B. Detwinning-of and R. .. ,

. .. Applications-of-niti, Dampers for civil engineering structures

.. .. Fatigue-of-niti-alloys, 5.2.3. Special features of fatigue life curves

. Modeling and . .. Niti,

C. Maletta and M. L. Young, Stress-induced martensite in front of crack tips in niti shape memory alloys: Modeling versus experiments, J. Mater. Eng. Perform, vol.20, issue.4-5, pp.597-604, 2011.

P. Wollants, M. Bonte, and J. R. Roos, A Thermodynamic Analysis of the Stress-Induced Martesitic Transformation in a Single Crystal, Z.Metallk, vol.70, pp.113-117, 1979.

A. Olander, An Electrochemical Investigation of Solid Cadmium-Gold Alloys, J. Am. Shem. Soc, vol.54, 1932.

L. Chang and T. Read, Plastic Deformation and Diffusionless Phase Changes in Metals-the GoldCadmium Beta-phase, Trans. Am. Instituteof Miining Metall. Eng, vol.191, pp.47-52, 1951.

J. E. Reynolds and M. B. Bever, On the Reversal of the Strain-Induced Martensitic Transformation in the Copper-Zinc System, J. Met, 1952.

W. A. Rachinger, A 'super-elastic' single crystal calibration bar, Br. J. Appl. Phys, vol.9, issue.6, pp.250-252, 1958.
DOI : 10.1088/0508-3443/9/6/308

M. S. Wechsler, D. Lieberman, and T. Read, On the Theory of the Formation of Martensite, J Met. (Trans AIME), vol.197, pp.1503-1515, 1953.

J. Bowles and J. ,

. Mackenzie, The crystallography of martensite transformations I, Acta Metall, vol.2, issue.1, pp.129-137, 1954.

J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal, vol.100, issue.1, pp.13-52, 1987.

W. J. Buehler, J. V. Gilfrich, and R. C. Wiley, Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, J. Appl. Phys, vol.34, issue.5, pp.1475-1477, 1963.

R. J. Wasilewski, The effects of applied stress on the martensitic transformation in TiNi, Metall. Mater. Trans. B, vol.2, issue.11, pp.2973-2981, 1971.

F. Miura, M. Mogi, Y. Ohura, and M. Karibe, The super-elastic Japanese NiTi alloy wire for use in orthodontics. Part III. Studies on the Japanese NiTi alloy coil springs, Am. J. Orthod. Dentofacial Orthop, vol.94, issue.2, pp.89-96, 1988.
DOI : 10.1016/0889-5406(86)90021-1

F. Baumgart, G. Bensmann, J. Haasters, A. Nolker, and K. F. Schlegel, Zur dwyerschen skoliosenoperation mittels drähten aus memory-legierungen-Eine experimentelle studie, Arch. Orthop. Trauma. Surg, vol.91, issue.1, pp.67-75, 1978.
DOI : 10.1007/bf00383644

T. Duerig, D. Pelton, and . Stöckel, An overview of nitinol medical applications, Mater. Sci. Eng. A, pp.149-160, 1999.
DOI : 10.1016/s0921-5093(99)00294-4

, A Historical Perspective-Confluent Medical, Confluent Medical Technologies, p.28, 2017.

T. B. Massalski and H. , Hiroaki) Okamoto, and ASM International., Binary alloy phase diagrams, 1990.

M. Nishida, C. M. Wayman, and T. Honma, Precipitation processes in near-equiatomic TiNi shape memory alloys, Metall. Trans. A, vol.17, issue.9, pp.1505-1515, 1986.

K. F. Hane and T. W. Shield, Microstructure in the cubic to monoclinic transiton in titanium-nickel shape memory alloys, Acta mater, vol.47, issue.9, pp.2603-2617, 1999.

X. Zhang and H. Sehitoglu, Crystallography of the B2 ? R ? B19' phase transformations in NiTi, Mater. Sci. Eng. A, vol.374, issue.1-2, pp.292-302, 2004.

