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A B S T R A C T

In this thesis, we work on the problem of simultaneously localizing
an underwater robot while mapping a set of acoustic beacons lying
on the seafloor, using an acoustic range-meter and an inertial naviga-
tion system. We focus on the two main approaches classically used
to solve this type of problem: Kalman filtering and set-membership
filtering using interval analysis. The Kalman filter is optimal when
the state equations of the robot are linear, and the noises are additive,
white and Gaussian. The interval-based filter do not model uncertain-
ties in a probabilistic framework, and makes only one assumption
about their nature: they are bounded. Moreover, the interval-based
approach allows to rigorously propagate the uncertainties, even when
the equations are non-linear. This results in a high reliability in the
set estimate, at the cost of a reduced precision.

We show that in a subsea context, when the robot is equipped with
a high precision inertial navigation system, a part of the SLAM equa-
tions can reasonably be seen as linear with additive Gaussian noise,
making it the ideal playground of a Kalman filter. On the other hand,
the equations related to the acoustic range-meter are much more prob-
lematic: the system is not observable, the equations are non-linear,
and the outliers are frequent. These conditions are ideal for a set-
based approach using interval analysis.

By taking advantage of the properties of Gaussian noises, this thesis
reconciles the probabilistic and set-membership processing of uncer-
tainties for both linear and non-linear systems with additive Gaussian
noises. By reasoning geometrically, we are able to express the part of
the Kalman filter equations linked to the dynamics of the vehicle in
a set-membership context. In the same way, a more rigorous and pre-
cise treatment of uncertainties is described for the part of the Kalman
filter linked to the range-measurements. These two tools can then be
combined to obtain a SLAM algorithm that is reliable, precise and
robust. Some of the methods developed during this thesis are demon-
strated on real data.. . .
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R É S U M É

Dans cette thèse, nous nous intéressons au problème de la locali-
sation et de la cartographie en simultané d’un robot sous-marin et
d’un ensemble de balises disposées sur le fond marin à l’aide d’un
distance-mètre et d’une centrale inertielle. Nous nous concentrons sur
deux approches utilisées classiquement pour résoudre ce type de pro-
blème : le filtrage de Kalman et le filtrage ensembliste par intervalles.
Le filtrage de Kalman est optimal lorsque les équations d’état du ro-
bot sont linéaires, et que les bruits sont additifs, blancs et Gaussiens.
Le filtrage ensembliste par intervalles ne raisonne pas en termes de
bruits probabilistes et ne fait qu’une seule hypothèse sur leur nature :
ils sont bornés. De plus, l’approche par intervalles permet de propa-
ger les incertitudes de manière garantie, même lorsque les équations
sont non-linéaires. Il en résulte une grande fiabilité de l’estimée en-
sembliste, au prix d’une précision réduite.

On montre que dans un contexte sous-marin, lorsque le robot est
équipé d’une centrale inertielle de haute précision, une partie des
équations d’état du SLAM peuvent être raisonnablement vues comme
linéaires à bruit additif Gaussien, en faisant le terrain de jeu idéal
pour un filtre de Kalman. En revanche, les équations liées au distance-
mètre acoustiques sont elles beaucoup plus problématiques : le sys-
tème est non-observable, les équations non-linéaires, et les mesures
aberrantes fréquentes. Ces conditions sont idéales pour une approche
ensembliste par intervalles.

En exploitant les propriétés des bruits Gaussiens, cette thèse récon-
cilie le traitement probabiliste et ensembliste des incertitudes pour
les systèmes linéaires et non-linéaires à bruit additif Gaussien. Par
un raisonnement géométrique, on parvient à exprimer la partie des
équations du filtre de Kalman liée à la dynamique du véhicule dans
un cadre ensembliste. De la même manière, un traitement plus rigou-
reux et précis des incertitudes est proposé pour la partie du filtre de
Kalman liée aux mesures de distance. Ces deux outils peuvent par la
suite être combinés pour obtenir un algorithme de SLAM fiable, pré-
cis et robuste. Certaines des méthodes développées au cours de cette
thèse sont démontrées sur des données réelles.. . .
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G E N E R A L I N T R O D U C T I O N

