF 9 are EA Modeling Languages relying on the concepts de-
fined by EA Frameworks such as TOGAF [Nor03][QEJVS09][Gro09][CKR12]. These
EA Modeling Languages are defined by EA metamodels which precise definitions of
the concepts, relationships and constraints needed for creating models. We present and
discuss these two EA metamodels in the next sub sections: ArchiMate and TOGAF 9.

3.5.1 ArchiMate

ArchiMate decomposes the system design into three layers: Business, Appli-
cation, and Technology. It ensures an interoperability between these layers
[Nor03][QEJVS09][Gro09][Chi12]. We present these layers below:

1. Business layer: describes the actions, functions and the exchange between them that
are specified by the end-user.

2. Application layer: describes the way of performing actions, functions that are defined
in the business layer.

3. Technology layer: specifies the hardware components and communication protocols
that are required to perform the defined actions and functions in the application
layer.

Each layer of ArchiMate is defined by a metamodel. A metamodel defines by itself a
language for describing a Specific Domain of interest [PMDC+07]. Three metamodels are
defined according to each layer (Business, Application and Technology layers), meanwhile
they are interrelated by specific relationships [Gro09]. The ArchiMate Business Layer
metamodel is presented in figure 3.2. The ArchiMate Application Layer metamodel is
presented in figure 3.3. The ArchiMate Technology Layer metamodel is presented in
figure 3.4. Also, ArchiMate metamodels defines relationships in order to be used in the
three layers listed above. This metamodel is the abstract syntax of ArchiMate modeling
language.

ArchiMate has a concrete syntax, is an interface between the concepts and users [Fon07].
It may be textual or graphical, but is often a mix of both. The graphical interface of
the ArchiMate concepts in business layer and relations (cf. the abstract syntax, figure
3.2) is shown in the following figures: figure 3.5, figure 3.6. For example, the Business
Object (cf. figure 3.2) is displayed as an entity or class shape (cf. fourth image in the
first line of figure 3.5). Another example is the graphical displays of the relations (e.g.
association relationship is the third image in the first line of figure 3.6). Each concept of
ArchiMate’s concrete syntax metamodel has a meaning. This meaning is provided by a

35

3

3.5. ENTERPRISE ARCHITECTURE MODELING LANGUAGES AND METAMODELS

Figure 3.2: The ArchiMate Business Layer Meta Model, from [Gro09]

Figure 3.3: The ArchiMate Application Layer Meta Model, from [Gro09]

Figure 3.4: The ArchiMate Technology Layer Meta Model, from [Gro09]

36

CHAPTER 3. SYSTEM ARCHITECTURE MODELING

3

Figure 3.5: The Business ArchiMate Concrete Syntax, from [Gro09]

Figure 3.6: The ArchiMate Relationships Concrete Syntax, from [Gro09]

short description that is called semantics [Fon07][CGS12].

In addition, ArchiMate provides interoperability between the different views
[Gro09][Chi12]. ArchiMate determines the functioning relationships between con-
cepts of two contiguous layers [Nor03][QEJVS09][Gro09]. The relationships between
business layer and application layer are shown in figure 5.7. The relationships between
application layer and technology layer are shown in figure 3.8. According to our

Figure 3.7: The ArchiMate Business-Application alignment, from [Gro09]

modeling context presented previously (cf. section 3.1), the relevant models according
to the required viewpoints can be provided by relying on ArchiMate metamodel which
is divided into three layers: business, application, and technology. The interoperability
between ArchiMate layers presented previously in this section, is dedicated to manage
the relation between the different layers of ArchiMate such as Used by and Realization
relationships. These latter can allow the communication between the different created
models by exchanging information between them (see. Figures 5.7 and 3.8).

37

3

3.5. ENTERPRISE ARCHITECTURE MODELING LANGUAGES AND METAMODELS

Figure 3.8: The ArchiMate Application-Technology alignment, from [Gro09]

3.5.2 TOGAF 9

TOGAF 9 decomposes the system design into three layers, see. Figure 3.9: Business
Architecture, Information Systems Architecture (Information and Data), and Technology
Architecture. It ensures an interoperability between these layers [Gro09]. The layers of
TOGAF 9 are defined by a metamodel, where the latter defines by itself, a language
for describing a Specific Domain of interest [PMDC+07]. And the metamodel is defined
according to the three layers, meanwhile they are interrelated by specific relationships
[Gro09]. This metamodel and its layers are presented in Figure 3.9.

Figure 3.9: Layers of TOGAF 9 MetaModel, after [Gro09]

38

CHAPTER 3. SYSTEM ARCHITECTURE MODELING

3

3.6 REQUIREMENTS FOR SELECTING THE ENTERPRISE ARCHI-
TECTURE METAMODEL

As we discussed previously, in order to define a SN DSML, the ArchiMate or TOGAF
9 metamodel must be extended. For this purpose, we are interested in identifying the
requirements in order to select the appropriate metamodel:

1. Req 1 Several Viewpoints: Providing each designer the ability to work indepen-
dently in a viewpoint, in order to have his proper model according to his domain of
experience. This is to address the different viewpoints independently. For example,
a network designer and a software designer, each one designs in his independent
viewpoint where he is expert.

2. Req 2 Separate Logical and Physical View: Providing the software designer
the ability to define the logical models in a separate view that is specific to describe
only logical components. And, providing the network designer the ability to define
the physical models in another separate view that is specific to describe only physical
components. This is required since we are not interested to mix logical and physical
components and share several designers with different domains of experience within
the same viewpoint, so we need a separation between components.

3. Req 3 Consistency Supported: Providing each created model the ability to inter-
operate with other created models, in order to share the design of the same model.
This is, by relying on the interoperability between ArchiMate layers that is provided
by ArchiMate, the different created models can be inter-related together in order to
provide one consistent model from different viewpoints. For example, a function in
a model calls another function in another model.

4. Req 4 Specific IT Components: Providing the network designer, facilities in
the modeling phase, by using built-in IT components easily through the generated
design tool. For example, the designer can use devices such as clients or servers,
components, and relationships to connect devices together using specific relationships
such as communication path.

3.7 COMPARISON AMONG ENTERPRISE ARCHITECTURE META-
MODELS

We discuss a comparison between two EA metamodels, ArchiMate and TOGAF 9, where
one of them satisfies all the identified requirements, see. Figure 3.10:

1. Req 1: Several viewpoints are available in both metamodels TOGAF 9 and Archi-
Mate. They provide the ability to have several separated models according to dif-
ferent domains of experience.

2. Req 2: ArchiMate deals with the separation of logical and physical view, and it
never mixes them together within the same viewpoint. This due to the three sepa-
rated layers that are provided by ArchiMate: business, application and technology.
The application layer contains only the logical components, and the technology one

39

3

3.8. ENTERPRISE ARCHITECTURE FRAMEWORKS AND DESIGN TOOLS FOR

SENSOR NETWORKS

Figure 3.10: Comparison among ArchiMate and TOGAF 9 MetaModels

contains only the physical components. However, the application architecture in TO-
GAG 9 contains physical application components and the technology architecture in
TOGAG 9 contains logical technology components.

3. Req 3: ArchiMate and TOGAF 9 allow the inter-operation between different mod-
els. They provide the ability of having one consistent model that contains compo-
nents and relationships from different viewpoints at different layers.

4. Req 4: Specific IT Components are available in both metamodels TOGAF 9 and
ArchiMate. For example, ArchiMate has a node and a device, while TOGAF 9 has
physical technology component.

Relying on Figure 3.10, we notice that the TOGAF metamodel 9 and its layers are similar
to the ones of ArchiMate with some little differences. Thus, we ensure that ArchiMate
shares with TOGAF ADM interesting concepts, and both of them are compatible, so
they can be used together [Lan09] (see. Figure 3.11). Furthermore, ArchiMate provides
for the designers a concrete syntax, which is an interface between the concepts and these
designers [Fon07]. For this purpose, we can select ArchiMate to be the metamodel that
could be extended by new SN concepts, relationships and constraints.

Accordingly, in order to build SN, the designers can adopt TOGAF as a frame-
work and ArchiMate as a modeling language which relies on EA. However, we distinguish
several frameworks and design tools that are dedicated for building SN. Therefore, in
order to take the final decision concerning the framework and the modeling language that
should be used, we must discuss the existing SN frameworks and design tools. For this
purpose, these latter are elaborated, in the next section.

3.8 ENTERPRISE ARCHITECTURE FRAMEWORKS AND DESIGN
TOOLS FOR SENSOR NETWORKS

A framework is a set of functions and libraries to model applications from different
domains, like in [oS07]. Several frameworks provide design tools [oS07]. Design tools
enable the designers to create analysis and design models of the system to be built, and

40

CHAPTER 3. SYSTEM ARCHITECTURE MODELING

3

Figure 3.11: Compatibility between TOGAF ADM and ArchiMate, after [Gro09]

ensure consistency between models [KC90]. We differentiate design tools by their provided
features. For example, [TTH11] offers the following features: modeling application within
specific domains, preventing architectural errors by invoking the grammar of the modeling
language during the design time, verifying the created models, including concepts diver-
sity, and allowing to add new specific concepts. While, [AYG10] provides the features of
preventing errors, components diversity and addition of new specific concepts. However,
the features of preventing errors and components diversity are offered in [BJ02]. More
features and options are offered in [oS07], such as including graphical user interfaces, and
a built-in animated simulators, see. Figure 3.12 that shows the verifications of the created
models in a graphical way. In some cases like in [AKR13][AAK+14][AAKR14][CZ15],
the simulator of the design tool is external and it could be able to verify the created
models by adopting model transformations. Thus, the choice of the design framework is
a difficult task.

Some studies and recent researches have therefore focused on SN frameworks and
motivated to adopt them. These frameworks provide graphical common interfaces for
heterogeneous sensors and actuators, and ease their deployment and management [GK11].
Examples of these frameworks are: Global Sensor Networks (GSN) [AHS06], Sensor
Web Enablement (SWE) [FBK+11], SENSEI (recent European research project) [Luo13].
These frameworks are not useful for our context as in order to build SN, the designer
requires to adopt a framework and design tool that include a DSML that contains IT,
SN concepts and enables the designer to build a SN model from different viewpoints (cf.

41

3

3.9. DEVERTES: A DESIGN AND VERIFICATION FRAMEWORK FOR

TELECOMMUNICATION SERVICES

section 3.3).

Many frameworks are proposed in order to support the management of enterprise IT by
describing the systems from IT domain, using an EA modeling language [MHO11][Fra13]
such as the Enterprise Architecture Frameworks, TOGAF. These IT frameworks address
wide range of domains and technologies as they allow different stakeholders to describe
a system according to their different domains of experience. Thus, each stakeholder
creates his proper model according to his viewpoint. These different models could face
the difficulties of developing SN due to the diversity of technologies that are required
[GK11][YL13]. For example, connect set of different components (hardware and software)
within a network.

Therefore, TOGAF and ArchiMate can be adopted by the designers to build SN.
For this purpose, the designer can adopt the framework DeVerTeS developed in [All16].

Figure 3.12: Architecture of NesC@PAT, from [oS07][ZSL+11]

3.9 DEVERTES: A DESIGN AND VERIFICATION FRAMEWORK
FOR TELECOMMUNICATION SERVICES

One of the framework that can be used in our SN case is DeVerTeS, it relies on EA
and ArchiMate. DeVerTeS is a framework that reuses existing approaches which help
us to satisfy the requirements of the design environments [All16]. It relies on: (1) the
modeling language that is extended ArchiMate, represented by its metamodel through all
the activities of the framework; (2) the integration between the different tools, to perform
the design and verification activities.

This framework added a verification activity, in order to detect and identify the

42

CHAPTER 3. SYSTEM ARCHITECTURE MODELING

3

architectural design errors before the simulation of the system during the design phase,
taking into consideration the different viewpoints. An advantage appears in this frame-
work, which is not affecting the standards such as ArchiMate while adding activities and
features on DeVerTeS, so it keeps the advantages and benefits of existing and extended
standards such as extending the design activity by a verification one. Therefore, DeVerTeS
can be adopted to be used in different domains according to its mentioned features above.

3.10 DISCUSSION

Regarding the previous presented EA features for SN, the advantages of Archimate,
and the needs of introducing specific SN concepts into the EA Framework, extending
ArchiMate could be a suitable contribution in order to define Domain Specific Modeling
Language (DSML) for SN. This DSML should include new specific SN concepts and
constraints that are inherited from the initial ArchiMate metamodel concepts, like in
[TTH11][AYG10]. Consequently, this contribution could target the RQ 2 Modeling

Language Specialization, and it will be elaborated on in details, in chapter 5.

EA provides for the SN, the following benefits:

1. Achieving the right balance between IT effectiveness and activities on high abstract
level. It allows SN designers to create safely their models such as any data fusion
architecture or network topology as it ensures the needs of the created models for an
integrated IT strategy. SN designers are able to model any complex system without
worrying about the availability of IT components.

2. Reducing the deployment uncertainty of SN model since it is well-defined. This is
due to the existence of different layers and stakeholders, where each stakeholder is
an expert in his domain so he constructs his model in his layer. And due to the
interoperability between the different layers that inter-relate two or more different
models in separate ArchiMate layers in order to have one consistent model. Thus,
this model has minimum errors as it is well analyzed and detailed by different domain
experts at different layers.

Relying on the identified EA advantages, EA is expected to contribute toward satisfying
the Req 2 Multiple Viewpoints. EA provides the ability for the SN designers to
create several models according to their viewpoints and domain of experience (Business,
Application and Technology). Also, it provides the ability to inter-relate the different
models in order to have one overall and consistent model, that could be understood by
all the concerned designers.

In conclusion, of this part of the state of the art, we investigated the use of modeling
engineering approach for sensor networks, to address Req 1 Improving Architectural

Design, Req 3 Extensibility, and Req 4 Heterogeneity Supported based on the Req

2 Multiple Viewpoints modeling approach with an Entreprise Architecture Framework.
In order to improve the life cycle development of sensor networks, we state that we want
to introduce an early validation based on a simulation support. In the context of complex
systems, simulation is the most powerful approach to include early validation. This life

43

3

3.10. DISCUSSION

cycle phase must be supported by Req 5 Validation Tools, so the modeling tooling
must be connected automatically with the network infrastructure simulator.

Synthesis

In this chapter, we presented EA and its benefits. Thus, most of the existing and used
types of EA are frameworks. We presented some of EA frameworks, and we pointed out
that TOGAF is interesting since it follows a complete development method with having

as advantage its iteration feature. Relying on the compatibility between TOGAF and
ArchiMate by having common concepts, we adopted ArchiMate as modeling language.
Next, we introduced the domain specificity in EA framework by defining the need for a
domain specific modeling language (DSML). Specific concepts are needed to be used in

the modeling language, since the general existing concepts does not satisfy the
requirements of the sensor networks domain. At the end, we identified the advantages

of adopting EA framework to model SN. And according to these advantages, we
identified that EA answers Req 2 Multiple Viewpoints.

Nevertheless, EA are not dedicated to sensor networks. And the modeling tooling for EA
is not easily connected with network simulators. So, to go beyond this state of the art,
we suggest to improve the current approaches to satisfy our requirements, by extending
the language of the EA modeling tooling and providing early validation, supported by

introducing a model transformation towards the simulator tooling like NS-3.
Accordingly, we may adopt and use some of previous works that can be complemented

by our contribution as [CKR12] and [All16]. [CKR12] extended an EA modeling
language to define a DSML for telecommunication domain in order to enrich in the

design activity. Thus, by relying on [CKR12] and EA and standards, [All16] added a
verification design activity in order to built DeVerTeS. Therefore, we can select

DeVerTeS to be the framework that must be adopted in order to apply our contribution.
For this purpose, we use DeVerTeS then develop it for the Marine Observatory domain

in the same manner.
Moreover, the next chapters which describe our contribution, detail the adopted life
cycle based on the specialization and the improvement of EA language and tooling.

44

PART II : CONTRIBUTIONS

We propose, in Chapter 4, a design process for sen-
sor networks, inspired from the several software devel-
opment processes. To help designing the sensor net-
works, we propose a Domain Specific Modeling Lan-
guage which is dedicated to the Sensor Networks de-
signers, in Chapter 5. The tooling associated to this
DSML definition is based on MDE technologies and is
presented in Chapter 5. An application of the proposed
Sensor Networks design process and tools on a com-
plete case study, is provided in Chapter 6.

3

Our Contribution

Our contribution is based on a standard approach and tooling relative to an Entreprise
Architecture Framework. Also our work complements the previous works: (1) languages

and modeling from [Chi12]; (2) DeVerTeS, a framework developed by [All16].
[Chi12] extended ArchiMate modeling language to enrich the design phase of a system

for a specific domain, the telecommunication infrastructure.
[All16] extended the design activity to introduce the early verification activity in the

framework (DeVerTeS) by developing a model compiler to perform a simulation based
on the models, (cf. section 3.9).

Our contribution is based on a standard approach and tooling relative to an Entreprise
Architecture Framework. Also our work complements the previous works: (1) languages

and modeling from [Chi12]; (2) DeVerTeS, a framework developed by [All16].
[Chi12] extended ArchiMate modeling language to enrich the design phase of a system

for a specific domain, the telecommunication infrastructure.
[All16] extended the design activity to introduce the early verification activity in the

framework (DeVerTeS) by developing a model compiler to perform a simulation based
on the models, (cf. section 3.9).

As we are involved in Sensor Networks and specificaly in Marine Observatory domain,
we extend the previous works that are integrated in ArchiMate modeling language by
adding new required specific MO concepts, relationships and constraints. This work

enriches the use of ArchiMate in the design phase for SN domain.
Also, we reuse DeVerTeS to benefit from this extension to simulate the created MO

models. So the main purpose of our work is to improve the development process of the
SN system by providing an early validation phase based on the use of models and
simulation results. In order to perform this improvement of the SN development

process, we propose the following: (1) defining a SN design process; (2) defining a SN
DSML; (3) defining a SN DSML tooling; (4) providing simulation and analysis of SN

defined models.

47

48

4 Sensor Networks Design
Process

Reminders and Objectives

In this chapter, we present and discuss several software development processes to
inspire the common features from them. Next, we select the common tasks or

approaches that can be a part of the proposed SN design process. Then, we propose a
SN design process that is composed of three tasks: modeling the SN from the

stakeholders’ point of view Task 1 Modeling, ensuring consistency of models Task 2

Ensuring Consistency, and validating the created models Task 3 Validating. Next,
we elaborate how to perform these tasks while using the proposed tooling, in an MDE

context. Then, we elaborate the content of the proposed tasks related to our SN domain,
in order to check if the proposed process fit with the requirements of SN designer.

Finally, we present our supports toward the three proposed tasks.