K. Otsuka and X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci, vol.50, issue.5, pp.511-678, 2005.

T. Duerig, K. Melton, D. Stockel, and C. Wayman, Engineering aspects of shape memory alloys, 1990.

T. Yoneyama and S. Miyazaki, Shape memory alloys for biomedical applications

G. Eggeler, E. Hornbogen, . Yawny, M. Heckmann, and . Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mater. Sci. Eng. A, vol.378, issue.1-2, pp.24-33, 2004.

K. Melton and O. Mercier, The Effect of the Martensitic Phase Transformation on the Low Cyle Fatigue Behaviour of Plycrystaline Ni-Ti and Cu-Zn-Al Alloys, vol.40, pp.59-71, 1979.

J. Frenzel, E. P. George, A. Dlouhy, C. Somsen, M. F. Wagner et al., Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater, vol.58, issue.9, pp.3444-3458, 2010.

M. B. Salamon, M. E. Meichle, and C. M. Wayman, Premartensitic phases of Ti50 Ni47 Fe3, Phys. Rev. B, vol.31, issue.11, pp.7306-7315, 1985.

P. ?ittner, M. Landa, P. Luká?, and V. Novák, R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mech. Mater, vol.38, issue.5-6, pp.475-492, 2006.

O. Matsumoto, S. Miyazaki, K. Otsuka, and H. Tamura, Crystallography of martensitic transformation in TiNi single crystals, Acta Metall, vol.35, issue.8, pp.2137-2144, 1987.

K. M. Knowles and D. A. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metall, vol.29, issue.1, pp.101-110, 1981.

C. P. Frick, Thermal processing of polycrystalline NiTi shape memory alloys, Mater. Sci. Eng. A, vol.405, issue.1-2, pp.34-49, 2005.

P. G. Mccormick, Y. Liu, X. Chena, and D. Favier, Multistage transformation behaviour in NiTi, Ecomaterials, pp.1105-1108, 1994.

Z. Zhang, R. D. James, and S. Müller, Energy barriers and hysteresis in martensitic phase transformations, Acta Mater, vol.57, issue.15, pp.4332-4352, 2009.

Y. Liu, Thermodynamics of the shape memory effect in Ti-Ni alloys, Shape Memory Alloys for Biomedical Applicatoins, pp.37-68, 2009.

G. B. Stachowiak and P. G. Mccormick, Two stage yielding in a NiTi alloy, Scr. Metall, vol.21, issue.3, pp.403-406, 1987.

S. Miyazaki, K. Otsuka, and Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy, Scr. Met, vol.17, issue.2, pp.385-388, 1983.

S. Miyazaki, S. Kimura, and K. Otsuka, Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50·5 at.% Ni single crystals, Philos. Mag. A, vol.57, issue.3, pp.467-478, 1988.

P. Sittner, L. Heller, J. Pilch, C. Curfs, T. Alonso et al., Young's modulus of austenite and martensite phases in superelastic NiTi wires, J. Mater. Eng. Perform, vol.23, issue.7, pp.2303-2314, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02022634

J. Olbricht, A. Yawny, J. L. Pelegrina, G. Eggeler, and V. A. Yardley, Characteristics of the stressinduced formation of R-phase in ultrafine-grained NiTi shape memory wire, J. Alloys Compd, vol.579, pp.249-252, 2013.

G. Helbert, Experimental characterisation of three-phase NiTi wires under tension, Mech. Mater, vol.79, pp.85-101, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01072042

T. W. Duerig and K. Bhattacharya, The Influence of the R-Phase on the Superelastic Behavior of NiTi, Shape Mem. Superelasticity, vol.1, issue.2, pp.153-161, 2015.

P. Sedlák, M. Frost, B. Bene?ová, T. Ben-zineb, and P. ?ittner, Thermomechanical model for NiTibased shape memory alloys including R-phase and material anisotropy under multi-axial loadings, Int. J. Plast, vol.39, pp.132-151, 2012.

P. Sedmák, Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load, Science (80-. ), vol.353, issue.6299, 2016.

D. Jiang, S. Kyriakides, C. M. Landis, and K. Kazinakis, Modeling of propagation of phase transformation fronts in NiTi under uniaxial, Eur. J. Mech, p.2017

N. J. Bechle and S. Kyriakides, Localization in NiTi tubes under bending, Int. J. Solids Struct, vol.51, issue.5, pp.967-980, 2014.