The GPS does not work underwater. As every Global Navigation
Satellite System (GNSS), the GPS relies on electromagnetic signals
sent by artificial satellites, whose orbital parameters are known, to es-
timate the global 3D position of the receiver. However, high-frequency
electromagnetic signals such as the ones used by the GPS (in the or-
der of ~1GHz) do not propagate well through water. This does not
only make GNSS unusable for subsea operations, but also rules out
the possibility of wireless high communication rate with a submerged
vehicle. Light, also made of electromagnetic waves, has a limited pen-
etration in oceanic water, to the point where the sunlight will not
penetrate at all beyond 1,000 meters in depth. If we add to that the
pressure, which increases by about approximately one atmosphere
for every 10 meters of water depth (and at 11,000 meters, the greatest
ocean depth, that amounts to the weight of an elephant tiptoe on a
stamp), it makes the ocean, together with the deep space, one of the
most hostile and challenging environment for a robot to evolve in,
localize itself and collect data on its surroundings.

All the same, the need for undersea positioning capability keeps
growing decade after decade. This growth is caused by the contin-
ued development of fields such as oceanology, biology, wreck inspec-
tion, security, military or deep-water resource exploitation such as
oil extraction or the emerging market of subsea mining. Given the
aforementioned hostility of the oceanic environment, manned oper-
ations are not possible beyond a few tens of meters, and must then
be delegated to robots. The most frequently type of robots used for
such operations are ROV (Remotely Operated Vehicles), which are
controlled by a human through the mean of a tether connecting him
to the vehicle.

Localization is a primary capacity for any autonomous vehicle. Know-
ing where the robot is is fundamental to plan its trajectory and avoid
known obstacles in order to achieve its goal. To localize itself, a robot
must possess a representation of its environment, known as a map,
for which there exist many types. Then, it interacts with its environ-
ment through sensors, and gathers exteroceptive measurements (i.e.:
observations of the environment), as well as proprioceptive measure-
ments (observations of values internal to the robot such as its specific
acceleration, the battery level, the thrusters input voltage...), that are
fed to a localization algorithm whose role is to estimate the state of the
robot. When a map is not available, but the robot position is exactly
known, it is the role of a mapping algorithm to create this map with
sensors, also biased by noises and giving a partial information on the

1
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map. Finally, when neither the map nor the localization of the robot
are known, or some of these elements are only partially known, it
is the role of a simultaneous localization and mapping (SLAM for short)
algorithm to jointly estimate the robot’s pose and the map of the en-
vironment from the sensor data.

As every measuring devices, sensors are affected by uncertainties:
they never return a perfect information on the physical quantity they
measure. The uncertainty on the measurement can come from en-
vironmental factors (the temperature, humidity, atmosphere’s pres-
sure...), from the sensor itself (limited resolution, noise in the elec-
tronic circuitry, misalignment of optical lenses in the case of a camera
etc...). In many scenarios, a sensor only returns a partial information
of the system of interest. A localization, mapping or SLAM algo-
rithm must be therefore be able to handle those uncertainties, for
which there exist several modelization, and the partial information
gathered during the mission to estimate the desired parameters. In
this work, we will consider the framework of probabilistic uncertain-
ties and unknown but bounded uncertainties.

localization Equipped with a map, a robot will interact with
its environment, to estimate its position with sensors. As all mea-
surement system, a sensor can’t return a perfect information on the
state of the measured system. The uncertainty on the measurement
can come from environmental factor (temperature, humidity, the at-
mosphere...), from the sensor itself (limited resolution, noise in the
electronic circuitry, misalignment of optical lenses in the case of a
camera...).

This measure will therefore be corrupted with an error or even be
totally wrong. In most case, a single observation will bring a partial

knowledge of the system. Measuring the position of an object on the
image plane of a camera doesn’t bring any information on the depth
of this object. Measuring the distance from a sensor to an object will
only tell us the object lies in a spherical shell around the sensor. It
is the role of a localization algorithm to cope with uncertainties and
combine several partial views of the system to provide an estimation
of its pose.

mapping There are several types of map for representing an en-
vironment, depending on the application context. Such a map could
be a road map [27], to enable the navigation of intelligent vehicles,
an elevation map, used for guidance and control of missiles, sub-
marines or terrestrial robots Desrochers, Lacroix, and Jaulin [23] and
Drevelle [27], or the coordinates of some remarkable objects, called
landmarks, which the robot will interact with to localize itself Davi-
son et al. [22], Kantor and Singh [52], and Newman and Leonard
[68]. Examples of landmarks are the GPS coordinates of lighthouses,
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allowing a boat viewing several of these lighthouses to estimate its
position by triangulation. It could also be the orbital parameters of
navigation satellites Drevelle and Bonnifait [24], or some object that
are easily identified in the environment such as a traffic sign, an LED
or an acoustic speaker emitting a known signal.

simultaneous localization and mapping Simultaneous Lo-
calization and Mapping (SLAM) is one of the most fundamental prob-
lem in mobile robotics, and has been an actively researched topic
since the 80s Smith, Self, and Cheeseman [87].