4.1 CONTEXT

In order to improve the design phase of the SN life cycle, we presented and discussed
several approaches, tools and modeling languages, in the previous chapters. These
chapters show how we selected the DeVerTeS framework [All16], based on TOGAF, to
be the adopted enterprise architecture (EA) framework. TOGAF contains several related
phases that are used for different domains and large scope. According to our SN context,
we only use from TOGAF the three following phases [Gro09]: Information Systems
Architectures, Technology Architecture, Opportunities and Solutions. Thus, the scope of
our contribution is reduced by adopting only three of nine phases from TOGAF. Also, we
selected Model Driven Engineering (MDE) approach and ArchiMate EA modeling lan-
guage that are relevant to use for SN design aspect in the three selected phases of TOGAF.

The MDE context provides the capacity of proposing an efficient tooling to model
and validate the SN system architecture. However, the purpose is to answer on the
following question: How to use this tooling before building it. In order to answer this
question, a set of sequential tasks must be performed. These tasks form a process to
design a SN. For this purpose, we must select and/or propose a process to improve the
SN design phase. In order to fulfill that, we realize and present the following points:

1. First we present briefly and discuss several software development processes (cf. sec-
tion 4.2).

49

4

4.2. SOFTWARE DEVELOPMENT PROCESSES

2. We select the common tasks or approaches that can be a part of the proposed SN
design process (cf. section 4.3).

3. We elaborate how to perform these tasks or the entire proposed process while using
the proposed tooling, in an MDE context (cf. section 4.4).

4. We elaborate the content of the proposed tasks related to our SN domain (cf. section
4.5).

Therefore, we define a process to provide guidelines to use our proposed tooling. Thus,
this process answers the following question: How to use and improve modeling and
simulation to fit early validation goal for SN. This question reflects the following specific
question: How to model SN with ArchiMate. In order to reply to this question, we must
specialize ArchiMate for SN. And in order to fulfill that, we can extend ArchiMate by
adding new SN concepts to build a metamodel for SN. Then, a customized tooling is
ready to be used for creating specific SN models. This generates the following question:
How to use this customized tooling to model SN. In order to answer this question, we
elaborate the procedure of using the three layers of ArchiMate while creating SN models.

Next, we must answer the following question: How to validate the SN models.
The simulation of a dedicated code is the answer to this question. This generates the
following question: how to improve the simulation phase. By generating a specific code
to be used while the simulation phase, is the answer to this question. This accelerates the
simulation and the development phases as the code is generated automatically without
manual intervention from the programmers. Also, this ensures that the code to be
simulated is coherent and consistent with the defined SN models.

4.2 SOFTWARE DEVELOPMENT PROCESSES

We briefly present some development process to provide context of the task identification
of our system development process. The software development process is a set of phases
[Jac94]. These phases are steps for specifying, designing, developing, testing, and main-
taining complex software such as Sensor Networks [AB15]. We distinguish several software
development processes, such as: V-shaped, Spiral, and Agile [RP08][AB15][Ras][Som04].

1. V-shaped: it is a sequential path of execution of processes. Each phase must be
completed before the next phase begins. Before development is started, a system
test plan is created. The test plan focuses on meeting the functionality specied in the
requirements gathering. The high-level design phase focuses on system architecture
and design. An integration test plan is created in this phase as well, in order to test
the pieces of the software system’s ability to work together. The low-level design
phase is where the actual software components are designed, and unit tests are
created in this phase as well. The implementation phase is where all coding takes
place. Once coding is complete, the path of execution continues up the right side of
the V, where the previously developed test plans, are now put to use [Lew05].

2. Spiral: the main feature of this process is dividing a project into smaller mod-
ules. In this process, the development team starts with a small set of requirements

50

CHAPTER 4. SENSOR NETWORKS DESIGN PROCESS

4

and then cover these requirements (except installation and maintenance phases)
[Hur14][TG11] [MG10]. The team develops a small module according to the small
set of requirements. Then, the concatenation of the different small modules provides
the final running system.

3. Agile Methods: these methods satisfy the customer needs by delivering system-
atically new releases of software. And they adopt the collaboration between the
different stakeholders such as client, designers and testers in order to produce a con-
sistent product. These stakeholders fix the software product on each phase of the
development process. Once the current requirements are covered, a new version of
the software can be built and delivered to the customer. We can iterate this action
while the stakeholders find errors. Furthermore, these methods can be adopted to
build a complex system with high number of heterogeneous hardware and software
components [KG12][Som04].

This short presentation aims to highlight that iterative development processes are suitable
to build a software system incrementally with a small set of requirements for each itera-
tion. Also, the Agile processes emphasis on collaboration between stakeholders to build a
software product for each iteration. So we want use this identified features to improve the
SN development process in our context.

4.3 SELECTED AND PROPOSED TASKS OF THE SENSOR NET-
WORKS DESIGN PROCESS

4.3.1 Concept and Challenges of Sensor Networks Design Phase

As the SN are not only a simple SN, they are enterprises as they deploy and use high
number of interconnected heterogeneous components (software and hardware) (cf. sec-
tion 1.2), a system development process is required to be performed to implement such SN.

The software development process of a complex system should focus on the separa-
tion of concerns and their descriptions [Jac94]. These descriptions are the analysis of a
system requirements within a specific context. As we presented previously in this docu-
ment, we are interested in the design phase (cf. section 1.1.2). Thereby, in order to define
this phase, three main questions must be answered: (1) what should be described; (2) how
to model the relevant system architecture; (3) how to validate the defined models. Thus,
in relation with designing SN, the questions could mean the following: (1) what are the
selected concepts to be used and described relative to SN domain; (2) what is the process
to describe these concepts and their interactions; (3) how do we detect architectural design
errors in the produced consistent model. The answer on the first question is: the extended
MO metamodel in section 5.1.3. And, for the second question, the answer is: these actors
and functions are related together by using specific and general purpose relationships
while respecting the constraints of the SN domains. And, for the third question, the
answer is: the simulation of the generated code using a network simulator (cf. section 6.4).

According to the answer on the first question, different types and high number of
components (software and hardware) are the selected concepts to be used while defining

51

4

4.3. SELECTED AND PROPOSED TASKS OF THE SENSOR NETWORKS DESIGN

PROCESS

SN. Therefore, it is difficult to define a model that requires the intervention of different
domain of experiences (experts), such as domain expert, software designer and network
designer. Regarding the answer on the second question, we describe an heterogeneity
in the types of SN components that must be constrain regarding our SN context.
These constraints should take into consideration: (1) the large number of specific SN
components; (2) interactions and integrations between the software/hardware components
and the core network. So, the SN designers take a lot of time to perform their tasks
according their different viewpoints. According to the answer on the third question, an
automatic generated code is ready to be simulated without manual intervention. So, it is
a complex task to be performed.

4.3.2 Requirements for Selecting or Proposing Tasks of the Sensor
Networks Design Process

Accordingly, we identify the next requirements:

• Requirement 1 Viewpoints Consistency: Providing each designer the capacity
to perform his tasks in an independent viewpoint according to his domain of experi-
ence. This motivates the need of designing a SN on different abstraction levels using
different layers according to different viewpoints. Thus, the designers can define one
consistent SN model that contains different viewpoints.

• Requirement 2 Efficiency: Providing each designer the ability to perform his
tasks rapidly in the design phase. For example, he can define models or fix rapidly
the detected architectural design errors on the design phase. This affects positively
the time consuming to build a new release of the SN model upon defining a new
model or detecting such errors in a defined model.

• Requirement 3 Output Validity: Providing each designer the ability to validate
structural architecture constraints and algorithm deployment on network infrastruc-
ture. This validation is performed on the design phase at system level in order to
produce a SN model that contains no architectural design errors. Thus, the archi-
tectural SN model can be early validated.

• Requirement 4 Large Size: Providing each designer the ability to create a SN
model that contains a large number of components, relationships between compo-
nents and layers such as association and used by relationships, and communication
paths. For instance, this helps the designer to create SN models which can be based
on any type of fusion architectures such as distributed.

4.3.3 Analyzing the Relation between the Tasks of the Software Devel-
opment Processes and the Identified Requirements

• Requirement 1 Viewpoints Consistency: none of these three processes deal
with this requirement. The designers must intervene and perform their tasks at

52

CHAPTER 4. SENSOR NETWORKS DESIGN PROCESS

4

any layer in the design phase. For example, they can create models on different
viewpoints or enhance defined models by fixing the architectural design errors on
each level of the design phase and on different layers of ArchiMate.

• Requirement 2 Efficiency: the three processes deal with this requirement. The
designers can perform their tasks rapidly. For example, the designers can detect
rapidly the architectural design errors in order to fix them. This rapidity reduces
the time needed to perform the entire software development process.

• Requirement 3 Output Validity: the three processes deal with this requirement.
All of them produce valid outputs such as a valid SN model. This due to the possi-
bility of multiple iteration of each phase and within the same phase. For example,
this iteration is possible on each error detection at any phase or any layer within the
same phase.

• Requirement 4 Large Size: the three processes deal with this requirement. The
designers can create a model with a large number of components, relationships and
communications. For example, a SN model with a Distributed Fusion Architecture.

Consequently, the three processes fit three of the identified requirements, and they do
not fit the first one. So, all the presented processes have the same shared properties
and features. For example, the most central common concepts in these three processes
are roles and tasks [ZYPEQ10]. Roles refer to the essential skills needed by teams in
order to perform tasks such as model creation. These teams collaborate and coordinate
together in the software development process in order to produce one integrated output
such as SN model [SOV+11][Ale12]. Thus, tasks refer to a unit of work performed by
roles. Another example about these features is that, all of these processes adopt the
iteration approach in order to provide an early validation of the produced software by
fixing rapidly the detected architectural design errors. However, they still have different
advantages and disadvantages according to the type of software that should be realized.
The main advantage of these processes is the flexibility of iterative tasks within the same
process in order to build a valid created model [ZYPEQ10]. This advantage allows to
repeat each task many times in the same life cycle, phase or design process that provides
non adequate performances by simulation of the designed model. Therefore, the main
feature of the three processes emphasize an iteration approach to improve the design. So,
we inspire from these three processes the approach that provides an early validation of the
defined models, which is the iteration. This iterative approach can be applied on a set of
relevant tasks that can be proposed according to our SN context. For this purpose and
in order to satisfy "Viewpoints Consistency" requirement, we propose several appropriate
tasks to design a SN, in the next section.

4.3.4 Proposed Tasks of the Sensor Networks Design Process

We propose a process to design a SN which is divided into three tasks (see. Figure
4.1): Modeling, Ensuring Consistency and Validating. These proposed tasks should be
performed through the role of SN designer. We define these tasks, in the next paragraph:

53

4

4.3. SELECTED AND PROPOSED TASKS OF THE SENSOR NETWORKS DESIGN

PROCESS

• Task 1 Modeling: modeling the SN from several stakeholders point of view. Each
designer describes the SN from his point of view, according to his concern and
domain of experience. This due to the SN that require different design experts for
three ArchiMate layers: business, application and technology (cf. the "Modeling"
task in Figure 4.1).

• Task 2 Ensuring Consistency: Once the models are created by different stake-
holders such as design experts, an interoperability between these models is required
in order to have one consistent SN model. This interoperability is performed be-
tween the SN model that is created on the business layer and the one created on the
application layer. Also, it can be performed between the one created on the applica-
tion layer and the other created on technology layer (cf. the "Ensuring Consistency"
task in Figure 4.1).

• Task 3 Validating: During the design of a complex system, the architectural model
must be evaluated and occasionally updated by the SN designer in order to detect
the architectural design errors. This validation is performed on the consistent model
that contains concepts from the three ArchiMate layers, and inter-relationships to
relate two separate layers (cf. the "Validating" task in Figure 4.1). For this purpose,
an early validation of the consistent produced model is required in order to detect
such errors as soon as possible. This is to avoid the errors in the later development
phases.

In addition, we propose to apply on these three proposed tasks, the selected iteration
approach that is inspired in the previous section. This approach is applied by re-performing
sequentially the three proposed tasks of the SN design process while errors are existing in
the defined model (cf. the "Iteration" approach in Figure 4.1). Thus, in order to implement
these tasks, we perform them in an Model Driven Engineering (MDE) context, in the next
section.

Figure 4.1: Proposed Tasks and Approaches of Sensor Networks Design Process

54

CHAPTER 4. SENSOR NETWORKS DESIGN PROCESS

4

4.4 THE PROPOSED SENSOR NETWORKS DESIGN PROCESS
AND MODEL DRIVEN ENGINEERING

A tool can be used in one or more processes, and each process can be used with one or
more tools. This means, by having a process we can define one more tool to be used,
and by having a tool we can define one or more processes to be used. Therefore, we can
exploit this aspect in our case, as we propose to define a specific SN tool. So, we define
a SN design process. In order to implement such process, we adopt and use MDE. So, a
question must be asked here: Why can MDE be used in this context?

We use MDE due to its characteristics, it provides the ability to define new tool-
ing by using the metamodel and model transformation (see. Figure 4.2). And it provides
the ability to support a development process. More specifically, by focusing on the
metammodel, MDE allows us to define specific concepts and relationships that will be
used during the proposed "Modeling" task. Thanks to the metamodel, we are able to define
rules of coherence that is used during the proposed "Ensuring Consistency" task. Then, by
focusing on the model transformation, MDE allows us to generate code that is used dur-
ing the proposed "Validating" task. This last is performed by simulating the generate code.

Consequently, MDE is used to improve the proposed SN design process by proposing a
SN metamodel associated with its consistency rules, and by using model transformation
to produce the simulation source code. Thus, MDE is used to support the proposed tasks
of the SN design process.

Figure 4.2: Features and Aspects of Model Driven Engineering

4.5 CONTENT OF THE PROPOSED TASKS OF THE SENSOR NET-
WORKS DESIGN PROCESS

Accordingly, and in relation with our previous selection for ArchiMate in chapter three
to be adopted as the modeling language while performing the design phase, the proposed
tasks are performed by the SN designers using ArchiMate (cf. all the rectangles in
Figure 4.3 except the gray one) such as "Define the Model from his Viewpoint" task and
"Coordinate with other Designer" task.

55

4

4.5. CONTENT OF THE PROPOSED TASKS OF THE SENSOR NETWORKS DESIGN

PROCESS

The different designers perform the tasks of creating several separated SN models
according to the different ArchiMate layers. As ArchiMate relies on EA, so they can
create three models based respectively on ArchiMate’s business layer, application layer
and technology layer (see. Figure 4.3). Thus, to perform the modeling task by the
designers, we require an expert designer for each ArchiMate layer.

Then, they must establish relationships between these different models that are
created by different experts. Each relationship is specific to relate two different concepts
(functions for example) that are located in two different models according to two different
layers such as business and application ArchiMate layers (cf. the blue lines and arrows
between the three layers in Figure 4.3).

In order to perform this inter-connection between models, the designer should be
expert by selecting the appropriate relationship that allows the connection between the
two selected different concepts. The goal of the use of these relationships is to have one
consistent model built from several different viewpoints (cf. the gray rectangle in the
technology layer in Figure 4.3).

In case they detect architectural inconsistencies in the models during this intercon-
nection, they can iterate on the concerned models. At the end, the designers can validate
the produced consistent model by a validation tooling such as a network simulator. In
our case, if the validation fails so the network performances are not reached, the designers
iterate and fix the detected errors wherever in the adopted design process (cf. the red
lines and arrows in Figure 4.3).

In order to describe the entire SN design process, we should describe the content
of the different proposed tasks according to each viewpoint and the interoperability
between viewpoints, then the validation of the produced model. The designer begins
by creating and describing a model. He adds information to this model according to
his concerns, from his point of view. This can be performed by adopting the first
proposed task, Task 1 Modeling. His modeling may be influenced by constraints
and knowledge coming from other viewpoints in the process. These constraints may
result from coordination with designers from other viewpoints, from different background
and domains of experience. This coordination may allow the designers to discover
what is the criteria to relate two separate models from different viewpoints and how to
relate them, and through what. For example, to relate two different models, a specific
relationship should be created between two specific components, each component is
in a different model such as when we relate a business function from a business layer
viewpoint to an application function from an application layer viewpoint. This can
be performed by adopting the second proposed task, Task 2 Ensuring Consis-

tency. Once, we create the first version of the model, the designer might invoke an
automatic metamodel conformance tooling. This can be performed by adopting the
third proposed task, Task 3 Validating. According to the obtained results, he might
change the models, then test it again. This change could be done through modifica-
tions or enhancements of any existing task in the different viewpoints. This can be

56

CHAPTER 4. SENSOR NETWORKS DESIGN PROCESS

4

performed by adopting the proposed iteration action between the different proposed tasks.

Thereby, this iteration continues until the produced model reaches a satisfactory
state by having no architectural design errors. At the end of the design process, the
final designed and validated SN model will be ready to be developed and to enter the
deployment phase.

In order to elaborate our proposed tasks of the SN design process, our contribu-
tions for each task are presented in the next paragraphs in this section.

Figure 4.3: Proposed Tasks and Approaches to be Performed by the Different Sensor
Networks Designers using ArchiMate Layers

4.5.1 Modeling

Our proposal for Task 1 Modeling is to integrate DSML for each domain of experience
into the process of SN Design. In this way, all the concerned designers can model exploiting
the benefits of DSML. More specifically, what meets the following requirements for the
SN:

• Req 1 Improving Architectural Design: DSML aims to define concepts, con-
straints, and the necessary rules that are required for a specific domain such as SN.
In order to define and cover the most needed components and relationships to model
a SN system, we can analyze all the possible execution scenario of SN system with
different fusion architecture (Centralized, Hierarchical, Distributed) (cf. section 1.5).

57

4

4.5. CONTENT OF THE PROPOSED TASKS OF THE SENSOR NETWORKS DESIGN

PROCESS

For example, after this analysis we can find criteria that are required to be respected
during the SN run-time such as the communication rate of the Distributed Fusion
Architecture (DFA).

• Req 3 Extensibility: By adopting the metamodeling approach, the DSML are
defined according to the different ArchiMate viewpoints and layers, and the new
added required SN concepts are implemented in the generated design tool. These
concepts can be displayed as new components, actors, functions and relationships in
the palette of generated design tool with their icons. Thus, these new icons can be
used by the designers during the proposed modeling task.

• Req 4 Heterogeneity Supported: DSML could comprise and describe different
types of components (hardware and software) and constraints such as communication
types that are related to different contexts and domains. Thus, during the design
phase, the designer is able to create a complex model that contains different types
of relationships that connect different types of components and functions.

In order to use specific concepts of DSML while performing the task of modeling of a
viewpoint, we propose to customize ArchiMate to include specific domain concepts such
as sensors, fusion servers. For this purpose, we create ArchiMO, a DSML for Marine
Observatory.

4.5.2 Ensuring Consistency

Our proposal for Task 2 Ensuring Consistency is to use the built-in ArchiMate
relationships that are specific to relate two separate models from different layers. These
relationships connect these two separate models through two components such as actors
and functions where each one is in a separate model. These two components are selected
to be connected by the experts according to each layer. This reflects the concept of
interoperability between several models at different layers. This interoperability is
provided by ArchiMate, and it can be performed by allowing the exchange of information
between several separate models from different layers through the built-in ArchiMate
relationships such as Used by relationship.