G. Laplanche, T. Birk, S. Schneider, J. Frenzel, and G. Eggeler, Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys, Acta Mater, vol.127, pp.143-152, 2017.

X. Zhang, P. Feng, Y. He, T. Yu, and Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips, Int. J. Mech. Sci, vol.52, issue.12, pp.1660-1670, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01241589

Q. P. Sun and Z. Q. Li, Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion-From localization to homogeneous deformation, Int. J. Solids Struct, vol.39, pp.3797-3809, 2002.

J. Pfetzing-micklich, R. Ghisleni, T. Simon, C. Somsen, J. Michler et al., Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale, Mater. Sci. Eng. A, vol.538, pp.265-271, 2012.

R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires, Int. J. Plast, vol.27, issue.2, pp.282-297, 2011.

R. F. Hamilton, H. Sehitoglu, Y. Chumlyakov, and H. J. Maier, Stress dependence of the hysteresis in single crystal NiTi alloys, Acta Mater, vol.52, issue.11, pp.3383-3402, 2004.

A. R. Pelton, G. H. Huang, P. Moine, and R. Sinclair, Effects of thermal cycling on microstructure and properties in Nitinol, Mater. Sci. Eng. A, vol.532, pp.130-138, 2012.

D. M. Norfleet, Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals, Acta Mater, vol.57, issue.12, pp.3549-3561, 2009.
DOI : 10.1016/j.actamat.2009.04.009

S. Nemat-nasser, J. Y. Choi, W. G. Guo, and J. B. Isaacs, Very high strain-rate response of a NiTi shape-memory alloy, Mech. Mater, vol.37, issue.2-3, pp.287-298, 2005.

Y. Liu, Z. Xie, J. Van-humbeeck, and L. Delaey, Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys, Acta Mater, vol.46, issue.12, pp.4325-4338, 1998.
DOI : 10.1016/s1359-6454(98)00112-8

Y. Chumlyakov, I. Kireeva, E. Panchenko, I. Karaman, H. J. Maier et al., Shape memory effect and high-temperature superelasticity in high-strength single crystals, J. Alloys Compd, vol.577, issue.1, pp.393-398, 2013.
DOI : 10.1016/j.jallcom.2012.02.003

P. Chowdhury and H. Sehitoglu, A revisit to atomistic rationale for slip in shape memory alloys, Prog. Mater. Sci, vol.85, pp.1-42, 2017.
DOI : 10.1016/j.pmatsci.2016.10.002

T. Ezaz, J. Wang, H. Sehitoglu, and H. J. Maier, Plastic deformation of NiTi shape memory alloys, Acta Mater, vol.61, issue.1, pp.67-78, 2013.
DOI : 10.1016/j.actamat.2012.09.023

. Aerofit, Couplings-CRYOFIT

J. Van-humbeeck, Non-medical applications of shape memory alloys, Mater. Sci. Eng. A, pp.134-148, 1999.

. Synoste, Bone lengthening devices

S. Seok, C. D. Onal, K. J. Cho, R. J. Wood, D. Rus et al., Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators, IEEE/ASME Trans. Mechatronics, vol.18, issue.5, pp.1485-1497, 2013.
DOI : 10.1109/tmech.2012.2204070

E. H. Schiller, Heat Engine Driven by Shape Memory Alloys : Prototyping and Design Heat Engine Driven by Shape Memory Alloys : Prototyping and Design, pp.1-80, 2002.

C. Bonsignore, Present and future approaches to lifetime prediction of superelastic nitinol, Theor. Appl. Fract. Mech, 2017.
DOI : 10.1016/j.tafmec.2017.04.001

O. A. Peters, M. Guiomar, and D. A. Bahia, Contemporary Root Canal Preparation Innovations in Biomechanics, vol.61, pp.37-58, 2017.
DOI : 10.1016/j.cden.2016.08.002

M. Peignet, E. Merliot, and M. Dieng, Amortisseur avec composant en alliage a memoire de forme et limiteur de temperature ; dispositif de maintien comprenant cet amortisseur, pp.2011064507-2011064508, 2012.