Hence, to perform Task 2 Ensuring Consistency, we propose to rely on the
interoperability of ArchiMate metamodels by using the relationships that manage the
inter-operations between models. The built-in interoperability in ArchiMate metamodel
also becomes a built-in interoperability in the new extended DSMLs. This interoperability
is provided by the EA frameworks which could be established automatically between the
different layers/viewpoints by using built-in ArchiMate inter-relations. So, ArchiMate
provides the ability to produce one consistent model.

Consequently, this meets the Req 2 Multiple Viewpoints SN requirement. This
is due to the different viewpoints and these inter-relations that are available for stakehold-
ers according to their specialties and domains of experience such as the domain expert,
software designer and network designer (see. Figure 4.3).

58

CHAPTER 4. SENSOR NETWORKS DESIGN PROCESS

4

4.5.3 Validating

Validation is an assurance task to confirm that the specified requirements have been
fulfilled [NAS15]. These requirements are presented in a model that contains physical and
conceptual entities and relationships between these entities. The latter, relationships, and
their exchange of information, describe the possible required business processes. Once the
model is created by using the extended ArchiMate MetaModel (DSML), its validation is
required. This validation ensures that the model has no architectural design errors in and
between the different concerned viewpoints.

As we adopt and use MDE, we use its model transformation aspect (cf. section
2.2.3). This latter provides the ability to generate code from a model by using code
generator. This code generator takes a model as input, and provides a simulation code au-
tomatically as output. Thus, we can execute this output on a simulator in order to ensure
the validity of the generated code. For this purpose, we can validate a model by simulation.

Next, in case we got architectural errors after the model simulation, we can iterate
to modify and adjust the needs in Task 1 Modeling or in Task 2 Ensuring Consis-

tency (cf. the red lines and arrows in Figure 4.1). This scenario can be repeated using
the iteration approach until we have acceptable simulation results in the create models.

In conclusion, our proposal for Task 3 Validation is to simulate the defined models
during the design phase. The errors that may be made by the designer while defining SN
models could be detected before continuing the SN life cycle. Thus, by performing Task

3 Validation, our created SN model could be early validated before the implementation
phase by finding, then fixing the architectural errors [ABB+14][MSB11]. Consequently,
this meets the Req 5 Validation Tools Supported SN requirement.

4.6 DISCUSSION

We support the proposed Task 1 Modeling by defining DSML for SN or by relying on
a previous defined DSML [CKRS14]. In order to achieve this task, we can profit from
the existing modeling languages ArchiMate, by extending their concepts to obtain our
required DSML.

Next, we support Task 2 Ensuring Consistency by relying on an automatic in-
teroperability between DSML at the semantic levels. This could be ensured as: (1)
ArchiMate provides specific relationships to manage the link between business, applica-
tion, and technology layers; (2) we extend ArchiMate metamodels to define new DSML,
so this last contains the same benefits of ArchiMate, as we are not manipulating concepts
and rules of ArchiMate metamodels.

Then, we support Task 3 Validation by selecting a simulator and adopting it in
order to validate the created SN models. This early validation activity/step helps the
designers by preventing architectural design errors in the later stages such as deployment
stage where the maintenance operations are more costly.

59

4

4.6. DISCUSSION

Synthesis

In this chapter, we inspired the iteration approach to be performed from the three
presented software development approach. Next, we proposed to apply the iteration

approach on the three proposed tasks of the proposed SN design process: modeling the
SN from the stakeholders’ point of view Task 1 Modeling, ensuring consistency of
models Task 2 Ensuring Consistency, and validating the created models Task 3

Validating. After, we elaborated that MDE is interesting to be used while performing
our proposed design process, and to be used while building our proposed tools. Next, we

elaborate the content of the three proposed tasks related to our SN domain, and we
argue that our proposed process fit with the requirements of SN designer. Then, to

support Task 1 Modeling, we proposed to integrate DSML into the SN design process.
This proposed DSML will be elaborated on, in Chapter 5. To support Task 2

Ensuring Consistency, we proposed to adopt an existing approach, the
interoperability between the different layers of the selected modeling language,

ArchiMate. This interoperability will be elaborated on, in Chapter 5. To support Task

3 Validating, we proposed the possibility of simulating models using simulators. This
simulation scenario will be elaborated on, in chapter 6.

60

5
Domain Specific Modeling

Languages and Design
Tools for Sensor Networks

Design

Reminders and Objectives

In this chapter, we propose a DSML, ArchiMO as an extension of the ArchiMate EA,
to deal with Task 1 Modeling that is proposed in the previous chapter. To enable the
use of the created DSML during the design process, we propose a design tool for Marine

Observatory (MO). To deal with Task 2 Ensuring Consistency between the
suggested DSMLs, predefined relationships are used and extended. Task 3 Validation

of the DSML models is handled through the use of a network simulator. Then, we
discuss the advantages of our contributions, and we analyze how they satisfy our SN

requirements and research questions.
Several parts of this chapter are published in [AAKR14], [AAK+14], [AAK+15] and

[CGA15].

5.1 ARCHIMO DEFINITION

Domain Specific Modeling Language (DSML) is proposed to enable designers to specify
their needs and their solutions using domain specific concepts [DBST10]. In our case,
we define a DSML, ArchiMO, that is customized for designers for the Sensor Networks
domain based on different domains of experience and backgrounds of the system design.
In our context, we apply our DSML to Marine Observatory (MO) domain. And in order to
define this DSML, we should take into consideration the specific MO components. Thus,
like any DSML, ArchiMO comprises three parts: the abstract syntax, the concrete syntax,
and the semantics [CGS12]. These parts are detailed in the next sections.

5.1.1 Marine Observatory Context

As we want to first apply our DSML to the Marine Observatory domain, we focus our con-
siderations on this domain. So ArchiMO abstract syntax must define MO concepts, their
relationships and constraints by taking into consideration the underwater environmental
constraints. In order to define these concepts, we should know on what the MO is based
such as [LLL09][?]: (1) what is the adopted approach to localize and monitor underwater
moving objects, why this approach is adopted, and for what types of applications; (2)
what we need as concepts to ensure the execution of the localization; (3) what are the
rules that ensure the interaction between the selected concepts; (4) what are the cri-

61

5

5.1. ARCHIMO DEFINITION

teria and rules to establish connections between these concepts using specific relationships.

For the first question, data fusion approach were developed primarily for military
applications such as radars tracking a moving object since fused data from multiple
sensors provide several advantages over data from a single sensor [LLL09] such as more
position accuracy of the underwater moving objects. This accuracy is due to the number
of receivers (smart sensors in our case) as it will be improved by increasing the number of
these sensors [KH05]. However, we cannot ignore the inaccuracy that may happen while lo-
calizing moving objects by combining data from two or more smart sensors. This is due to
the imprecise object coordinates that may be provided by the sensors to the fusion servers.

Concerning the three other questions, they can be answered and elaborated during
the description of the existing architectures for data fusion concept. As we selected
previously the appropriate architecture for data fusion concepts which is the distributed
one (cf. section 1.6) to be adopted, so the required MO concepts, relationships and
constraints are related to the Distributed Fusion Architecture (DFA) [LLL09].

Accordingly, to build consistent MO models, some of the predefined ArchiMate
concepts and relationships are useful but they are not specialized enough to satisfy the
MO constraints in the design phase. This due to not defining all the possible components
in ArchiMate that can be used while defining models in different specific domains.
However, they only defined what they thought are essentials. This means, ArchiMate is
not a complete language that can be used to create a required model within a specific
domain. In addition, ArchiMate is used to design systems for general purposes, so it
is not useful for specific domains such as MO. For this purpose, we always need to
extend ArchiMate with new specific components or relationships that we find important.
Therefore, we present in the next section, what the selected ArchiMate concepts and
relationships are that we want to extend and why, in order to satisfy the MO constraints
in the design phase.

5.1.2 Selected ArchiMate Concepts and Relationships

The MO designers define a consistent model that reflects a real description of detecting
the under moving objects. This description requires software and hardware concepts to
be used by the MO designers while performing the design phase. These concepts are
elaborated below according to the ArchiMate business and application layers:

5.1.2.1 Business Layer

In order to define a MO model in ArchiMate business layer, the domain expert requires
behavioral, structural concepts and relationships to be used. The role of structural
concepts is to perform the behavioral concepts by using structural and dynamic rela-
tionships, and by taking into consideration the required MO constraints. The structural
concepts are: Smart Sensors (SS) that can never be connected with other SS and it can
be only connected with DFS under a criteria, Data Fusion Servers (DFS). Regarding
the behavioral concepts are: Algorithm Selection (AS), Data Transmission (DT), Data

62

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

Acquisition (DA) and Object Localization Algorithm (OLA). Concerning the structural
relationships are: Assignment, Association and Used By. Regarding the dynamic
relationships are: triggering. More specifically, the defined MO model describes the
following scenario:

SS get underwater data from the moving objects and process them, then transfer
them to DFS. However, DFS aggregate data from the different SS in order to apply the
object localization algorithm. Next, we assign a specific code to AS in order to select the
appropriate algorithm as we consider we may have multiple different algorithms that are
performed by the DFS. Once the SS detect the moving objects by DA and the OLA is
selected, so the localization is obtained and transferred by DFS on the network using DT.
Then, in order to precise that a DFS performs AS or DT, we need to use the assignment
relationship between them. The association relationship can be used when we want to
relate two components without restrictions. The Used By relationship can be used when
we want to relate two components in two separated models, each one is in a separate
ArchiMate layer. This can be performed by relating a specific concept from a layer
to another concept from another layer. After, by using triggers between the different
behavioral concepts, the designer can organize and present these concepts in the created
model.

Consequently, as we need to apply the MO constraints while defining MO models,
the predefined ArchiMate concepts and relationships are not enough to be used for
building consistent MO models. However, some predefined structural concepts and
relationships such as the business actor has the ability to perform some behavioral
concepts such as the business function using relationships. The business functions acquire
data, localize fixed and moving objects. So, we can exploit the properties of these concepts
by using them in our MO model. However, they miss the required MO constraints that
can be applied while defining MO models. For this purpose, we select the business actor
and business function to be extended by adding the missing MO constraints, in the
ArchiMate business layer.

5.1.2.2 Application Layer

In order to define a MO model in ArchiMate application layer, the software designer
requires behavioral, structural concepts and relationships that are specific for application
layer. The structural concepts are: Smart Sensor Systems (SSS) and Fusion Systems
(FS) that are the correspondence concepts respectively of the SS and DFS concepts in
the business layer. Regarding the behavioral concepts are: Manage Resources (MR),
Coordinates Storage Handling (CSH), Compute Coordinates (CC), Transmit Localization
Data (TLD), Inform Server (IS), Voice Streaming and Video Streaming. Concerning
the required relationships are the same as the required ones in the business layer. More
specifically, the defined MO model describes the following scenario:

FS is used to perform the detail or the correspondence sequential application func-
tions of OLA, which are: MR, CSH, CC, TLD. SSS is used to perform the IS, Voice
Streaming and Video Streaming application functions. The first one is used to inform the

63

5

5.1. ARCHIMO DEFINITION

fusion server about the detection of an underwater moving object. This function is useful
to notify the DFS by performing the localization algorithm upon any detection by SS of
moving objects. The second one is used in case the SS are hydrophones. And the third
one is used in case the SS are underwater cameras.

Consequently, the presented concepts are not available in the ArchiMate applica-
tion layer. However, some predefined concepts in application layer such as the application
component has the ability to perform some application functions using relationships. So,
we can exploit the properties of these concepts by using them in our MO model. However,
they miss the required MO constraints that can be applied while defining MO models.
For this purpose, we select the application component and application function to be
extended by adding the missing MO constraints, in the ArchiMate application layer.

5.1.3 ArchiMO MetaModel

As ArchiMO extends ArchiMate, ArchiMO metamodel contains the semantics of the
language ArchiMate such as: association, assignment and generalization relationship.
According to the previous section, ArchiMO metamodel should contain specific MO
concepts, relationships and constraints. MO concepts are extended from ArchiMate
Business Actor and Business Functions, MO association relationship that is extended
from ArchiMate association relationship and a constraint to establish such a relationship.

As ArchiMate is composed of three layers: business, application and technology
layer, we can extend these three layers in order to introduce our ArchiMO concepts
and extend only two layers, the business and application. [Chi12] extended ArchiMate
technology layer to define a DSML for IP Multimedia Subsystem (IMS), for telecom-
munication domain. This DSML is useful for different types of application in different
domains, as IMS provides functions that can be used with different domains such as
MO [All16]. For example, IMS allows to exchange messages between terminals such as
cameras, hydrophones, smart sensors, and Fusion Servers. Therefore, the IMS metamodel
is required for our MO systems and to model the deployment of our application, or on a
technical infrastructure.

Concerning ArchiMO, the two proposed part of the metamodel are shown in fig-
ures (5.1, 5.2). The white concepts in the figures are ArchiMate predefined ones.
However, the green (or grey) are the MO concepts. The new added constraint, is
illustrated in the red X in figure 5.3. And, the new extended relationship is shown in the
red text in figure 5.4 and in the red rectangle in the 5.6. We will select and present these
extended concepts, relationships and constraints, in the next sub sections.

5.1.3.1 Concepts

ArchiMO is composed of two views: one for the business layer, and another for the appli-
cation layer. We present our metamodel as the following:

1. Business Layer, see Figure. 5.1: we have extended the business actor of ArchiMate
through two new concepts, the Smart Sensor and the Data Fusion. Smart Sensor

64

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

Figure 5.1: ArchiMate Business Layer

Figure 5.2: ArchiMate Application Layer

Figure 5.3: Communication Constraint between two Smart Sensors

65

5

5.1. ARCHIMO DEFINITION

Figure 5.4: Extended Relationship between Smart Sensor and Data Fusion Server

is responsible for performing the raw Data Acquisition, while the Data Fusion is
responsible for other functions: (1) Algorithm Selection performs a procedure to fetch
then select the proper algorithm in case we have several algorithms with different
functionalities on the same Data Fusion server; (2) Data Transmission transmits the
data between the different Data Fusion components existing on the SN; (3) Object
Localization makes the necessary actions to call the localization algorithm of the
underwater moving objects. These functions extend the business function concept
in ArchiMate. The Data Acquisition function has a main role which is receiving the
signals that are thrown by the underwater moving objects in order to be processed
and performed by the Smart Sensors.

2. Application Layer, see Figure. 5.2: we have extended the application component
of ArchiMate through two new concepts, the Data Fusion System, and the Smart
Sensor System. Data Fusion System is responsible for performing the following
functions:

(a) Manage Resources: to manage the resources needed for the algorithm execu-
tion. This due to the structure of any algorithm, a reservation and initialization
of a set of variables are required, points’ coordinates such as x, y, z of each
smart sensor. Data Fusion System (DFS) starts managing the resources for
the object localization algorithm.

(b) Coordinates Storage Handling: to store the coordinates correlated with time.
This is due to the needs of storing temporarily the received values (e.g. distance
between the underwater moving object and a Smart Sensor) by the Smart
Sensors in order to use them in the object localization. DFS starts handling the

66

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

storage of received coordinates by saving these received values in the reserved
coordinates according to each Smart Sensor.

(c) Compute Coordinates: to compute the position according to a specific algo-
rithm selected previously by the Date Fusion actor. This is due to the applying
of data fusion concept. The data comes from several SSs in order to be fused
and calculated. DFS starts computing the stored coordinates of different SSs
by calculating the intersection between the different covered detected areas
(e.g. intersection of several circles or spheres) by the SS.

(d) Transmit Localization Data: to exchange information between the fusion
servers/systems. This is due to the needs of exchanging the localization in-
formation between the existing Data Fusion severs on the SN. DFS starts
transmitting the localization information once the calculation is performed on
it. And the same DFS can receive a calculated localization information from
another DFS.

The Smart Sensor System is responsible to perform the following functions:

(a) Inform Server: to inform the fusion server about the detection of an underwater
moving object. This function is useful to notify the DFS by performing the
localization algorithm upon any detection by SS of moving objects.

(b) Voice Streaming: this function is useful in case the Smart Sensors are hy-
drophones.

(c) Video Streaming: this function is useful in case the Smart Sensors are under-
water cameras.

The functions presented above extend the application function concept in ArchiMate.

In order to formalize the extended concepts, we define constraints using Object
Constraint Language (OCL). This is due to the hard task and challenges that will face
the SN designer while specifying and defining such complex constraints.

According to [CMSD04][CT07][EKW92], as the designer uses ArchiMO as a model-
ing language and adopts MDE (cf. chapter 2) to model MO systems, he faces some
challenges such as: (1) the ability of defining and executing the transformations of models
(source and target) as the model transformation is one of the main aspect of MDE (cf.
section 2.4); (2) many constraints (e.g. MO constraints) cannot be expressed using only
conceptual modeling languages such as UML, ArchiMate or ArchiMO .

As we know, the model transformation should contain two types of constraints
[CMSD04]: (1) appoint constraints on the input (source) and output (target) models; (2)
define constraints on the relationships among input and output models. Thus, we can
define the model transformation as a set of three constraints:

• a set of constraints to be fulfilled for a model to be selected as an input model of
the transformation.

67

5

5.1. ARCHIMO DEFINITION

• a set of criteria (constraints and rules) on the relationships and development of
concepts from the input to the output model.

• a set of constraints as a valid output model generated by the transformation criteria.

Thereby, in order to face the two challenges, the SN designer should fulfill the differ-
ent mentioned constraints above. These constraints can be appointed, defined and ex-
pressed by using Object Constraint Language (OCL). OCL is set by the Object Manage-
ment Group (OMG) that is a language that enables the designer to describe expressions,
terms, rules and constraints on models that are created by conceptual modeling languages
[Mar08]. Thus, the SN designer should use OCL with any conceptual modeling language
in order to produce a valid output model which could be as a preparatory phase for its sim-
ulation. Once the output models are validated, so the formalization of the defined models
is achieved and succeeded. For this purpose, we formalize the extended MO concepts, in
the next section.

5.1.3.2 Concepts Formalization

The new extended constraints, the assignment relationships between specific MO concepts
in the both ArchiMate layers, business and application. These constraints are expressed
using OCL (cf. the line 5 in the frame below), and the evaluation must return true for
this constraint (cf. the line 7 in the frame below). Therefore, this constraint is used to
assign only a Data Acquisition function to a Smart Sensor actor according to some MO
and DFA criteria, that is verified during its evaluation in the frame below. For the other
similar constraints, they are formalized within the same way.

1 // Assignment R e l a t i o n s h i p between DataAcquis i t ion and SmartSensor

3 Context :
Data A c q u i s i t i o n

5 Evaluat ing :
s e l f . ass ignTo . oc l I sKindOf (SmartSensor)

7 Resu l t s :
t rue

9
Context :

11 Data A c q u i s i t i o n
Evaluat ing :

13 s e l f . ass ignTo . oc l I sKindOf (DataFusion)
Resu l t s :

15 f a l s e

The new extended constraints, the association relationship between two Smart Sensors.
This constraint is expressed using OCL (cf. start at line 5 in the frame below), and it
returns false as a result (cf. the line 11 in the frame below). Therefore, this constraint is
used between two Smart Sensors according to some MO and DFA criteria. In case, the
association relationship is between two Data Fusion actors, the returned result is true.
This constraint is to prevent the association between two smart sensors only without
affecting the other MO and ArchiMate concepts.

1 // A s s o c i a t i o n R e l a t i o n s h i p between two SmartSensors

3 Context :
Smart Sensor

68

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

5 Evaluat ing :
(s e l f . archimateModel . f o l d e r s −>c o l l e c t (e lements)−>

7 s e l e c t (e | e . oc l I sKindOf (A s s o c i a t i o n R e l a t i o n s h i p)))−>
e x i s t s (e | e . oclAsType (A s s o c i a t i o n R e l a t i o n s h i p) . sourc e=s e l f and

9 e . oclAsType (A s s o c i a t i o n R e l a t i o n s h i p) . t a r g e t . oc l I sK indOf (SmartSensor))
Resu l t s :

11 f a l s e

13 Context :
Data Fusion

15 Evaluat ing :
(s e l f . archimateModel . f o l d e r s −>c o l l e c t (e lements)−>

17 s e l e c t (e | e . oc l I sKindOf (A s s o c i a t i o n R e l a t i o n s h i p)))−>
e x i s t s (e | e . oclAsType (A s s o c i a t i o n R e l a t i o n s h i p) . sourc e=s e l f and

19 e . oclAsType (A s s o c i a t i o n R e l a t i o n s h i p) . t a r g e t . oc l I s KindOf (DataFusion))
Resu l t s :

21 t rue

5.1.3.3 Relationships

Mainly, ArchiMate contains different types of relationships such as association, as-
signment, see Figure. 5.5. Assignment relationships are used to link the structural
and functional elements in the design modeling language. These type of relationships
help us to represent the behavioral aspects of the design in the verification tools and
relate them to the right structural element. For instance, in the technology layer, if a
function1 is assigned to node1, this means that function1 should be performed by the
node1. This concept can be mapped in the programming languages such as C++ for
the NS-3 simulator using the concept of classes and their own functions. Thereby, the
presented ArchiMate relationships can not only satisfy our MO domain in the design phase.

For this purpose, to fulfill the needs of the SN designer in the MO domain con-
cerning the MO constraints, we have specialized the definition of these relationships with
adding new constraints related to the new added concepts. In our context, we have
defined the association relationship for the smart sensor according to the constraints of
DFA, such as smart sensor that could be only associated to the data fusion and two
smart sensors that could not be associated together, see Figure. 5.3. Furthermore, we
have defined the assignment relationship for the smart sensor according to the constraint
of MO [?] such as Smart Sensor could be only assigned to the Data Acquisition.

ArchiMO metamodel contains new relationships that are specific to the MO do-
main. This is due to the architectural design errors that may be made by the SN Designer
while relating a Smart Sensor to a Data Fusion server. These errors are costly to be
occurred in implementation stage of MO life cycle system. For example, a smart sensor
communicate with fusion server in the defined model, however, in the implementation
phase, the expert people can not deploy this communication for an imprecise length in the
marine cable. Therefore, a new specific relationship for the Smart Sensor and Data Fusion
elements is added to the semantics. This relationship is used only to connect a Smart
Sensor element to a Data Fusion element. We consider this new type of relationship in
the business layer as a logical relationship. In order to implement this new relationship,
we have extended the Association Relationship by a new one which is the Smart Sensor

69

5

5.1. ARCHIMO DEFINITION

and Data Fusion Relation (SDR), see Figure. 5.6.

Consequently, this section deals with the Task 1 Modeling. Our extended DSML
answer Req 1 Improving Architectural Design, Req 3 Extensibility and Req 4

Heterogeneity Supported.

In order to formalize the extended MO relationships, also we define constraints us-
ing Object Constraint Language (OCL). For this purpose, we formalize these extended
relationships, in the next section.

Figure 5.5: Conceptual ArchiMate Relationships

5.1.3.4 Relationships Formalization

The new extended constraints, the association relationship between Smart Sensor and
Data Fusion (SDR), see Figure. 5.4 is evaluated using OCL (cf. the line 5 in the frame
below), and it returns true as a result (cf. the line 7 in the frame below). Therefore, SDR
is used to connect only a Smart Sensor element to a Data Fusion element by satisfying the
MO criteria such as the length of marine cable that is entered by the designer. This cable
should be between 10 and 50 meters. This constraint is verified during its evaluation in
the frame below. Otherwise, SDR is not formalized as the return results is false (cf. the
line 15 in the frame below).

1 // SmartSensor DataFusion R e l a t i o n s h i p (SDR)

3 Context :
SmartSensor DataFusion Re lat ion

5 Evaluat ing :
s e l f . va lue > 10 and s e l f . va lue < 50

7 Resu l t s :
t rue

9
Context :

11 SmartSensor DataFusion Re lat ion
Evaluat ing :

13 s e l f . va lue > 10 and s e l f . va lue < 50
Resu l t s :

15 f a l s e

70

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

Figure 5.6: Extended Relationship

5.1.3.5 Formal Constraints

According to the use of OCL in the previous sections, ArchiMO metamodel contains
formalized constraints that are specific to the MO domain. These constraints are ac-
cording to the selected distributed fusion architecture (DFA) from [LLL09], our MeDON
case study [?], and the adopted data fusion approach from [MSDW01][LLL09]. For
Smart Sensor: (1) communication between two Smart Sensor elements is not allowed; (2)
communication between Smart Sensor and Data Fusion element is allowed; (3) Smart
Sensor is only allowed to be related to the Data Acquisition function. For Data Fusion:
(1) communication between two Data Fusion elements is allowed; (2) Data Fusion is only
allowed to be related to Algorithm Selection, Data Transmission and Object Localization
functions.

5.1.4 ArchiMO MetaModel Layer Consistency

ArchiMO metamodel ensures consistency between the two extended business and
application metamodels, and between the one extended by [CKR12] which is the
metamodel of technology layer. The consistency between these extended metamodels of
the ArchiMate layers is supported by the predefined relations between ArchiMate layers
such as Used By and Realization. For example, the consistency between the business
layer and the application layer of ArchiMate, also between the application layer and the
technology layer. Therefore, the consistency is available at metamodels level, so the SN
designer inter-relates several models from different layers. All the predefined ArchiMate
relationships, Used By and Realization, can be used in the design phase, see. Figure 5.7.
Thus, by using these predefined relationships between ArchiMate layers, the SN designer
exploit this advantage to have one MO model that contains concepts and constraints
from multiple ArchiMate layers.

In addition, the consistency between layers has also the advantage of providing the
base of an automatic generation of concepts and relationships in the application layer

71

5

5.1. ARCHIMO DEFINITION

according to a satisfaction of a constraint in the business layer related to the new extended
relationship, the SDR. In this case, the SN Designer can assign the proper value to the
relationship that connects a smart sensor to a data fusion server, see. Figure 5.8. This
ability is available for the SN designer as a modeling facility and based on a generative
approach.

In order to implement this automatic generation, we throw the corresponding MO,
ArchiMate, and relationships automatically in the application layer during the modeling
time of the design phase in the business layer, the green boxes in Figure 5.8. The creation
of these mix elements between specific MO and Archimate elements is occurred upon
establishing the SDR, see. Figure 5.8.

The generated ArchiMate concepts are: Application Function and Application Com-
ponent. The generated MO concepts are: Smart Sensor System, Data Fusion System,
Inform Server, Manage Resources, Compute Coordinates, Coordinates Storage Handling
and Transmit Loc Data. The triggering and the assignment relationships are ArchiMate
elements. This is due to MO domain and specifically to the satisfaction of SDR which
requires the creation of these mix generated elements in the level in the design phase.
Thus, instead of creating them by the SN Designer, he can get them automatically after
satisfying the SDR constraint.

Therefore, by adopting this generative approach on all the activities such as con-
cepts, relationships of MO domain in the business layer, then on all the activities of the
application layer, we can have on modeling time an automatic mapping between the three
layers.

Consequently, this section deals with Task 2 Ensuring Consistency. We de-
cided to rely on the different forms of ArchiMO consistency, predefined relationships and
generation concept between layers between metamodels, particularly in order to answer
Req 2 Multiple Viewpoints.

Figure 5.7: Consistency between Business Layer and Application Layer

72

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

Figure 5.8: Generated MO Concepts and Relationships in the Application and Technology
Layer

73

5

5.1. ARCHIMO DEFINITION

5.1.5 Formalization of Layers Interoperability

The MO business models are transformed to be MO application models. This Model
to Model transformation is formalized by using the Realization ArchiMate relationship.
This relationship must be unique in the consistent model that relate the Data Acquisition
business function to the Inform Server application function (cf. the green line between
Data Acquisition and Inform Server in Figure 5.8). This constraint is evaluated using
OCL (cf. start at line 5 in the frame below), and it returns true as a result (cf. the line
11 in the frame below). This means, there is a Realization relationship between Data
Acquisition and Inform Server. However, the code that starts at line 15 in the frame
below, evaluate if the Realization relationship relate Inform Server to Object Localization,
the returned results is false (cf. the line 21 in the frame below). Therefore, this constraint
is formalized, and this relationship is unique and only allowed between Data Acquisition
and Inform Server according to some MO and DFA criteria.

1 // R e a l i z a t i o n R e l a t i o n s h i p between Data A c q u i s i t i o n b u s i n e s s f u n c t i o n and Inform
Server a p p l i c a t i o n f u n c t i o n

3 Context :
Inform Server

5 Evaluat ing :
(s e l f . archimateModel . f o l d e r s −>c o l l e c t (e lements)−>

7 s e l e c t (e | e . oc l I sKindOf (R e a l i s a t i o n R e l a t i o n s h i p)))−>
e x i s t s (e | e . oclAsType (R e a l i s a t i o n R e l a t i o n s h i p) . sourc e=s e l f and

9 e . oclAsType (R e a l i s a t i o n R e l a t i o n s h i p) . t a r g e t . oc l I sK indOf (DataAcquis i t ion))
Resu l t s :

11 t rue

13 Context :
Inform Server

15 Evaluat ing :
(s e l f . archimateModel . f o l d e r s −>c o l l e c t (e lements)−>

17 s e l e c t (e | e . oc l I sKindOf (R e a l i s a t i o n R e l a t i o n s h i p)))−>
e x i s t s (e | e . oclAsType (R e a l i s a t i o n R e l a t i o n s h i p) . sourc e=s e l f and

19 e . oclAsType (R e a l i s a t i o n R e l a t i o n s h i p) . t a r g e t . oc l I s KindOf (O b j e c t L o c a l i z a t i o n))
Resu l t s :

21 f a l s e

Also, the MO application models are transformed to be MO technology models. This
Model to Model transformation is formalized by using the Used by ArchiMate relationship.
This relationship must be unique in the consistent model that relate the Inform Server
application function to the Create Invite technology service that is extended by [Chi12] (cf.
the green line between Inform Server and Create Invite in Figure 5.8). This constraint
is using OCL (cf. start at line 5 in the frame below). This means, there is a Usedby
relationship between Inform Server and Create Invite. However, the line 15 in the frame
below, evaluate if the Usedby relationship relate Create Invite to Compute Coordinates,
the returned results is false (cf. the line 21 in the frame below). Therefore, this constraint
on the relationship is only allowed between Inform Server and Create Invite according to
some MO and DFA criteria, that is verified during its evaluation in the frame below.

1 // Usedby R e l a t i o n s h i p between Inform Server a p p l i c a t i o n f u n c t i o n and Create I n v i t e
IMS i n f r a s t r u c t u r e s e r v i c e

3 Context :
Create I n v i t e

5 Evaluat ing :

74

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

(s e l f . archimateModel . f o l d e r s −>c o l l e c t (e lements)−>
7 s e l e c t (e | e . oc l I sKindOf (UsedbyRelat ionship)))−>

e x i s t s (e | e . oclAsType (UsedbyRelat ionship) . source=s e l f and
9 e . oclAsType (R e a l i s a t i o n R e l a t i o n s h i p) . t a r g e t . oc l I sK indOf (Inform Server))

Resu l t s :
11 t rue

13 Context :
Create I n v i t e

15 Evaluat ing :
(s e l f . archimateModel . f o l d e r s −>c o l l e c t (e lements)−>

17 s e l e c t (e | e . oc l I sKindOf (UsedbyRelat ionship)))−>
e x i s t s (e | e . oclAsType (UsedbyRelat ionship) . source=s e l f and

19 e . oclAsType (R e a l i s a t i o n R e l a t i o n s h i p) . t a r g e t . oc l I s KindOf (ComputeCoordinates))
Resu l t s :

21 f a l s e

5.1.6 ArchiMO Design Tool

The new extended metamodel ArchiMO enables us to generate design tool that is coherent
with Archi design tool but contains additional concepts, relationships and constraints that
are specific to the MO domain [MSDW01][LLL09].

5.1.6.1 ArchiMO Tool Generation

The figure 5.9 describes the process to create ArchiMO design tool based on the
extended metamodel. We implemented the new extended concepts, relationships and
constraints that are specific to the MO domain and for data fusion concepts [LLL09].
This implementation is performed according to the business and application ArchiMate
Layer by weaving java classes, corresponding to MO concepts, in the source code of the
ArchiMate tooling.

The ArchiMO Design Tool is generated from the Archi design tool that is based
on the java code of ArchiMO metamodel, see. Figure 5.9. ArchiMate is based on Eclipse
Modeling Framework (EMF).

5.1.6.2 ArchiMO Concrete Syntax

For each extended concept or relationship, a graphical concrete syntax should be defined
[CKRS14]. The concrete syntax is associated with a set of rules which defines the
representation of the abstract syntax [BJKV06]. In order to have a graphical view for the
added concepts, relationships of each ArchiMate layer. In addition, these metamodels
elements are presented in graphical views such as the palettes in order to allow the
specific designers to use them by dragging and dropping.

In relation with ArchiMO metamodel, the SN designers are able to define a model
using concepts from ArchiMO metamodel. This model can be composed from several
inter-related models. Each model can contain many different related elements from a
specific viewpoint according to the concerned ArchiMate layer. ArchiMO is divided
into three: (1) ArchiMO metamodel for business layer; (2) ArchiMO metamodel for

75

5

5.1. ARCHIMO DEFINITION

Figure 5.9: Generated ArchiMO Design Tool after the Extension of ArchiMate

application layer; (3) IMS metamodel for technology layer [CAKR11]. Thereby, the
elements of the defined models are composed of the three layers with their graphical syntax.

The concrete syntax that is associated with these added concepts and relationships
can be implemented in the design tool such as ArchiMO Design Tool for our context.
Our proposed concrete syntax is shown in the palettes of the business, in the red circles
on the right of Figure. 5.10, and the application, in the red circles on the left of Figure.
5.10 layers. Also, the extended SmartSensor and DataFusion Relationship is shown in
the red circle of Figure. 5.11. These palettes are coherent with MO specific concepts and
relationships from which the designer can select and use to create MO models.

5.1.6.3 Constraint Implementation

During the model edition, all the constraints specified for the MO extension are checked:
(1) prevent designer to associate two Smart Sensor elements together; (2) the designer
is able to associate a Smart Sensor element to Data Fusion, Business Actor or other
actors, see Figure. 5.12; (3) the assignment is only allowed from SmartSensor to the
DataAcquisition function, see Figure. 5.12. Concerning the Data Fusion element: (1)
the association between two Data Fusion elements is allowed; (2) the designer is able to
associate Data Fusion element to Smart Sensor element, see Figure. 5.12; (3) the designer
is able only to assign the Data Fusion to the Algorithm Selection, Data Transmission and
Object Localization functions, see Figure. 5.12.

The constraint of the relationship between SmartSensor and DataFusion must be

76

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

Figure 5.10: Business and Application Layers (Palettes)

Figure 5.11: Extended SDR Relationship in Palette

77

5

5.1. ARCHIMO DEFINITION

checked. It requires the designer to enter a proper value in order to associate a Smart
Sensor to a Data Fusion using the SDR, see Fig. 5.13. For example, SDR reflects the
marine cable during the modeling task, to connect a Smart Sensor to a Data Fusion
Server. However, the length of this cable should be well defined by respecting the
minimum and maximum length that could be entered by the designer. Otherwise, the
designer is not able to associate a Data Fusion to a Smart Sensor using this SDR, see Fig.
5.14.

By extending SDR, we distinguish the following features: (1) generating the re-
quired MO concepts and relationships in the application layer; (2) generating the
required ArchiMate concepts and relationships in the application layer. So, once the SDR
constraint is checked and verified:

1. The required and necessary MO elements and relationships are generated in the
application layer (Inform Server, Manage Resources, Coordinates Storage Handling,
Compute Coordinates, Transmit Localization Data, Smart Sensor System, Data
Fusion System). More specifically, in the application layer of the Figure. 5.15, Inform
Server class is represented by Inform ServerA instance, Manage Resources class is
represented by System Resources ReservationA instance, Compute Coordinates class
is represented by Compute CoordinatesA instance, Coordinates Storage Handling
class is represented by Storage CoordinatesA instance, Transmit Loc Data class
is represented by Coordinates Transmission To B or Coordinates Transmission To
C instance, Smart Sensor System class is represented by Smart Sensor SystemA
instance, and Data Fusion System class is represented by Fusion SystemA instance.

2. The required ArchiMate elements and relationships are created in the application
layer (triggering and Assignment are ArchiMate relationships). More specifically,
in the application layer of the Figure. 5.15, triggering relation is represented by
the different existing relation between the following instances of MO classes: Inform
ServerA, System Resources ReservationA, Compute CoordinatesA, Storage Coordi-
natesA, Coordinates Transmission To B or Coordinates Transmission To C. Assign-
ment relation is represented by the relation between the Smart Sensor SystemA and
Inform ServerA instances, and between the Fusion SystemA with the rest of existing
instances.

The constraint on the SDR enables the designer of the business layer to create automati-
cally both MO specific and ArchiMate concepts in the viewpoint of the application layer.
Once the designer of the business layer finishes the design of MO business layer, the
designer of the application layer will get automatically his specific MO models/instances.
For example, when the designer of the business layer connects two MO elements such as
SmartSensor and DataFusion, the necessary corresponding MO elements such as Smart
Sensor System Component, Inform Server Function. And relations are automatically
created in the application layer, see Figure. 5.15.

Thereby, ArchiMO design tool helps the designers of each ArchiMate layer to model the
system in a highly abstract way, by dragging and dropping the elements and relations
from the palette. Also, it helps by avoiding syntax errors that may be made during the
design phase.