R. Arbab-chirani, V. Chevalier, S. Arbab-chirani, and S. Calloch, Comparative analysis of torsional and bending behavior through finite-element models of 5 Ni-Ti endodontic instruments, Oral Med. Oral Pathol. Oral Radiol. Endodontology, vol.111, issue.1, pp.115-121, 2011.
DOI : 10.1016/j.tripleo.2010.07.017

F. Lo-savio, E. Pedullà, E. Rapisarda, and G. L. Rosa, Influence of heat-treatment on torsional resistance to fracture of nickel-titanium endodontic instruments, Procedia Struct. Integr, vol.2, pp.1311-1318, 2016.

P. Parashos and H. H. Messer, Rotary NiTi Instrument Fracture and its Consequences, J. Endod, vol.32, issue.11, pp.1031-1043, 2006.
DOI : 10.1016/j.joen.2006.06.008

E. Pedullà, Torsional and Cyclic Fatigue Resistance of a New Nickel-Titanium Instrument Manufactured by Electrical Discharge Machining, J. Endod, vol.42, issue.1, pp.156-159, 2016.

M. B. Mcguigan, C. Louca, and H. F. Duncan, Endodontic instrument fracture: causes and prevention, Br. Dent. J, vol.214, issue.7, pp.341-349, 2013.

E. Alarcon, Fatigue performance of superelastic NiTi near stress-induced martensitic transformation, Int. J. Fatigue, vol.95, pp.76-89, 2017.
DOI : 10.1016/j.ijfatigue.2016.10.005

URL : https://hal.archives-ouvertes.fr/hal-01581016

J. Tu?ek, The Elastocaloric Effect: A Way to Cool Efficiently, Adv. Energy Mater, vol.5, issue.13, p.1500361, 2015.

B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, J. Sharp et al., Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy, Acta Mater, vol.56, issue.14, pp.3630-3646, 2008.
DOI : 10.1016/j.actamat.2008.04.001

D. A. Miller and D. C. Lagoudas, Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi, Mater. Sci. Eng. A, vol.308, issue.1-2, pp.161-175, 2001.

K. C. Atli, I. Karaman, R. D. Noebe, G. Bigelow, and D. Gaydosh, Work production using the twoway shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy, Smart Mater. Struct, vol.24, issue.12, p.125023, 2015.

L. J. Chiang, C. H. Li, Y. F. Hsu, and W. H. Wang, Effects of thermal cycling on multiple-stage transformation in Ti49.3Ni50.7 shape memory alloy, J. Alloys Compd, vol.462, issue.1-2, pp.47-51, 2008.

P. Sedmák, P. ?ittner, J. Pilch, and C. Curfs, Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction, Acta Mater, vol.94, pp.257-270, 2015.

S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metall. Trans. A, vol.17, issue.1, pp.115-120, 1986.

R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers, Microstructure changes during nonconventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy, Acta Mater, vol.58, issue.13, pp.4503-4515, 2010.
DOI : 10.1016/j.actamat.2010.04.046

P. Sedmák, P. ?ittner, J. Pilch, and C. Curfs, Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction, Acta Mater, vol.94, pp.257-270, 2015.

A. R. Pelton, V. Schroeder, M. R. Mitchell, X. Y. Gong, M. Barney et al., Fatigue and Durability of Nitinol Stents, J. Mech. Behav. Biomed. Mater, vol.1, pp.153-164, 2008.

S. M. Jaureguizahar, M. D. Chapetti, and A. A. Yawny, Fatigue of NiTi shape memory wires, Procedia Struct. Integr, vol.2, pp.1427-1434, 2016.
DOI : 10.1016/j.prostr.2016.06.181

URL : https://doi.org/10.1016/j.prostr.2016.06.181

A. Carvalho, D. Montalv??o, M. Freitas, L. Reis, and M. Fonte, Determination of the rotary fatigue life of NiTi alloy wires, Theor. Appl. Fract. Mech, vol.85, pp.37-44, 2016.