78

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5
Figure 5.12: Association and Assignment Relationships

Figure 5.13: Smart Sensor and Data Fusion Relationship is allowed

79

5

5.2. GENERATION OF SIMULATION CODE

Figure 5.14: Smart Sensor and Data Fusion Relationship is not allowed

5.2 GENERATION OF SIMULATION CODE

Once the MO application models are transformed to be MO technology models, the
consistent MO model is ready to be the input for the code generator XPAND that is
developed by [All16]. Each model transformation depends on a set of rules that describes
and controls the transformation process [Par12]. XPAND contains transformation similar
to the previous transformation that transforms the architecture of multiple viewpoints
of ArchiMate from high abstract MO design to the functions and actions of Networks
simulators. The structure of this process is based on the object oriented approach, classes
and operations concepts. In order to perform this transformation process, mapping rules
are implemented through XPAND. Figure 5.16 illustrates the concepts of business and
application viewpoints with their correspondences concepts in the network simulator.
This figure indicates the concepts of viewpoints by a black text, and the concepts of
network simulator by red arrows and text. Each business actor/role or application
component is transformed to an object oriented class. For example, each Smart Sensor
or Data Fusion in business and application layers become a C++ class. Each business or
application function is transformed to an implemented function in a class. For example,
the object localization function in the business layer become an operation in the C++
class. Each relationship that is specific to relate two ArchiMate layers, is transformed to
an association relationship. Each trigger relationship is transformed to a call between
two functions. The start business function is transformed to a start technology function.

This Model to Text transformation is formalized by relying and adopting the im-
plemented mapping rules in XPAND [All16]. The red concepts in 5.16 are elements of a
programming language code such as elements of C++ that can be executed and simulated
to obtain specific results.

80

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

Figure 5.15: Generated MO concepts, Relationships and Constraints in the Application
Layer after Entering a Proper Value

81

5

5.3. ARCHIMO AND ITERATIVE APPROACH

Figure 5.16: Mapping of Business and Application Viewpoints with Network Simulator

5.3 ARCHIMO AND ITERATIVE APPROACH

In order to have the two forms of consistency between the different created models
according to the different ArchiMate layers, several specific elements are required to be
inter-related through specific relationships. These elements and relationships can be
predefined ones such as used by and business object. Or new extended ones such as SDR,
smart sensor and data fusion. This is due to the specialization of predefined and new
extended ArchiMate concepts and relationships, as each relationship can be used between
set of specific predefined elements in ArchiMate metamodel, or set of new extended
elements in ArchiMO. Thus, there are specific relationships to relate specific elements
within the same model, and at the same time, each element can be located in a separate
and different model. For example, the SDR is specialized to relate a Smart Sensor to a
Data Fusion server within the same model which is the MO business layer model. And,
the Realization relationship is specialized to relate a Business Object (from business layer
model) to Data Object (from application layer model), and the Used by relationship
is specialized to relate a Business Role (from business layer model) to an Application
Interface (from application layer model), see. Figure 5.7.

Accordingly, to perform these forms of consistency, several SN Designers must be
involved. These designers should cooperate and discuss together to select the proper
relationships and elements that enable to establish the interoperability between their
different created models. At this stage, the different concerned designers may discover

82

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

architectural design errors in the created layers. For example, when the expert designer
in the business layer discover that a Smart Sensor is connected to a Data Fusion server
through a predefined association relationship, which is not acceptable as a Smart Sensor
should be connected to a Data Fusion server through SDR. This may cause an error in
the implementation, such as an imprecise length of the marine cable between a Smart
Sensor and a Data Fusion server. Another example is when the designers decided to
use the Realization relationship presented above in order to relate the business with
the application layer, and they find that there is no Business Object in the business
layer model, or a Data Object in the application layer model in order to establish the
Realization relationship. This makes the interoperability between layers as an impossible
operation to be performed by designers.

Therefore, in both examples, the proposed SN design process in chapter 4 should
be blocked and re-considered the detected architectural design errors until taking
appropriate actions that can unblock this process. These actions can be the possibility
of iterating Task 1 Modeling many times until having no errors (cf. the red arrow
issued from "Ensuring Consistency" task to "Modeling" task in Figure 4.1). Furthermore,
the before mentioned deals with Task 2 Ensuring Consistency as the SN designers
fix the detected architectural design errors in the model on each iteration according
to their different viewpoints, which will minimize the number of detected errors in this task.

In order to validate the defined model that is composed of three separate inter-
related models: business, application and technology. This model should be simulated to
detect the technical performances errors that may be made by the SN Designers. At this
stage, the different concerned designers may discover their architectural design errors in
their defined separated models. For example, when the expert designer in the simulator
discovers errors in the technical performances as the exchange of messages between
terminals is not setup. In this case, the sources of these errors can be from the first two
proposed tasks of SN design process, in chapter 4, Task 1 Modeling and/or Task 2

Ensuring Consistency. Thus, in case the source of technical errors is from Task 1

Modeling, it can be from business layer model and/or application layer model and/or
technology layer model. The SN designers may make architectural design errors in the
three inter-related models according to their different viewpoints. However, in case the
source of technical errors is from Task 2 Ensuring Consistency, it can be from the
relationships that are specific to relate business layer model to application layer model,
and/or this latter to technology layer model.

Therefore, in the two cases, the proposed SN design process in chapter 4 should
be blocked and re-considered the detected technical performances errors until taking
appropriate actions. These actions can be the possibility of iterating Task 1 Modeling

many times until having zero error (cf. the red arrow issued from "Validating" task to
"Modeling" task in Figure 4.1). And/or the possibility of iterating Task 2 Ensuring

Consistency many times until having zero error (cf. the red arrow issued from
"Validating" task to "Ensuring Consistency" task in Figure 4.1).

Furthermore, the before mentioned deals with Task 3 Validating as the SN de-

83

5

5.4. DISCUSSION

signers fix the technical performances errors in the simulated model on each iteration
according to their different viewpoints, which will minimize the number of detected errors
in this task.

5.4 DISCUSSION

The ArchiMO design tool, and the iteration approach proposed in this chapter contribute
towards fulfilling the requirements of SN Design mentioned in Chapter 1:

1. Req 1 Improving Architectural Design: the MO Domain Specific Modeling
Languages, and the required and forbidden rules regarding to the SN domain provide
a support to the designer of the system architecture. In addition, the iteration
between the different process activities reduce the number of the architectural design
troubles, as on each iteration the designers improve the model to build a new release
in order to surpass the current one.

2. Req 2 Multiple Viewpoints: through the use of Enterprise Architecture, by ex-
tending an Enterprise Architecture Modeling Language, ArchiMate. The predefined
automatic consistency between the different layers of ArchiMate provides the ability
to work independently in a viewpoint, and to define a consistent model. The model
includes at the three layers of ArchiMate from different designer’s viewpoint, and
provides a unified, overall model of business, application and technological views.

3. Req 3 Extensibility: through the metamodel extension, and new design tool gen-
eration. This feature allows to add new MO elements and constraints to the design
tool. Thus, ArchiMO extends an open, standard, and classical design tool.

4. Req 4 Heterogeneity Supported: by proposing different SN specific Domain Spe-
cific Modeling Languages. It provides the possibility of having different components
and communication types that are related to our domain. Thus, the deployment of
different physical components (Sensors and Servers), and logical components such
as acquisition/localization algorithms is supported on a network infrastructure.

5. Req 5 Validation Tools Supported: by adopting existing network simulators.
The created models are simulated as early as possible in the life cycle in order to
prevent architectural design errors in the deployment phase. The simulation results
are interpreted by specialists who formulate recommendations for changing the MO
models.

We present the advantages of our contributions below:

• As ArchiMO DSML is based on the existing definition of ArchiMate, we reuse all the
concept and relationship definitions of the ArchiMate metamodel, in order to inherit
from the context of general purpose information systems. Thereby, this advantage
fits RQ 2 Modeling Language Specialization.

• The generated ArchiMO Design tool considers different domains of experience, each
domain expert works in his specific layer (Business, Application or Technology) as

84

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

a part of an overall model. This design tool prevents syntax and semantics inconsis-
tencies that can be made during the design activity. Also, this design tool ensures
the consistency between different layers due to the use of the relationship definition
provided by ArchiMate. These advantages enhance and increase the consistency
and unity of the design. ArchiMO provides facilities and support for the designer to
build a consistent model. Thereby, these advantages fit RQ 2 Modeling Language

Specialization.

• Relying on model transformation approach, we can extend Archi tool and generate
automatically the ArchiMO design tool that contains the new MO elements, rela-
tionships and constraints. This advantage produces an efficient tooling support to
achieve the main concerns of the design process. It provides a design tool to sup-
port the designer by performing the different tasks of the proposed design process.
Thereby, this advantage fits RQ 3 Tool Building Process.

• The SDR extension provides a mapping approach between the different layers of EA
to throw directly the needed components and relations to each domain expert. It
reduces the time of the design phase for the two lower layers, application and tech-
nology. Thereby, this advantage fits RQ 2 Modeling Language Specialization.

• We can rapidly define a DSML and generate its corresponding design tool by extend-
ing TOGAF framework and ArchiMate modeling language. This extension allows
to integrate in TOGAF new specific concepts, relationships and constraints which
are displayed in the palettes of the design tool, and they are ready to be used by
the designers. This is an advantage, as in case we adopt MDE to define a DSML
and its corresponding design tool, we should perform a long and complex task to
create them from the beginning. Thereby, this advantage fits RQ 3 Tool Building

Process.

• We inspire from [Chi12] work, then we adopt the same extension approach to
define our ArchiMO metamodels as they defined a metamodel for telcommunication
domain. In our case, we extend the ArchiMate business layer and application layer
metamodels. As we integrate our work in the same TOGAF framework, We inherit
in our tooling of the previous extension and of course our MO extensions. The last
layer allows us to generate an ArchiMO design tool that contains MO and IMS
concepts, relationships and constraints. Thus, by using this generated tool, the
SN designers are able to create a consistent model that is composed of different
component from the three extended ArchiMate metamodels, and from different
relationships. The IMS components and relationships that are in the consistent
model, allow the exchange of information between physical components such as
terminals. Therefore, our defined MO model in the application layer, is deployed on
the technology layer by using its corresponding concepts and relationships in IMS.
For example, the connection between a Smart Sensor System and a Data Fusion
System component in the application layer is mapped to the technology model on
two terminals that exchange messages.

At this stage, we can consider that the work that is performed by [Chi12]

85

5

5.4. DISCUSSION

and us is complementary and provide a powerful tooling. This is due to: (1) the
returned benefits to both sides, [Chi12] and our side; (2) due to the non negative
affection on the work of each other. For our contribution, once the application
model is fully represented with the required concepts and relationships in the
technology model, the consistent model is ready to be simulated as it satisfies the
inputs constraints of the network simulator. However, for [Chi12] contribution,
they are validating their extended IMS metamodel by ensuring the reusability
of this metamodel in another case study and another domain, the MO. Thus,
the utilization of the extended IMS metamodel is not limited for case studies in
telecommunication domain.

• [All16] extended the design activity to introduce the early verification activity in
its framework (DeVerTeS). They validated this activity by generating the code,
then simulate it for a telecommunication service. In addition, [All16] integrates
our ArchiMO metamodel in their work to be as another case study for their
contribution. At the same time, we exploit their added activity by simulating our
MO produced models in order to early validate in the design phase.

At this stage, we can consider that the work that is performed by [All16]
and us is complementary. This is due to: (1) the returned benefits to both sides,
[All16] and our side; (2) due to the non negative affection on the work of each other.
For our contribution, we are able to perform the proposed Task 3 Validating

in order to early validate our MO defined models by simulating them using the
NS-3 network simulator. However, for [All16] contribution, they are validating their
extended activity by ensuring its reusability in another case study and another
domain which is MO. Thus, the utilization of this extended activity is not limited
for case studies in telecommunication domain.

86

CHAPTER 5. DOMAIN SPECIFIC MODELING LANGUAGES AND DESIGN TOOLS

FOR SENSOR NETWORKS DESIGN

5

Synthesis

In this chapter, we extended ArchiMate modeling language in order to obtain two new
SN specific DSMLs, one for the business layer and another for application layer. For

the technology layer, we relied on the extended previously in [CAKR11], an IMS
underlying platform. These DSMLs and the iteration approach serve the designer

during the design phase by improving architectural design. Next, we generated ArchiMO
design tool that contains all the extended MO concepts and restrictions in order to be
used by the designers during the design process. An automatic consistency between the

different designer’s viewpoints and at different abstract levels is proposed, which is
provided by ArchiMate that is relying on Enterprise Architecture. This consistency

allows to have an overall and consistent model that contains the three created models
and viewpoints with inter-relations between them. Then, we proposed to apply the

simulation on the created models using the network simulator NS-3. This simulation is
executed on models that are created using the ArchiMo design tool in order to test and
verify these models as early as possible in the SN life cycle. At the end, we discussed
and analyzed the advantages of our contributions. Accordingly, we concluded that, as

[Chi12] and [All16] are involved in the same domain and their work is complementary
to each other, so they introduced their extensions in the same EA framework,

DeVerTeS. And, as our extension is complementary to their work as presented above, so
we introduced our extension in DeVerTeS. Therefore, our contributions satisfy and

serve two research questions: RQ 2 Modeling Language Specialization and RQ 3

Tool Building Process. In order to test the usability and the effectiveness of the
proposed contributions and especially the ArchiMO generated design tool, a consistent

model will be created using DeVerTeS in the next chapter.

87

88

6 Application of the Proposed
Sensor Networks Design
Process to a Case Study

Reminders and Objectives

In this chapter, we illustrate the benefits of our proposed contributions detailed in the
previous chapters. In order to approve and verify the usability and the efficiency of the
proposed DSML and design tool (ArchiMO) for Marine Observatory (MO), we use an

example of underwater moving objects localization based on Underwater Acoustic
Sensor Networks. First, we model the MO under study on ArchiMate Business and

Application layers using ArchiMO, and we model it on technology layer relying on the
extended IMS metamodel in [Chi12]. Second, we illustrate how the proposed ensuring

consistency ensures the interactions between the business and application layers in
order to have one consistent model. Then, we validate the consistent model using the
network simulator NS-3, in order to support the design phase of the SN life cycle by

minimizing the architectural design errors.

6.1 UNDERWATER OBJECT LOCALIZATION CASE STUDY

Underwater Acoustic Sensor Networks (UW-ASNs) play in MO an essential role, that
aims at environmental data acquisition and in the development of the future large data
acquisition systems [SBT+08]. Ocean survey requires UW-ASNs, as they allow the data to
be exchanged and processed between the different devices such as Data Fusion servers and
Smart Sensors. An implementation of a distributed fusion architecture (DFA) [LLL09]
is adopted for these devices. On all these devices, we can have software components to
process and store the data in order to localize underwater moving objects. Thus, software
components could be localization algorithms that are implemented on different specific
devices of the UW-ASNs. For example, the trilateration algorithm is implemented on the
different Data Fusion servers, and each server require at least three sensors (cf. section
1.3) that require a software component to be implemented on each one. This software
component processes the data detected by transforming it to information in order to
transfer it to the concerned Data Fusion server.

An example about MO is the project Marine e-Data Observatory Network (MeDON)
[?]. MeDON is a seafloor observatory information system made of several sensors and a
computing system aiming at detecting and localizing marine mammals through Passive
Acoustic Monitoring [Zim11]. MeDON is an interesting example for the use of multiple

89

6

6.1. UNDERWATER OBJECT LOCALIZATION CASE STUDY

modeling formalism.

In this context, the designer should be able to include N acoustic sensors or hy-
drophones that are connected to the Y fusion servers as shown in Figure. 6.1. The
acoustic data acquired by the hydrophones, are analyzed and processed by the Smart
Sensors and Data Fusion servers, then diffused on the network. A database is used to
store the data from the servers. Then, the processed and filtered data are provided by the
Database server to the web server where the configuration of a web server is performed.
Thus, the web server broadcasts to the web clients, the marine mammals acoustic sounds
detected by the hydrophones.

We defined a model for a part of MeDON system that aims at localizing the dolphin
underwater using ArchiMO design tool. In order to localize dolphins, we implemented
the DFA and the required software components on each device as we presented at the
beginning of this section. This defined model is composed of three views according to the
layers of ArchiMate, see. Figure 6.2: Business, Application, and Technology. In Figure.
6.2, we present parts of the large model that is created by using ArchiMO design tool.
We illustrate the created MO model of each layer, and the relationships between layers,
in the next sections.

Figure 6.1: Structure of MeDON - An Example: N=6, Y=3

90

CHAPTER 6. APPLICATION OF THE PROPOSED SENSOR NETWORKS DESIGN

PROCESS TO A CASE STUDY

6
Figure 6.2: Underwater Object Localization according the three ArchiMate Layers

6.2 MODELING A MARINE OBSERVATORY CASE STUDY USING
ARCHIMO DSML AND DESIGN TOOL

This section illustrates the use of ArchiMO DSML and Design Tool, an extension of
ArchiMate and Archi for MO is proposed in section 5.1.

In order to validate our proposed ArchiMO DSML and Design Tool, we use it to
model an underwater object localization application using the new proposed MO
concepts, relationships and constraints in section 6.2.

6.2.1 The Business Model Design

The business model aims to present the different required functions and actions to localize
Dolphins underwater. As our case MeDON is constituted from six Smart Sensors and
three Data Fusion servers, so we present the functions and actions that are performed by
these sensors and servers.

The first action is performed by the Smart Sensors, which is the detection of the
dolphin. Next, the detected data is transformed to information through the Smart
Sensors. Then, this information is transferred to Data Fusion Servers. These servers fused
the transferred information and applied the localization algorithm in order to identify the
position of the dolphin.

91

6

6.2. MODELING A MARINE OBSERVATORY CASE STUDY USING ARCHIMO DSML

AND DESIGN TOOL

The scenario presented above, is presented in a model that is created in the Archi-
Mate business layer, see. Figure 6.3. This model contains MO concepts such as all the
components and SDR relationship that appear in Figure 6.3, and ArchiMate concepts
such as all the other relationships that are established between the different components.
This layer indicates that the Dolphin Detection function performs the different detections
of Smart Sensors: 1A, 2A, 3A, 1B, 2B, C. These detections are performed according to
the selected DFA. Thus, these detection functions are assigned to their proper Smart
Sensors, and these Smart Sensors are associated with the different Data Fusion servers.
Then, each Data Fusion server is assigned to select the proper Trilateration algorithm to
localize the Dolphin. This Trilateration algorithm is executed by Data Fusion servers,
and then the information is exchanged among Data Fusion servers through the Data
Fusion Transmission to be estimated and determine the coordinates of the Dolphin.

Figure 6.3: Model of a Dolphin Localization that is presented in the ArchiMate Business
Layer

6.2.2 The Application Model Design

The application model aims to describe the behaviors of each action that is created
in the business layer to localize Dolphins underwater. The first action is performed
by the Smart Sensors Systems, which is the Inform Server functions to transfer the
information to System Resources Reservation functions. Next, these functions allow the
Fusion Systems to perform the next functions which are Compute Coordinates and Store
Coordinates. Then, these coordinates are transferred to the next Fusion Systems through
the Coordinates Transmission functions.

The scenario presented above, is presented in a model that is created in the Archi-
Mate application layer, see. Figure 6.4. This model contains MO concepts such as
all the components that appear in Figure 6.4, and ArchiMate concepts such as all the
other relationships that are established between the different components. This exchange
scenario continues until the coordinates are determined, taking into consideration the

92

CHAPTER 6. APPLICATION OF THE PROPOSED SENSOR NETWORKS DESIGN

PROCESS TO A CASE STUDY

6

information that are detected by the different Smart Sensors.

Figure 6.4: Model of a Dolphin Localization that is presented in the ArchiMate Application
Layer

6.2.3 The Technology Model Design

The technology model aims to describe the topology of the different existing nodes on
the network. Also, it describes the functions that should be performed by each node and
between nodes.

According to MeDON [?], the number of Smart Sensors and Data Fusion servers is
high, and it could be increased according to the needs. For example, when we need
to enlarge the area that detects and monitors the dolphin, the number of sensors and
servers will increase. This is useful and possible as we are adopting DFA which allows
to add sensors and servers as much as it is required. For this purpose, a large number
of technology functions are required to ensure the communication between the different
nodes, sensors and servers. These types of functions are provided by IMS platform that
can be used for different contexts such as MO, Telecommunication.

Accordingly, in this layer we rely on IMS metamodel that is extended by [Chi12].
For example, the Send To function can send or forward messages from a node to another.
More specifically, exchanging messages among terminals such as between cameras,
hydrophones, smart sensors, data fusion servers. This function extends the ArchiMate
technology function in the IMS metamodel [Chi12]. Thus, this model contains IMS
concepts such as Send To and Create Invite functions, and ArchiMate concepts such as
Nodes and Communication Path functions, see. Figure 6.5.

Consequently, we defined three separate MO models according to the three Archi-
Mate layers (business, application and technology) by using ArchiMO DSML and Design
Tool. Therefore, ArchiMO handles Modeling Task 1 .

6.3 CONSISTENCY BETWEEN MODEL LAYERS

The MO designer of the business layer should use the extended ArchiMO metamodel of
ArchiMate business layer (cf. section 5.1.3.1, Business Layer). Regarding the application

93

6

6.3. CONSISTENCY BETWEEN MODEL LAYERS

Figure 6.5: Model of a Dolphin Localization that is presented in the ArchiMate Technology
Layer, from [All16]

layer, the MO designer should use the extended ArchiMO metamodel of ArchiMate
application layer (cf. section 5.1.3.1, Application Layer). However, the MO designer of
the technology layer should use the extended IMS metamodel of ArchiMate technology in
[Chi12].

In order to relate the different created models according to the different ArchiMate
layers, this section illustrates the use of specific relationships such as Used by and
Realization to ensure the interoperability between layers.

Figure 6.6 presents how the business layer inter-operate with application layer through
the Used by relationship. The Dolphin Localization business functions inter-operate with
System Resources Reservation, Compute Coordinates and Stores Coordinates applications
functions, through the Used by relationship (cf. Figure 5.7, section 3.5.1). Also, Figure
6.2 presents how the business layer inter-operate with application layer and this last
inter-operates with technology layer through the Realization relationship. The Dolphin
Detections business functions inter-operate with Inform Server application functions, and
these latter inter-operate with Create Invite technology functions, through the Realization
relationship (cf. Figure 3.8, section 3.5.1). These relationships are presented by the red
lines in Figures 6.6 and 6.2. These are examples of the use of the inter-relations between
the proposed DSML for business and application layers within MO context.

Consequently, using these inter-relations between the different layers of ArchiMate
allow the different concerned designers to have one consistent MO model from their
separated created models: business model, application model and technology model.
Therefore, these types of relationships handle Ensuring Consistency Task 2 .

94

CHAPTER 6. APPLICATION OF THE PROPOSED SENSOR NETWORKS DESIGN

PROCESS TO A CASE STUDY

6

Figure 6.6: Consistency between Business and Application Layers

6.4 SIMULATION CODE

In order to generate a code for simulation, we rely on the code generator that is proposed
in [All16] (cf. section 5.2). The proposed ArchiMO design tool generates an XMI file that
contains different ArchiMate and ArchiMO concepts and relationships. In order to get
as output a generated simulation code, the XMI file is the input for the code generator
XPAND.

Once the XMI file is ready to be the input for XPAND, the model transformation
rules can be performed. These rules could allow to generate simulation code automati-
cally and could also be integrated in model frameworks to migrate models [VKMB15] or
to generate tooling [CBC+16]. This simulation code runs in a tool that is a standard and
classical simulator in the networking domain [All16].

Several simulators are compared by [SH11], who points out that the most frequently used
network simulators in scientific articles are NS-3 and OPNET. While NS-3 is open source,
OPNET is commercial. We select the NS-3 as a network simulator, in order to simulate
the MO created models.

NS-3 runs set of classes and functions as we previously presented in (cf. section
5.2). In relation with our MO models, the C++ classes and functions must be MO
classes and functions. An example about the MO concepts and functions are illustrated
in 6.7. This figure indicates the concepts and functions of MO by black text, and the
concepts and functions of NS-3 by blue text and arrows. The Smart Sensor and Data
Fusion concepts from the business layer are C++ classes. Also, the Smart Sensor System
and Data Fusion System from the application layer are C++ classes. The Algorithm
Selection, Data Transmission, Object Localization, Data Acquisition from the buinsess
layer are functions in C++ classes. The other MO functions in 6.7 are also functions in
C++ classes.

95

6

6.5. VALIDATION OF MARINE OBSERVATORY MODEL

Figure 6.7: The corresponding MO concepts in NS-3

6.5 VALIDATION OF MARINE OBSERVATORY MODEL

The XPAND code generator provides C++ code that contains the transformed concepts
as classes and methods to implement our model [All16], see. Figure 6.7. After that, this
model implementation is running through NS-3 platform and then the simulation results
are provided in an animation file automatically generated by the NS-3 simulator [BRIH17].

Next, we import this animation file in the NetAnim tool in order to display the
results of the simulation. The figure 6.8 is a snapshot from the Net Animator tool
that represents the topology of the networks for the underwater object localization case
study. More specifically, it represents the hardware concepts of the defined consistent
MO model that are required to be defined in the technology layer after the definition of
these concepts respectively in the business and application layers. This representation
is illustrated by showing the messages that are exchanged between the different existing
nodes on the network in Figure 6.8. An example about this exchange in Figure 6.8,
is the blue line that relates the SmartSensor1A node to the PCSCF1 node. These
messages indicate the traffic between the sensor and the physical node which supports
the processing application specify at model level.

This figure 6.7 shows that the simulation results are conformed to the expected re-
sults, as we can verify that the main communication links between the different nodes
are performed by the number of exchanged messages between the sensor and the first

96

CHAPTER 6. APPLICATION OF THE PROPOSED SENSOR NETWORKS DESIGN

PROCESS TO A CASE STUDY

6

application node responsible for the first step of the localization algorithm.

So, the obtained simulation results are the main artifacts to validate the applica-
tion model regarding the deployment on the physical infrastructure. These results close
the Task 3 Validating.

Figure 6.8: A part of the animation through NetAnim tool after running NS-3, from [All16]

6.6 ITERATION OF THE PROPOSED SENSOR NETWORKS DESIGN
PROCESS

In order to test the entire proposed SN design process in chapter 4, we still need to show
the usefulness of the iterative approach on the different proposed tasks or the whole
process (cf. Figure 4.1). This usefulness can be shown only whenever errors are detected
while using the model compiler that is developed by [All16]. In addition to the code
generation, this model compiler contains an error part. It is used by taking the defined
consistent MO model as input, in order to produce a generated simulation code that is
ready for simulation (cf. section 5.2). For this purpose, we present an example of errors
that can be detected before transforming the MO model that is defined previously in
section 7.2 and section 7.3, to a simulation code.

97

6

6.6. ITERATION OF THE PROPOSED SENSOR NETWORKS DESIGN PROCESS

We have selected an example which contains an error just to illustrate the itera-
tive process when we encounter an error. We selected an error in the communication
between an interface of a smart sensor and P-CSCF1 node of IMS. This error is related to
a conflict in IP addresses. We modify one of the network addresses of the P2P link (see.
Figure 6.9). The model compiler generates a log file that contains explanation about this
error [All16] (see. Figure 6.9). The following question can be asked here: How can these
errors be detected by the model compiler?

In fact, some error detection rules are implemented through the template of XPAND
code generator by [All16]. These rules precede the generation rules that are responsible
to produce the simulation scenario. This method is responsible to generate a log file
that contains the explanation about the detected errors in the design model (see. Figure
6.9). As this figure shows an error, we iterate the concerned task where the error is
occurred to fix it and to build a new version of MO model to be simulated. Next, we
iterate the validation task on the new version by using the model compiler and we get a
result without architectural design errors. However, it is difficult to forecast how many
iterations we need, in order to obtain a valid model.

Therefore, the cycle based on modeling, generating, simulating and analysing is
useful to produce a coherent design model. Next, this model provides the input of the
next task of the development process.

Figure 6.9: An example of an error detection in design model of Marine Observatory
system, from [All16]

98

CHAPTER 6. APPLICATION OF THE PROPOSED SENSOR NETWORKS DESIGN

PROCESS TO A CASE STUDY

6

6.7 DISCUSSION

Relying on the validation result of a Marine Observatory Model, and after ensuring the
usefulness of the iterative approach, we conclude that the entire proposed SN design
process improves the processes without the use of models and simulation.

Actually, our proposed process helps the SN designer by detecting the architec-
tural design errors, and to fix them by adopting the iteration approach. Our approach
is based on two main steps to validate the design task: first, the generated design
tool ArchiMO, in chapter 5, helped the SN designers to build validated models by
implementing some additional concepts and mainly domain constraints on relationships
(cf. section 5.1.6); secondly, the simulation step provides a validation of the system model
through the model compiler constraints and mainly the analysis of the simulation results.

So the SN designer has the ability to validate the defined models as early as possi-
ble in the adopted SN development life cycle. For this purpose, we keep this kind of
simulator to satisfy the Requirement 5 Validation Tools Supported .

Synthesis

In this chapter, we defined a model for a part of MeDON system that aims at localizing
the dolphin underwater using ArchiMO design tool. Then, we defined three separate

MO models according to the three ArchiMate layers (business, application and
technology) by using the proposed ArchiMO DSML and design tool in chapter 5. Next,
we defined the ArchiMate inter-relations between the three defined models, and we built

a consistent MO model. Later, we validated this model using the model compiler of
[All16], and we obtained result which is the localization of a dolphin is displayed without
errors. Then, we fixed a detected communication error between two nodes, by iterating

the concerned task in this process. This is to show the usefulness of the iteration
approach for our proposed SN design process. Finally, we pointed out the applicability
of our SN Design Process as we defined a model for a marine observatory case study.

99

100

Conclusion and
Perspectives

To conclude this document, we summarize our modeling approach for sensors networks,
and we finish by some perspectives related to our work.

ANSWERING THE RESEARCH QUESTIONS

To achieve the observation and monitoring missions, complex operations are needed in
the context of Marine Observatory. The sensor networks developed to accomplish these
missions is considered as a complex system as it aggregates different types of software
and hardware components. Multiple tasks are assigned to each component and different
communication protocols are used. To face these challenges, we focus on the designer
activities to improve the SN development and deployment phases, and we answer the
three research questions listed below:

1. RQ 1 Design Process: To face the design complexity of SN applications, how can
we provide an assistance to guide the design phase?

2. RQ 2 Modeling Language Definition Specialization: Is it relevant to use a
domain specific language to enhance and increase the consistency and unity of the
design?

3. RQ 3 Tool Building Process: How an efficient tooling support can be produced
to achieve the main concerns of the design process?

The SN designers should perform several tasks. For each of the proposed tasks, we
have proposed an approach based on an iterative design process, a DSML or an existing
simulation tool.

To answer RQ 1 Design Process, we discussed several SN design processes, based on
Enterprise Architecture frameworks and inspired from software development life cycles.
We select an iterative process to provide early validation based on the use of system
models. In order to enable the design process, SN designers should perform several tasks.
We focused on three of them:

1. Task 1 Modeling: modeling the SN from the stakeholder’s point of view: business,
application and technology viewpoints.

2. Task 2 Ensuring Consistency: inter-relating the different viewpoints in order to
define a consistent model.

3. Task 3 Validating: validating the created model by a simulation approach.

In order to perform our proposed SN design process, we perform the three tasks listed
above. This process is enough flexible to enable code generation using model transforma-
tions as it relies on model driven engineering (MDE) approach. The inputs of the code

101

6.7. DISCUSSION

generators tools are models in order to generate executable code as outputs, that is the
input code for network simulators.

Once we perform the first two proposed tasks, Task 1 Modeling and Task 2

Ensuring Consistency, a consistent model is created by the designer. Then, in order
to enable the designer to validate his defined model, we generate executable code from
model, for network simulators. Simulation helps designers to detect troubles in early
phases of software development life cycles. However, simulation is a validation approach
that cannot guarantee that there are no errors in the model, but it can detect only
architectural design errors.

Once we perform Task 3 Validating, and by adopting the iteration action, sev-
eral iterations between the three adopted tasks are possible to build a consistent model.
On each validation, some architectural design troubles are detected so the designer will
re-perform Task 1 Modeling or Task 2 Ensuring Consistency or both of them.
This iteration can repeat the same tasks until no errors are detected during the validation
task.

The validated model is ready now, so the other phases of SN life cycle could be
performed, such as the implementation phase. During the SN design phase, the val-
idated models could help the SN designer to avoid the detection of the architectural
design errors in later phases of the adopted SN life cycle. Thereby, by ensuring a
support for the SN designer as the early validation, it will affect positively the SN de-
sign phase by minimizing the architectural design errors that may occur during this phase.

To answer RQ 2 Modeling Language Specialization, we have defined ArchiMO, Do-
main Specific Modeling Language (DSML) extending an existing Enterprise Architecture
Modeling Language, ArchiMate. This extension is done for the different ArchiMate layers:
business, application and technology. Also, we proposed to use predefined ArchiMate
relationships to inter-relate separate models. This allows the interoperability between
models. Then, we introduced this extended DSML into the SN development tool used by
the designers.

By introducing DSML into the design tools, designers are able to prevent architec-
tural design errors that can be made during the design phase. It supports Task 1

Modeling to model the SN from different points of view, and the designers use the
new extended concepts and relationships of this DSML. Also, to support the ensuring
consistency task Task 2 Ensuring Consistency, the use of predefined relationships
that are specific to inter-relate two ArchiMate layers such as Used by and Realization,
enable the designers to have one consistent model. Thereby, by ensuring a support for the
designer in the modeling and ensuring consistency tasks, it will affect positively the SN
design phase by preventing the architectural design errors and having a consistent model.

To answer RQ 3 Tool Building Process, we generated a design tool ArchiMO
that contains the extended DSML, ArchiMO metamodel. In order to enable the designer
to generate this design tool, we relied on MDE approach. This approach is based on

102

CHAPTER 6. APPLICATION OF THE PROPOSED SENSOR NETWORKS DESIGN

PROCESS TO A CASE STUDY

models, metamodels and model transformations.

By generating ArchiMO design tool, the designers are able to build consistent models
using the extended concepts and relationships by dragging and dropping model elements
from palettes. This supports Task 1 Modeling and Task 2 Ensuring Consistency

while applying the new added concepts, relationships and constraints in a less complex way.

We illustrated the proposed design process, domain specific modeling language and
design tool, using a marine observatory case study. We presented a defined model for
marine observatory showing their different views: business, application, and technology.
These models are designed using our extended version of ArchiMO tool that is generated
from the ArchiMate metamodel. Our proposed ArchiMO design tool relies completely
on the metamodel that forms the origin of the modeling language and is used in every
action of this design tool. Then, the resulting consistent model which is simulated using
the NS-3 network simulator in order to validate the system model.

PERSPECTIVES

In order to develop and improve the results of this work, we suggest the following perspec-
tives:

• We can extend the relevant requirements in the context of MO particularly envi-
ronmental constraints, new sensors features or new processing node constraints. All
these requirements must be taken into account during the development life cycle.
And to satisfy these new requirements, we should need to extend the list of the
concepts and relationships used to specify the business, the application and the con-
straints of SN should be made. In this case, we will include in our life cycle iteration
of the extension of our MO language, and we will re-apply our methodology from
the beginning. Thus, we consider that our ArchiMO metamodel definition should
include the life cycle of the MO development.

• More error detection rules should be added to support the designer and facilitate the
validation process. This should be done by domain experts who know the restrictions
and constraints of the system components. The goal is to analyze what kind of
properties that we can verify in the simulator and extend the modeling constraints
related to these simulator properties.