A. R. Pelton, Rotary-bending fatigue characteristics of medical-grade Nitinol wire, J. Mech. Behav. Biomed. Mater, vol.27, pp.19-32, 2013.
DOI : 10.1016/j.jmbbm.2013.06.003

S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu, Fatigue life of Ti-50 at.% Ni and Ti40Ni-10Cu (at.%) shape memory alloy wires, Mater. Sci. Eng. A, pp.658-663, 1999.

S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu, Fatigue life of Ti-50 at.% Ni and Ti40Ni-10Cu (at.%) shape memory alloy wires, Mater. Sci. Eng. A, pp.658-663, 1999.

E. Johnson, A. Lloyd, S. Kuttler, and K. Namerow, Comparison between a Novel Nickel-Titanium Alloy and 508 Nitinol on the Cyclic Fatigue Life of ProFile 25/.04 Rotary Instruments, J. Endod, vol.34, issue.11, pp.1406-1409, 2008.

Y. Kim, Fatigue Properties of the Ti-Ni Base Shape Memory Alloy Wire, Mater. Trans, vol.43, issue.7, pp.1703-1706, 2002.
DOI : 10.2320/matertrans.43.1703

URL : https://www.jstage.jst.go.jp/article/matertrans/43/7/43_7_1703/_pdf

Y. Kim and S. Miyazaki, Fatigue properties of Ti-50.9at%Ni shape memory wires, 1997.

J. Racek, M. Stora, P. ?ittner, L. Heller, J. Kope?ek et al., Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential, Shape Mem. Superelasticity, vol.1, issue.2, pp.1-27, 2015.
DOI : 10.1007/s40830-015-0020-5

URL : https://link.springer.com/content/pdf/10.1007%2Fs40830-015-0020-5.pdf

, Standard Test Method for Strain-Controlled Fatigue Testing, Active Standard ASTM E606 / E606M

K. Melton and O. Mercier, Fatigue of NITI thermoelastic martensites, Acta Metall, vol.27, issue.1, pp.137-144, 1979.
DOI : 10.1016/0001-6160(79)90065-8

M. J. Mahtabi, N. Shamsaei, and B. Rutherford, Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An Experimental Investigation, Procedia Eng, vol.133, pp.646-654, 2015.
DOI : 10.1016/j.proeng.2015.12.645

URL : https://doi.org/10.1016/j.proeng.2015.12.645

N. Morgan, J. Painter, and . Moffat, Mean strain effects and microstructural observations during in vitro fatigue testing of NiTi, SMST-2003. Proc. ?, pp.303-310, 2004.

C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and . Tuissi, Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, Int. J. Fatigue, vol.66, pp.78-85, 2014.
DOI : 10.1016/j.ijfatigue.2014.03.011

D. Tolomeo, S. Davidson, and M. Santinoranont, Cyclic Properties of Superelastic Nitinol: Design Implications, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, pp.471-476, 2000.

L. Zheng, Y. He, and Z. Moumni, Luders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy, Scr. Mater, vol.123, pp.46-50, 2016.
DOI : 10.1016/j.scriptamat.2016.05.042

URL : https://hal.archives-ouvertes.fr/hal-01332114

A. M. Figueiredo, P. Modenesi, and V. Buono, Low-cycle fatigue life of superelastic NiTi wires, Int. J. Fatigue, vol.31, issue.4, pp.751-758, 2009.

J. F. Luo, S. C. Mao, X. D. Han, C. Cheng, Z. Zhang et al., High-cycle Fatigue Mechanisms of a NiTi Shape Memory Alloy under Different Mean Strains, Mater. Sci. Forum, pp.1120-1127, 2002.
DOI : 10.4028/www.scientific.net/msf.610-613.1120

W. D. Pilkey, . Peterson's-stress, and . Concentration, , 1997.

, Nitinol #1-Fort Wayne Metals

B. Malard, J. Pilch, P. Sittner, R. Delville, and C. Curfs, In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires, Acta Mater, vol.59, pp.1542-1556, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602222

D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart et al., Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization, J. Biomed. Mater. Res, vol.59, issue.1, pp.18-28, 2002.