103

104

Bibliography

[AAK+14] Charbel Geryes Aoun, Iyas Alloush, Yvon Kermarrec, Oussama Kassem Zein, and Joel
Champeau. Domain specific modeling language for object localization in marine observa-
tories. In SENSORCOMM 2014, 2014. 41, 61

[AAK+15] Charbel Geryes Aoun, Iyas Alloush, Yvon Kermarrec, Joel Champeau, and Ous-
sama Kassem Zein. A modeling approach for marine observatory. Sensors & Transducers,
185(2):129, 2015. 61

[AAKR14] Iyas Alloush, Charbel Geryes Aoun, Yvon Kermarrec, and Siegfried Rouvrais. A domain-
specific framework for creating early trusted underwater systems relying on enterprise archi-
tecture. In Modelling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2014 IEEE 22nd International Symposium on, pages 120–125. IEEE, 2014.
41, 61

[AB15] Adel Alshamrani and Abdullah Bahattab. A comparison between three sdlc models waterfall
model, spiral model, and incremental/iterative model. International Journal of Computer
Science Issues (IJCSI), 12(1):106, 2015. 50

[ABB+14] Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph Gladisch,
Sarah Grebing, Reiner Hähnle, Martin Hentschel, Mihai Herda, Vladimir Klebanov, et al.
The key platform for verification and analysis of java programs. In Verified Software:
Theories, Tools and Experiments, pages 55–71. Springer, 2014. 59

[AGF05] M Azmoodeh, N Georgalas, and S Fisher. Model-driven systems development and integra-
tion environment. BT Technology Journal, 23(3):96–110, 2005. 28

[AHS06] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Global sensor networks. Technical report,
2006. 41

[AKR13] Iyas Alloush, Yvon Kermarrec, and Siegfried Rouvrais. A generalized model transformation
approach to link design models to network simulators-ns-3 case study. In SIMULTECH,
pages 337–344. 2013. xvii, 41

[Ale12] Paulo Alencar. Handbook of Research on Mobile Software Engineering: Design, Implemen-
tation, and Emergent Applications: Design, Implementation, and Emergent Applications.
IGI Global, 2012. 53

[All16] Iyas Alloush. DeVerTeS: A Design and Verification Framework for Telecommunication
Services. PhD thesis, Télécom Bretagne, Université de Bretagne-Sud, 2016. xii, 42, 44, 47,
49, 64, 80, 86, 87, 94, 95, 96, 97, 98, 99

[And13] Cyrille André. Approche crédibiliste pour la fusion multi capteurs décentralisée. PhD thesis,
Université Paris Sud-Paris XI, 2013. 10, 12

[AR07] Peter Alriksson and Anders Rantzer. Experimental evaluation of a distributed kalman
filter algorithm. In Decision and Control, 2007 46th IEEE Conference on, pages 5499–
5504. IEEE, 2007. 12

[ASMT+12] Oleksandr Artemenko, Tobias Simon, Andreas Mitschele-Thiel, Dominik Schulz, and
Rheza Satria Ta. Comparison of anchor selection algorithms for improvement of posi-
tion estimation during the wi-fi localization process in disaster scenario. In Local Computer
Networks (LCN), 2012 IEEE 37th Conference on, pages 44–49. IEEE, 2012. 9

105

BIBLIOGRAPHY

[AYG10] Achilleas Achilleos, Kun Yang, and Nektarios Georgalas. Context modelling and a context-
aware framework for pervasive service creation: A model-driven approach. Pervasive and
Mobile Computing, 6(2):281–296, 2010. 14, 15, 28, 41, 43

[BBD+00] Eerke Boiten, Howard Bowman, John Derrick, Peter Linington, and Maarten Steen. View-
point consistency in odp. Computer Networks, 34(3):503–537, 2000. 25

[BBDS99] Howard Bowman, Eerke A. Boiten, John Derrick, and MWA Steen. Strategies for consis-
tency checking based on unification. Science of Computer Programming, 33(3):261–298,
1999. 25

[BBL12] Stefan Bente, Uwe Bombosch, and Shailendra Langade. Collaborative Enterprise Architec-
ture: Enriching EA with lean, agile, and enterprise 2.0 practices. Newnes, 2012. 33

[BDF+05] Ramón Béjar, Carmel Domshlak, Cèsar Fernández, Carla Gomes, Bhaskar Krishnamachari,
Bart Selman, and Magda Valls. Sensor networks and distributed csp: communication,
computation and complexity. Artificial Intelligence, 161(1):117–147, 2005. xv

[Béz04] Jean Bézivin. In search of a basic principle for model driven engineering. Novatica Journal,
Special Issue, 5(2):21–24, 2004. 22

[BJ02] J.-L. Bakker and R. Jain. Next generation service creation using xml scripting languages.
ICC 2002. IEEE International Conference on, 4:2001–2007, 2002. 41

[BJKV06] Jean Bézivin, Frédéric Jouault, Ivan Kurtev, and Patrick Valduriez. Model-based dsl frame-
works. In Companion to the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA, pages 22–26. Citeseer,
2006. 25, 75

[BONL08] Azzedine Boukerche, Horacio ABF Oliveira, Eduardo F Nakamura, and Antonio AF
Loureiro. Vehicular ad hoc networks: A new challenge for localization-based systems.
Computer communications, 31(12):2838–2849, 2008. 8

[BRIH17] Amel Berrachedi, Messaoud Rahim, Malika Ioualalen, and Ahmed Hammad. Validation of
a sysml based design for wireless sensor networks. In AIP Conference Proceedings, volume
1863, page 330002. AIP Publishing, 2017. 96

[BS08] Pruet Boonma and Junichi Suzuki. Middleware support for pluggable non-functional prop-
erties in wireless sensor networks. In Services-Part I, 2008. IEEE Congress on, pages
360–367. IEEE, 2008. 28

[BS10] Pruet Boonma and Junichi Suzuki. Moppet: A model-driven performance engineering
framework for wireless sensor networks. The Computer Journal, page bxp129, 2010. 28

[BT10] Kai Beckmann and Marcus Thoss. A model-driven software development approach using
omg dds for wireless sensor networks. In Software Technologies for Embedded and Ubiquitous
Systems, pages 95–106. Springer, 2010. 28

[Bur14] Erik Burger. Flexible Views for View-based Model-driven Development, volume 15. KIT
Scientific Publishing, 2014. 34

[CAKR11] Vanea Chiprianov, Iyas Alloush, Yvon Kermarrec, and Siegfried Rouvrais. Telecommunica-
tions service creation: Towards extensions for enterprise architecture modeling languages.
In 6th Intl. Conf. on Software and Data Technologies (ICSOFT), volume 1, pages 23–29,
Seville, Spain, 2011. 17, 76, 87

[Cas13] Federico Castanedo. A review of data fusion techniques. The Scientific World Journal,
2013, 2013. 9

106

BIBLIOGRAPHY

[CBC+16] Benoit Combemale, Cédric Brun, Joël Champeau, Xavier Crégut, Julien Deantoni, and
Jérome Le Noir. A tool-supported approach for concurrent execution of heterogeneous
models. In 8th European Congress on Embedded Real Time Software and Systems (ERTS
2016), 2016. 95

[CCAN14] Srimathi Chandrasekaran, Eunmi Choi, Jemal H Abawajy, and Rajesh Natarajan. Sensor
grid middleware metamodeling and analysis. International Journal of Distributed Sensor
Networks, 2014, 2014. 34

[CDV08] David Chen, Guy Doumeingts, and François Vernadat. Architectures for enterprise integra-
tion and interoperability: Past, present and future. Computers in industry, 59(7):647–659,
2008. 32

[CEKS01] Tony Clark, Andy Evans, Stuart Kent, and Paul Sammut. The mmf approach to engineering
object-oriented design languages. 2001. 22, 24

[CF01] Paul G Carlock and Robert E Fenton. System of systems (sos) enterprise systems engi-
neering for information-intensive organizations. Systems engineering, 4(4):242–261, 2001.
4

[CGA15] Yvon kermarrec Joel Champeau Oussama Kassem Zein Charbel Geryes Aoun, Iyas Alloush.
A mapping approach for marine observatory relying on enterprise architecture. In OCEANS,
2015 IEEE. IEEE, 2015. 61

[CGLP05] Andrea Caiti, Andrea Garulli, Flavio Livide, and Domenico Prattichizzo. Localization of
autonomous underwater vehicles by floating acoustic buoys: a set-membership approach.
Oceanic Engineering, IEEE Journal of, 30(1):140–152, 2005. 8, 9

[CGS12] Hyun Cho, Jeff Gray, and Eugene Syriani. Creating visual domain-specific modeling lan-
guages from end-user demonstration. In Proceedings of the 4th International Workshop on
Modeling in Software Engineering, pages 22–28. IEEE Press, 2012. 37, 61

[Chi12] Vanea Chiprianov. Collaborative construction of telecommunications services. An enter-
prise architecture and model driven engineering method. PhD thesis, Télécom Bretagne,
Université de Bretagne-Sud, 2012. 28, 32, 34, 35, 37, 47, 64, 74, 85, 86, 87, 89, 93, 94

[CKR12] Vanea Chiprianov, Yvon Kermarrec, and Siegfried Rouvrais. Extending enterprise architec-
ture modeling languages: Application to telecommunications service creation. In The 27th
Symposium On Applied Computing, pages 21–24, Trento, 2012. ACM. 17, 35, 44, 71

[CKRS14] Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais, and Jacques Simonin. Extending
enterprise architecture modeling languages for domain specificity and collaboration: appli-
cation to telecommunication service design. Software & Systems Modeling, 13(3):963–974,
2014. 35, 59, 75

[CL10] Byoung-Suk Choi and Ju-Jang Lee. Sensor network based localization algorithm using
fusion sensor-agent for indoor service robot. IEEE Transactions on Consumer Electronics,
56(3), 2010. 8

[CM98] Charles Consel and Renaud Marlet. Architecture software using: a methodology for lan-
guage development. In Principles of Declarative Programming, pages 170–194. Springer,
1998. 26

[CM05] C-Y Chong and Shozo Mori. Distributed fusion and communication management for target
identification. In Information Fusion, 2005 8th International Conference on, volume 2,
pages 8–pp. IEEE, 2005. 10, 12, 13

[CM13] Brian H Cameron and Eric McMillan. Analyzing the current trends in enterprise architec-
ture frameworks. Journal of Enterprise Architecture, 9(1):60–71, 2013. 32

107

BIBLIOGRAPHY

[CMSD04] Eric Cariou, Raphaël Marvie, Lionel Seinturier, and Laurence Duchien. Ocl for the speci-
fication of model transformation contracts. In OCL and Model Driven Engineering, UML
2004 Conference Workshop, volume 12, pages 69–83, 2004. 67

[Com] European Commission. Stakeholders Consultation Network Technologies Work Programme
2016-2017. https://ec.europa.eu/digital-agenda/en/news/stakeholders-consultation-
workshop-network-technologies-work-programme-2016-2017. xvi

[CT07] Jordi Cabot and Ernest Teniente. Transformation techniques for ocl constraints. Science
of Computer Programming, 68(3):179–195, 2007. 24, 67

[Cuz09] Alfredo Cuzzocrea. Intelligent techniques for warehousing and mining sensor network data.
IGI Global, 2009. xiv, xv

[CWXG14] Nengcheng Chen, Ke Wang, Changjiang Xiao, and Jianya Gong. A heterogeneous sensor
web node meta-model for the management of a flood monitoring system. Environmental
Modelling & Software, 54:222–237, 2014. 34

[CZ15] Joel Champeau and Oussama Kassem Zein. A modeling approach for marine observatory.
2015. 41

[DBST10] Zekai Demirezen, Barrett R Bryant, Anthony Skjellum, and Murat M Tanik. Design space
analysis in model-driven engineering. Journal of Integrated Design and Process Science,
14(1):1, 2010. 61

[DNR03] Dionisio De Niz and Raj Rajkumar. Time weaver: a software-through-models framework
for embedded real-time systems. In ACM SIGPLAN Notices, volume 38, pages 133–143.
ACM, 2003. 13

[Ecl15] Eclipse Foundation: Eclipse Modeling Framework (EMF).
http://www.eclipse.org/modeling/emf/, Last visited 27-September-2015. 27

[EG10] James Brusey Michael Allen Geoffrey Challen Elena Gaura, Lewis Girod. Wireless Sensor
Networks: Deployments and Design Frameworks. Springer, 2010. 5

[EIS] KCAUW EISENECKER. Generative programming-methods, tools, and applications. 2000.
Disponible en. 22

[EKW92] David W Embley, Barry D Kurtz, and Scott N Woodfield. Object-oriented systems analysis:
a model-driven approach. Yourdon Press Englewood Cliffs, NJ, 1992. 67

[EVG07a] Melike Erol, Luiz FM Vieira, and Mario Gerla. Auv-aided localization for underwater
sensor networks. In Wireless Algorithms, Systems and Applications, 2007. WASA 2007.
International Conference on, pages 44–54. IEEE, 2007. xv

[EVG07b] Melike Erol, Luiz FM Vieira, and Mario Gerla. Auv-aided localization for underwater
sensor networks. In Wireless Algorithms, Systems and Applications, 2007. WASA 2007.
International Conference on, pages 44–54. IEEE, 2007. 9

[EZ14] Nicole El Zoghby. Fusion distribuée de données échangées dans un réseau de véhicules.
PhD thesis, Université de Technologie de Compiègne, 2014. 10

[FBK+11] Alexander Funk, Claas Busemann, Christian Kuka, Susanne Boll, and Daniela Nicklas.
Open sensor platforms: The sensor web enablement framework and beyond. In MMS,
pages 39–52, 2011. 41

[FDFL+14] Giancarlo Fortino, Giuseppe Di Fatta, Wenfeng Li, Sergio F Ochoa, Alfredo Cuzzocrea,
and Mukaddim Pathan. Internet and Distributed Computing Systems: 7th International
Conference, IDCS 2014, Calabria, Italy, September 22-24, 2014, Proceedings, volume 8729.
Springer, 2014. 34

108

BIBLIOGRAPHY

[FIFF15] Alberto Fernández-Isabel and Rubén Fuentes-Fernández. Analysis of intelligent transporta-
tion systems using model-driven simulations. Sensors, 15(6):14116–14141, 2015. 14, 15, 17

[FMSB11] Franck Fleurey, Brice Morin, Arnor Solberg, and Olivier Barais. Mde to manage commu-
nications with and between resource-constrained systems. In International Conference on
Model Driven Engineering Languages and Systems, pages 349–363. Springer, 2011. 34

[Fon07] Frédéric Fondement. Concrete syntax definition for modeling languages. PhD thesis, Cite-
seer, 2007. 35, 37, 40

[For99] IFIP-IFAC Task Force. Geram: Generalised enterprise reference architecture and method-
ology. IFIP-IFAC Task Force on Architectures for Enterprise Integration March Version,
1(3), 1999. 32

[FR07] Robert France and Bernhard Rumpe. Model-driven development of complex software: A
research roadmap. In 2007 Future of Software Engineering, pages 37–54. IEEE Computer
Society, 2007. 22, 23

[Fra13] The Open Group Architecture Framwork. Integrating togaf and the banking industry archi-
tecture network (bian) service landscape whitepaper. In Open Group Enterprise Architecture
Conference London., 2013. 42

[GBN10] Dawud Gordon, Michael Beigl, and Martin Alexander Neumann. dinam: A wireless sen-
sor network concept and platform for rapid development. In Networked Sensing Systems
(INSS), 2010 Seventh International Conference on, pages 57–60. IEEE, 2010. 4, 5

[GGB+10] Elena Gaura, Lewis Girod, James Brusey, Michael Allen, and Geoffrey Challen. Wireless
sensor networks: Deployments and design frameworks. Springer Science & Business Media,
2010. 5

[GK03] Jeff Gray and Gábor Karsai. An examination of dsls for concisely representing model
traversals and transformations. In System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, pages 10–pp. IEEE, 2003. 24

[GK11] Janis Grabis and Marite Kirikova. Perspectives in Business Informatics Research: 10th In-
ternational Conference, BIR 2011, Riga, Latvia, October 6-8, 2011, Proceedings, volume 90.
Springer, 2011. 41, 42

[GKH07] Dragan Gašević, Nima Kaviani, and Marek Hatala. On metamodeling in megamodels. In
Model Driven Engineering Languages and Systems, pages 91–105. Springer, 2007. 22

[GR04] Martin Große-Rhode. On model integration and integration modelling. In Integration of
Software Specification Techniques for Applications in Engineering, pages 567–581. Springer,
2004. 24, 25

[Gro09] The Open Group. Archimate 1.0 specification. In xxix, 25, 27, 29, 30, 31, 32, 33, 34, 35,
78, 98, 2009. xi, 33, 35, 36, 37, 38, 41, 49

[Hau14] Michael Hauck. Automated Experiments for Deriving Performance-relevant Properties of
Software Execution Environments, volume 13. KIT Scientific Publishing, 2014. 34

[HJS+12] Guangjie Han, Jinfang Jiang, Lei Shu, Yongjun Xu, and Feng Wang. Localization algo-
rithms of underwater wireless sensor networks: A survey. Sensors, 12(2):2026–2061, 2012.
9

[HLS+05] John Heidemann, Yuan Li, Affan Syed, Jack Wills, and Wei Ye. Underwater sensor network-
ing: Research challenges and potential applications. Proceedings of the Technical Report
ISI-TR-2005-603, USC/Information Sciences Institute, 2005. xiv

109

BIBLIOGRAPHY

[HML02] Andreas Hoffmann, Heinrich Meyr, and Rainer Leupers. Architecture exploration for em-
bedded processors with LISA. Springer, 2002. 13

[Hot13] Asilomar Hotel. Forty-seventh asilomar conference on signals, systems, and computers.
2013. 8

[HR04] David Harel and Bernhard Rumpe. Meaningful modeling: what’s the semantics of" seman-
tics"? Computer, 37(10):64–72, 2004. 24

[HSM10] Kenn Hussey, Bran Selic, and Toby McClean. An extended survey of open source model-
based engineering tools. Technical report, Revision E, 2010. 27

[HSZ12] John Heidemann, Milica Stojanovic, and Michele Zorzi. Underwater sensor networks: appli-
cations, advances and challenges. Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, 370(1958):158–175, 2012. xv

[Hur14] Jim Hurst. Comparing software development life cycles. SANNS Software Security, 2014.
51

[HYW+06] John Heidemann, Wei Ye, Jack Wills, Affan Syed, and Yuan Li. Research challenges and ap-
plications for underwater sensor networking. In Wireless Communications and Networking
Conference, 2006. WCNC 2006. IEEE, volume 1, pages 228–235. IEEE, 2006. xiv

[Ini12] Krzysztof Iniewski. Optical, acoustic, magnetic, and mechanical sensor technologies. CRC
Press, 2012. 8

[Jac94] Michael Jackson. Software development method. A Classical Mind: Essays in Honour of
CAR Hoare; AW Roscoe ed, pages 211–230, 1994. 50, 51

[Jam08] Mo Jamshidi. Systems of systems engineering: principles and applications. CRC press,
2008. 3, 4

[JE14] Andrew Josey and Bill Estrem. ArchiMate R© 2 Certification Study Guide. Van Haren, 2014.
32

[JLVB+04] Henk Jonkers, Marc Lankhorst, Rene Van Buuren, Stijn Hoppenbrouwers, Marcello Bon-
sangue, and Leendert Van Der Torre. Concepts for modeling enterprise architectures. In-
ternational Journal of Cooperative Information Systems, 13(03):257–287, 2004. 35

[KBJV06] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. Model-based dsl frame-
works. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented program-
ming systems, languages, and applications, pages 602–616. ACM, 2006. 22, 24

[KC90] Barbara Kitchenhani and Roland Carn. Research and practice: software design methods
and tools. 1990. 41

[KG12] Gourav Khurana and Sachin Gupta. Study and comparison of software development life
cycle models. IJREAS, 2(2):1–9, 2012. 51

[KGC] Deepak Khosla, James Guillochon, and Howard Choe. Distributed fusion and tracking in
multi-sensor systems. 10, 12, 13

[KH05] Elliott Kaplan and Christopher Hegarty. Understanding GPS: principles and applications.
Artech house, 2005. 8, 10, 62

[Kim07] Duk-Hyun Kim. Towards an architecture modeling language for networked organizations.
In Establishing the Foundation of Collaborative Networks, pages 309–316. Springer, 2007.
35

110

BIBLIOGRAPHY

[KK03] Mika Katara and Shmuel Katz. Architectural views of aspects. In Proceedings of the 2nd
international conference on Aspect-oriented software development, pages 1–10. ACM, 2003.
6

[KK07] Mika Katara and Shmuel Katz. A concern architecture view for aspect-oriented software
design. Software & Systems Modeling, 6(3):247–265, 2007. 6

[KMB+96] Richard B Kieburtz, Laura McKinney, Jeffrey M Bell, James Hook, Alex Kotov, Jeffrey
Lewis, Dino P Oliva, Tim Sheard, Ira Smith, and Lisa Walton. A software engineering
experiment in software component generation. In Proceedings of the 18th international
conference on Software engineering, pages 542–552. IEEE Computer Society, 1996. 24

[KRV07] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated definition of abstract and
concrete syntax for textual languages. In Model Driven Engineering Languages and Systems,
pages 286–300. Springer, 2007. 22, 24

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: enabling full code gen-
eration. John Wiley & Sons, 2008. 34

[Lan09] G. Berrisford & M. Lankhorst. Using archimate with togaf-part 1: An-
swers to nine general questions about methods. In Via Nova Architectura,
https://doc.novay.nl/dsweb/Get/Document-101474, 2009. 40