M. V. Diamanti, B. D. Curto, and M. Pedeferri, Interference colors of thin oxide layers on titanium, Color Res. Appl, vol.33, issue.3, pp.221-228, 2008.

M. V. Diamanti, S. Aliverti, and M. P. Pedeferri, Decoupling the dual source of colour alteration of architectural titanium: Soiling or oxidation?, Corros. Sci, vol.72, pp.125-132, 2013.

L. Zhu, C. Trépanier, and A. R. Pelton, Oxidation of Nitinol and its Effect on Corrosion Resistance, 2004.

, Standard Terminology for Nickel-Titanium Shape Memory Alloys, ASTM International, 2015.

J. Kieffer, The fast azimuthal integration Python library: PyFAI, J. Appl. Crystallogr, vol.48, issue.2, pp.510-519, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01572879

L. L. Meisner, V. P. Rotshtein, A. B. Markov, S. N. Meisner, E. V. Yakovlev et al., Effect of nonmetallic and intermetallic inclusions on crater formation on the surface of TiNi alloys under the electron-beam impact, Procedia Struct. Integr, vol.2, pp.1465-1472, 2016.

A. Coda, S. Zilio, D. Norwich, and F. Sczerzenie, Characterization of inclusions in VIM/VAR NiTi alloys, J. Mater. Eng. Perform, vol.21, issue.12, pp.2572-2577, 2012.

J. Blaber, B. Adair, and A. Antoniou, Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Exp. Mech, vol.55, issue.6, pp.1105-1122, 2015.

&. Gsas-ii,

P. Lu-a?, P. Sittner, D. Lugovoy, D. Neov, and M. Ceretti, In situ neutron diffraction studies of the R-phase transformation in the NiTi shape memory alloy, vol.1123, pp.1121-1123, 2002.

H. J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, p.593, 1993.

M. F. , -. Wagner, and W. Windl, Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Mater, vol.56, issue.20, pp.6232-6245, 2008.

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, Comput. J, vol.7, issue.4, pp.308-313, 1965.

M. Frost, Modeling of phase transformations in shape memory materials, 2012.

W. J. Dixon and A. M. Mood, A Method for Obtaining and Analyzing Sensitivity Data, J. Am. Stat. Assoc, vol.43, issue.241, pp.109-126, 1948.

S. Subresh, Fatigue of Materials, 2004.

S. Suresh, Fatigue of Materials (Cambridge Solid State Science Series) Second Edition, 2 edition. Cambridge, 1998.

J. Cm, W. Hj, and W. Rj, The alloy with a memory, 55-Nitinol: Its physical metallurgy, properties, and applications, 1972.

J. Racek, P. Sittner, L. Heller, J. Pilch, M. Petrenec et al., Corrosion of NiTi wires with cracked oxide layer, J. Mater. Eng. Perform, vol.23, issue.7, pp.2659-2668, 2014.

Y. Nancy, G. Ken, S. Huseyin, C. Yuriy, and L. S. , FRACTURE MECHANISMS IN B2 NiTi, ICF10, 2001.

S. W. Robertson and R. O. Ritchie, In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of cracklike defects, Biomaterials, vol.28, issue.4, pp.700-709, 2007.

M. Rahim, Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys, Acta Mater, vol.61, issue.10, pp.3667-3686, 2013.

M. J. Mahtabi, N. Shamsaei, and M. R. Mitchell, Fatigue of Nitinol: The state-of-the-art and ongoing challenges, J. Mech. Behav. Biomed. Mater, vol.50, pp.228-254, 2015.

S. Gollerthan, M. L. Young, K. Neuking, U. Ramamurty, and G. Eggeler, Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys, Acta Mater, vol.57, issue.19, pp.5892-5897, 2009.

J. Cui, Demonstration of high efficiency elastocaloric cooling with large ?T using NiTi wires, Appl. Phys. Lett, vol.101, issue.7, p.73904, 2012.