[LCD+14] J Loicq, L Clermont, W Dierckxb, T Van Achteren, and Y Stockmana. A 100 m ground
resolution global daily coverage earth observation mission. In International Conference on
Space Optics, volume 7, page 10, 2014. 8, 10, 12

[LCK+97] Martin E Liggins, Chee-Yee Chong, Ivan Kadar, Mark G Alford, Vincent Vannicola, Stelios
Thomopoulos, et al. Distributed fusion architectures and algorithms for target tracking.
Proceedings of the IEEE, 85(1):95–107, 1997. 10, 12, 13

[Lew05] Raymond Lewallen. Software development life cycle models. Codebetter. com. Available
online at www. codebetter. com/blogs/raymond. lewallen/archive/2005/07/13/129114. aspx,
2005. 50

[LGS+05] Christl Lauterbach, Rupert Glaser, Domnic Savio, Markus Schnell, Werner Weber, Susanne
Kornely, and Annelie Stöhr. A self-organizing and fault-tolerant wired peer-to-peer sensor
network for textile applications. In Engineering Self-Organising Systems, pages 256–266.
Springer, 2005. xiii

[LIHL17] Martin Liggins II, David Hall, and James Llinas. Handbook of multisensor data fusion:
theory and practice. CRC press, 2017. 10

[LKS08] Jaehan Lee, Jangsub Kim, and Erchin Serpedin. Clock offset estimation in wireless sensor
networks using bootstrap bias correction. In Wireless Algorithms, Systems, and Applica-
tions, pages 322–329. Springer, 2008. xiv

[LLL09] Martin E. Liggins, David L.Hall, and James Llinas. Multisensor Data Fusion, Theory and
Practice. Taylor & Francis Group, LLC, 2009. 10, 12, 61, 62, 71, 75, 89

[Luo13] ZongWei Luo. Technological Solutions for Modern Logistics and Supply Chain Management.
IGI Global, 2013. 41

[LVCÁ+07] Fernando Losilla, Cristina Vicente-Chicote, Bárbara Álvarez, Andrés Iborra, and Pedro
Sánchez. Wireless sensor network application development: An architecture-centric mde
approach. In Software Architecture, pages 179–194. Springer, 2007. 28

[LWW11] Xiang-Yang Li, Yajun Wang, and Yu Wang. Complexity of data collection, aggregation, and
selection for wireless sensor networks. Computers, IEEE Transactions on, 60(3):386–399,
2011. xv

111

BIBLIOGRAPHY

[Mar08] Slaviša Markovic. Model refactoring using transformations. PhD thesis, ÉCOLE POLY-
TECHNIQUE FÉDÉRALE DE LAUSANNE, 2008. 24, 68

[MFHH02] Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. Tag: A tiny
aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review,
36(SI):131–146, 2002. 13

[MG10] Nabil Mohammed Ali Munassar and A Govardhan. A comparison between five models of
software engineering. IJCSI, 5:95–101, 2010. 51

[MHO11] Martin Meyer, Markus Helfert, and Conor O’Brien. An analysis of enterprise architecture
maturity frameworks. In Perspectives in Business Informatics Research, pages 167–177.
Springer, 2011. 42

[Mil07] Kevin L Mills. A brief survey of self-organization in wireless sensor networks. Wireless
Communications and Mobile Computing, 7(7):823–834, 2007. 7, 8

[Mit04] Nikolas Mitrou. Networking 2004: Networking Technologies, Services, and Protocols; Per-
formance of Computer and Communications Networks; Mobile and Wireless Communica-
tions; Third International IFIP-TC6 Networking Conference, Athens, Greece, May 9-14,
2004; Proceedings, volume 3042. Springer Science & Business Media, 2004. xiv, xv, 9

[Mit07] HB Mitchell. Introduction. In Multi-Sensor Data Fusion, pages 3–13. Springer, 2007. 10

[MM07] Wassim Masri and Zoubir Mammeri. Middleware for wireless sensor networks: A compara-
tive analysis. In Network and Parallel Computing Workshops, 2007. NPC Workshops. IFIP
International Conference on, pages 349–356. IEEE, 2007. 28

[MMD15] P Maurya, R Madhan, and E Desa. Potential of autonomous underwater vehicles as new
generation ocean data platforms. Indian Academy of Sciences, 2015. 8

[MRI12] Marjan Moradi, Javad Rezazadeh, and Abdul Samad Ismail. A reverse localization scheme
for underwater acoustic sensor networks. Sensors, 12(4):4352–4380, 2012. xv

[MSB11] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing. John
Wiley & Sons, 2011. 59

[MSDW01] Somajyoti Majumder, Steve Scheding, and Hugh F Durrant-Whyte. Multisensor data fusion
for underwater navigation. Robotics and Autonomous Systems, 35(2):97–108, 2001. 71, 75

[MT11] Amsterdam Cape Town Dubai London Madrid and Milan Munich Paris Montreal Toronto.
Ian sommerville. 2011. 24, 34

[NAS15] NASA. Assurance Plan for Complex Electronics: Assurance Process: Verifica-
tion and Validation, 15-Oct-2015. http://www.hq.nasa.gov/office/codeq/software/

ComplexElectronics/p_vv.htm. 59

[Nor03] Ovidiu Noran. An analysis of the zachman framework for enterprise architecture from the
geram perspective. Annual Reviews in Control, 27(2):163–183, 2003. 35, 37

[OLPW+08] Martin Op’t Land, Erik Proper, Maarten Waage, Jeroen Cloo, and Claudia Steghuis. En-
terprise architecture: creating value by informed governance. Springer Science & Business
Media, 2008. 32

[OMG03] OMG. Mda guide version 1.0.1. In http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf,
June 2003. 27

[OMG10] OMG. Meta object facility (mof) core specification. In V. 2.4, 2010. 27

[OMG15] OMG MOF OMG Meta Object Facility Specification v1.4, OMG Document formal.
http://www.omg.org, Last visited 24-September-2015. 22

112

BIBLIOGRAPHY

[oS07] National University of Singapore. http://pat.comp.nus.edu.sg. In PAT: Process Analaysis
Toolkit, 2007. xi, 40, 41, 42

[Pao94] Lucy Pao. Distributed multisensor fusion. In Guidance, Navigation, and Control Confer-
ence, page 3549, 1994. 10, 12

[Par12] Fernando S Parreiras. Semantic Web and Model-Driven Engineering. John Wiley & Sons,
2012. 21, 22, 25, 80

[PGSP11] Juan Pavón, Jorge Gómez-Sanz, and Adolfo López Paredes. The sicossys approach to sos
engineering. In System of systems engineering (SoSE), 2011 6th international conference
on, pages 179–184. IEEE, 2011. 15

[PMDC+07] Jorge-Luis Pérez-Medina, Sophie Dupuy-Chessa, et al. A survey of model driven engineering
tools for user interface design. In Task Models and Diagrams for User Interface Design,
pages 84–97. Springer, 2007. 22, 27, 35, 38

[QEJVS09] Dick Quartel, Wilco Engelsman, Henk Jonkers, and Marten Van Sinderen. A goal-oriented
requirements modelling language for enterprise architecture. In Enterprise Distributed Ob-
ject Computing Conference, 2009. EDOC’09. IEEE International, pages 3–13. IEEE, 2009.
35, 37

[Ras] Vanshika Rastogi. Software development life cycle models-comparison, consequences. 50

[RBR10] Anthony G Rowe, Gaurav Bhatia, and Raj Rajkumar. A model-based design approach for
wireless sensor-actuator networks. 2010. 13, 14, 16, 17

[Rec08] Jörg Rech. Model-Driven Software Development: Integrating Quality Assurance: Integrating
Quality Assurance. IGI Global, 2008. 23

[Ree15] Brooks L Reed. Controller design for underwater vehicle systems with communication con-
straints. Master’s thesis, Massachusetts Institute of Technology and Woods Hole Oceano-
graphic Institution, 2015. xiv

[RGK+11] GT Raju, DK Ghosh, T Satish Kumar, S Kavyashree, and V Nagaveni. Wireless sensor
network lifetime optimization. 2011. 10

[RKM02] Kay Römer, Oliver Kasten, and Friedemann Mattern. Middleware challenges for wire-
less sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review,
6(4):59–61, 2002. 28

[Roo08] Tanya Gazelle Roosta. Attacks and defenses of ubiquitous sensor networks. ProQuest, 2008.
xiv, xv

[RP08] Raman Ramsin and Richard F Paige. Process-centered review of object oriented software
development methodologies. ACM Computing Surveys (CSUR), 40(1):3, 2008. 50

[RW11] Nick Rozanski and Eowin Woods. Applying viewpoints and views to software architecture.
Whitepaper, http://www. viewpoints-andperspectives. info/vpandp/wpcontent/themes/sec-
ondedition/doc/VPandV_WhitePaper. pdf (accessed 2012-05-23), 2011. xvi, 6

[RWO03] William Robinson, Gisele Welch, and Gary O’Neill. The need for a systems engineering
approach for measuring and predicting the degradation of aging systems and how it can be
achieved. Technical report, DTIC Document, 2003. 4

[RZ00] Zebhauser Rothacher and Benedikt Zebhauser. Einführung in gps. Tutorial zum, 3, 2000.
9

113

BIBLIOGRAPHY

[SBT+08] J Sorribas, A Barba, E Trullols, A Manuel, M de la Muela, et al. Marine sensor net-
works and ocean observatories. a policy based management approach. In The Third In-
ternational Multi-Conference on Computing in the Global Information Technology, pages
143–147. IEEE, 2008. 89

[Sch06] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER
SOCIETY-, 39(2):25, 2006. 28

[SCK11] Jean-Philippe Schneider, Joël Champeau, and Dominique Kerjean. Domain-specific mod-
elling applied to inteegration of smart sensors into an information system. In ICEIS 2011,
page XX, 2011. xv

[SGV+06] Eduardo Souto, Germano Guimarães, Glauco Vasconcelos, Mardoqueu Vieira, Nelson Rosa,
Carlos Ferraz, and Judith Kelner. Mires: a publish/subscribe middleware for sensor net-
works. Personal and Ubiquitous Computing, 10(1):37–44, 2006. 28

[SH11] Nurul I Sarkar and Syafnidar A Halim. A review of simulation of telecommunication net-
works: simulators, classification, comparison, methodologies, and recommendations. 2011.
95

[Sha06] Ali Fatolahi & Fereidoon Shams. An investigation into applying uml to the zachman frame-
work. Information Systems Frontiers, 8:133–143, 2006. 32

[SHL12] Xianwei Sun, Scott C-H Huang, and Minming Li. Lower bounds on data collection time
in sensor networks. In Wireless Algorithms, Systems, and Applications, pages 120–131.
Springer, 2012. xiv

[SHS01] Andreas Savvides, Chih-Chieh Han, and Mani B Strivastava. Dynamic fine-grained localiza-
tion in ad-hoc networks of sensors. In Proceedings of the 7th annual international conference
on Mobile computing and networking, pages 166–179. ACM, 2001. 8

[Sof15] Software Development Magazine - Programming, Software Testing, Project Manage-
ment, Jobs. http://www.methodsandtools.com/archive/archive.php?id=69p3, Last visited
20-October-2015. xi, 23

[Som04] Ian Sommerville. Software Engineering (7th Edition). Pearson Addison Wesley, 2004. 50,
51

[SOV+11] Marjana Shammi, Sietse Overbeek, Robert Verburg, Marijn Janssen, and Yao-Hua Tan.
Agile process for integrated service delivery. Delft University of Technology, 2011. 53

[Sri10] Neelam Srivastava. Challenges of next-generation wireless sensor networks and its impact
on society. arXiv preprint arXiv:1002.4680, 2010. xv

[TG11] Sanjana Taya and Shaveta Gupta. Comparative analysis of software development life cycle
models. ijcst, 2(4), 2011. 51

[THE16] THE Open GROUP. http://pubs.opengroup.org/architecture/archimate2-doc/chap08.html,
Last visited 13-03-2016. xi, 6, 27

[TOG] TOGAF. THE Open GROUP. http://theopengroup.org/. 33

[TTH11] Luc Touraille, Mamadou K. Traoré, and David R. C. Hill. A model-driven software envi-
ronment for modeling, simulation and analysis of complex systems. In Proceedings of the
2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium,
TMS-DEVS ’11, pages 229–237, San Diego, CA, USA, 2011. 14, 15, 17, 28, 41, 43

[vdB09] MGJ van den Brand. Model-driven engineering meets generic language technology. In
Software Language Engineering, pages 8–15. Springer, 2009. 21, 22, 25

114

BIBLIOGRAPHY

[VDKV00a] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. Sigplan Notices, 35(6):26–36, 2000. 24, 26

[VDKV00b] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. Sigplan Notices, 35(6):26–36, 2000. 24

[VDSMVB09] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. Challenges in model-driven
software engineering. In Models in Software Engineering, pages 35–47. Springer, 2009. 22

[Vey16] Loeyssiere. Comparison of centralized and distributed fusion architectures in a sensor net-
work. 2016. 10, 13

[VG09] Ehsan Vossough and Janusz R Getta. Micro implementation of join operation at cluster-
ing nodes of heterogenous sensor networks. In International United Information Systems
Conference, pages 75–90. Springer, 2009. 7

[VKMB15] Paola Vallejo, Mickaël Kerboeuf, Kevin JM Martin, and Jean-Philippe Babau. Improving
reuse by means of asymmetrical model migrations: An application to the orcc case study.
In Model Driven Engineering Languages and Systems (MODELS), 2015 ACM/IEEE 18th
International Conference on, pages 358–367. IEEE, 2015. 95

[VMP14] Vladimir Vujović, Mirjana Maksimović, and Branko Perišić. A dsm for a modeling restful
sensor web network. In 10th Annual International Conference on Information Technology
& Computer Science, pages 19–22, 2014. 14, 15

[Wan08] Chong Wang. Localization and its applications in self-configurable wireless networks. Pro-
Quest, 2008. 8, 9

[WBH+13] Gerold Wefer, David Billet, Dierk Hebbeln, Bo Barker Jorgensen, Michael Schlüter, and
Tjeerd CE Van Weering. Ocean margin systems. Springer Science & Business Media, 2013.
8

[YL13] Eric Yu and Alexei Lapouchnian. Architecting the enterprise to leverage a confluence of
emerging technologies. In Proc. 1st International Workshop on Advancement from Conflu-
ence of Emerging Technologies (ACET 2013) at CASCON, 2013. 42

[YZL+08] Jue Yang, Chengyang Zhang, Xinrong Li, Yan Huang, Shengli Fu, and Miguel Acevedo. An
environmental monitoring system with integrated wired and wireless sensors. In Wireless
Algorithms, Systems, and Applications, pages 224–236. Springer, 2008. xiii

[ZCKA09] Oussama Kassem Zein, Joel Champeau, Dominique Kerjean, and Yves Auffret. Smart
sensor metamodel for deep sea observatory. In OCEANS 2009-EUROPE, pages 1–6. IEEE,
2009. xiv, xvii, 34

[ZD13] Marco Zuniga and Gianluca Dini. Sensor Systems and Software: 4th International ICST
Conference, S-Cube 2013, Lucca, Italy, June 11-12, 2013, Revised Selected Papers, volume
122. Springer, 2013. 6

[Zim11] Walter MX Zimmer. Passive acoustic monitoring of cetaceans. Cambridge University Press,
2011. 89

[ZSL+11] Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu. Towards a model checker
for nesc and wireless sensor networks. In Formal Methods and Software Engineering, pages
372–387. Springer, 2011. xi, 13, 42

[ZYPEQ10] Filip Zavoral, Jakub Yaghob, Pit Pichappan, and Eyas El-Qawasmeh. Networked Digital
Technologies, Part I: Second International Conference, NDT 2010, Prague, Czech Republic.
Springer Science & Business Media, 2010. 53

115

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	General Context
	Sensor Networks
	Complexity and Challenges of Sensor Networks
	Research Questions
	Proposed Approach
	Organization

	I State of the Art
	Sensor Networks Development Process
	Sensor Networks
	Sensor Networks Life Cycles
	Design Phase of the Sensor Networks Life Cycles
	Roles in the Sensor Networks Life Cycles

	Sensor Networks Systems
	Fusion Algorithms
	Properties for Selecting a Data Fusion Architecture
	Data Fusion Architectures
	Limits and Comparison among the Different Data Fusion Architectures
	Requirements for Designing Sensor Networks Systems
	Limits and Comparison among the Different Approaches of Sensor Networks Design
	Approaches of Architectural Design Improvement
	Approaches of Providing Multiple Viewpoints
	Approaches of Offering Concepts Extensibility
	Approaches of Supporting Heterogeneity
	Approaches of Supporting Validation Tools

	Discussion

	Model Driven Engineering
	Model Driven Engineering Fundamentals
	Model Driven Engineering Aspects
	Modeling Languages
	Model Heterogeneity and Quality
	Models Transformation

	Separation of Concerns in Model Driven Engineering
	Model Driven Engineering Standards and Tools
	Model Driven Engineering for Sensor Networks
	Discussion

	System Architecture Modeling
	Modeling Context
	Enterprise Architecture Types
	Enterprise Architecture Frameworks
	Domain Specific Concepts in Enterprise Architecture Frameworks
	Enterprise Architecture Modeling Languages and MetaModels
	ArchiMate
	TOGAF 9

	Requirements for Selecting the Enterprise Architecture MetaModel
	Comparison Among Enterprise Architecture MetaModels
	Enterprise Architecture Frameworks and Design Tools for Sensor Networks
	DeVerTeS: A Design and Verification Framework for Telecommunication Services
	Discussion

	II Contributions
	Sensor Networks Design Process
	Context
	Software Development Processes
	Selected and Proposed tasks of the Sensor Networks Design Process
	Concept and Challenges of Sensor Networks Design Phase
	Requirements for Selecting or Proposing Tasks of the Sensor Networks Design Process
	Analyzing the Relation between the Tasks of the Software Development Processes and the Identified Requirements
	Proposed Tasks of the Sensor Networks Design Process

	The Proposed Sensor Networks Design Process and Model Driven Engineering
	Content of the Proposed Tasks of the Sensor Networks Design Process
	Modeling
	Ensuring Consistency
	Validating

	Discussion

	Domain Specific Modeling Languages and Design Tools for Sensor Networks Design
	ArchiMO Definition
	Marine Observatory Context
	Selected ArchiMate Concepts and Relationships
	ArchiMO MetaModel
	ArchiMO MetaModel Layer Consistency
	Formalization of Layers Interoperability
	ArchiMO Design Tool

	Generation of Simulation Code
	ArchiMO and Iterative Approach
	Discussion

	Application of the Proposed Sensor Networks Design Process to a Case Study
	Underwater Object Localization Case Study
	Modeling a Marine Observatory Case Study using ArchiMO DSML and Design Tool
	The Business Model Design
	The Application Model Design
	The Technology Model Design

	Consistency between Model Layers
	Simulation Code
	Validation of Marine Observatory Model
	Iteration of the Proposed Sensor Networks Design Process
	Discussion

	Conclusion and Perspectives
	Answering the Research Questions
	Perspectives
	Bibliography