R. Munier, C. Doudard, S. Calloch, and B. Weber, Determination of high cycle fatigue properties of a wide range of steel sheet grades from self-heating measurements, Int. J. Fatigue, vol.63, pp.46-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967431

C. E. Stromeyer, The determination of fatigue limits under alternating stress conditions, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.90, issue.620, pp.411-425, 1914.

W. J. Putman and J. W. Harsch, Rise of Temperature' method of determining endurance limit, pp.119-127, 1921.

R. Cazaud, La fatigue de métaux, 1969.

M. P. Luong, Infrared thermographic scanning of fatigue in metals, Nucl. Eng. Des, vol.158, issue.23, pp.363-376, 1995.

J. Krapez, D. Pacou, and G. Gardette, Lock-in thermography and fatigue limit of metals, Off. Natl. D Etudes ?, pp.3-8, 2000.

B. Yang, Thermography detection on the fatigue damage, p.248, 2003.

J. Krapez and D. Pacou, Thermography detection of early thermal effects during fatigue tests of steel and aluminium samples, pp.1545-1552, 2001.

A. Ezanno, C. Doudard, S. Calloch, and J. Heuzé, A new approach to characterizing and modeling the high cycle fatigue properties of cast materials based on self-heating measurements under cyclic loadings, Int. J. Fatigue, vol.47, pp.232-243, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00785005

C. Doudard and S. Calloch, Influence of hardening type on self-heating of metallic materials under cyclic loadings at low amplitude, Eur. J. Mech. A/Solids, vol.28, issue.2, pp.233-240, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00449129

L. Jegou, Y. Marco, V. L. Saux, and S. Calloch, Fast prediction of the Wohler curve from heat buildup measurements on Short Fiber Reinforced Plastic, Int. J. Fatigue, vol.47, pp.259-267, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00785014

V. L. Saux, Y. Marco, S. Calloch, C. Doudard, and P. Charrier, Fast evaluation of the fatigue lifetime of rubber-like materials based on a heat build-up protocol and micro-tomography measurements, Int. J. Fatigue, vol.32, issue.10, pp.1582-1590, 2010.

G. , L. Rosa, and A. Risitano, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, Int. J. Fatigue, vol.22, issue.1, pp.65-73, 2000.

C. Doudard, A PROBABILISTIC TWO-SCALE MODEL FOR HIGH CYCLE FATIGUE LIFE PREDICTIONS To cite this version : HAL Id : hal-00322496, 2008.

C. Doudard, S. Calloch, F. Hild, P. Cugy, and A. Galtier, Identification of the scatter in high cycle fatigue from temperature measurements, Comptes Rendus Mécanique, vol.332, issue.10, pp.795-801, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00002927

C. Mareau, V. Favier, B. Weber, A. Galtier, and M. Berveiller, Micromechanical modeling of the interactions between the microstructure and the dissipative deformation mechanisms in steels under cyclic loading, Int. J. Plast, pp.106-120, 2012.

A. Chrysochoos and H. Louche, An infrared image processing to analyse the calorific effects accompanying strain localisation, Int. J. Eng. Sci, vol.38, issue.16, pp.1759-1788, 2000.

P. Vázquez, Infrared thermography monitoring of the NaCl crystallisation process, Infrared Phys. Technol, vol.71, pp.198-207, 2015.

Y. Terada, K. Ohkubo, K. Nakagawa, T. Mohri, and T. Suzuki, Thermal conductivity of B2-type aluminides and titanides, Intermetallics, vol.3, issue.5, pp.347-355, 1995.

C. Zanotti, P. Giuliani, P. Bassani, Z. Zhang, and A. Chrysanthou, Comparison between the thermal properties of fully dense and porous NiTi SMAs, Intermetallics, vol.18, issue.1, pp.14-21, 2010.

A. Jain and K. E. Goodson, Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3? Method, J. Heat Transfer, vol.130, issue.10, p.102402, 2008.

J. F. Goff, Thermal conductivity, thermoelectric power, and the electrical resistivity of stoichiometric TiNi in the 3-300 K temperature range, J. Appl. Phys, vol.35, pp.2919-2927, 1964.