SLAM is the process of jointly estimating the map of the environ-
ment and the position of the vehicle. It is a chicken and egg problem:
if a precise map of the environment is available, it should be easy to
localize the vehicle (Localization), and if the vehicle is precisely local-
ized it should be easy to build a map of its environment (Mapping).
SLAM problem occurs when neither does the robot know its position,
nor does he know the map of its environment. It is harder to solve
than localization, as the map is not known, and mapping, as its pose
is also unknown.

There are two approaches to SLAM: online and offline SLAM. On-
line SLAM is the problem of estimating the map and the robot pose
at time t. Offline SLAM is the problem of estimating the map and
the robot pose over the entire path of the robot, with all the measure-
ments made during the mission available at a time.

In this thesis, we will focus on the online SLAM problem, as this is
more suited for a real-time implementation that can be embedded in
a sensor.

The vehicle is equipped with sensors and is therefore limited in its
ability to measure physical quantities. Limitation arise from several
factors. For example, a camera is limited in the resolution of its photo-
sensor array and the quality and the alignment of its optics. Even if
the optics were perfect or the array’s resolution was infinite, they
would not allow to see through walls, sense the depth of a specific
object or measure the electric current running in a wire that would be
in its field of view. Each sensor has a specific domain of application,
and several of them should be combined to gather enough informa-
tion to be able to extract the specific quantities we are interested in.
Sensors are also affected by noise, which makes the measurements
uncertain and limits the information that can be extracted.

A SLAM algorithm should be able to deal with those uncertainties
and combine several sources of information all affected by different
types of uncertainties. In this thesis, we will focus on two meth-
ods which allow for fusing several sources of information affected by
uncertainties, that take two very different approaches in their repre-
sentation of uncertainties: the Kalman Filter, and the Robust State
Observer.
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application context

Industrial application making use of subsea measurement devices are
typically high-cost industries, such as the military industries or the
oil and gas industries. The quantities estimated from the measure-
ments gathered by the vehicle are used to position and design critical,
expansive structures, and should satisfy two properties:

1. they should be precise: some application require that the error
on the parameters to estimate should be less than centimetric.

2. they should be reliable, in the sense that the estimation method
that provided the results should be trusted up to some risk-
threshold: if the hypothesis and the models are right, so should
the estimations be. If this is not the case, the estimation method
should be able to detect a fault and its output should not be
trusted.

Navigation

Subsea navigation is the field where an underwater vehicle evolves
underwater. It includes the planning and the tracking of its trajectory,
as well as its positioning.

In order to localize itself in the environment, the vehicle generally
navigates in an array of acoustic beacons whose position is known
from a previous calibration from the surface, as illustrated in Fig-
ure 0.1. However, a precise calibration of the sensor array takes time,
and is costly, because of the surface vessel’s time required to do it.

A cheaper approach is to perform a fast, gross pre-calibration of
the sensors array, or use any other mean to get a reasonable initial
guess on the sensors positions, and then use the underwater vehicle
to refine the sensors positions at the same time as it uses them to posi-
tion itself while performing its mission. That task of simultaneously
navigating in a sensors array and calibrating that array is a typical
SLAM task.

Metrology

The aim of subsea metrology is to estimate the relative positioning
between two structures on the seabed. Generally, the objective of sub-
sea metrology is to connect pipelines. The connecting piece has to be
build on the surface, and the stresses on the connecting point is im-
portant, making for tight construction tolerances. Therefore, subsea
metrology has to be both precise and reliable, so that the connect-
ing pipes can be correctly designed, as if the connecting pipes do
not meet precisely the tolerances, their life span can be significantly
reduced and their replacement will induce delays in the production
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(a) (b)

Figure 0.1: (a): Calibration of the sensors array from the surface, (b): Navi-
gation in the sensors array with a subsea vehicle

as well as costs associated to the construction vessel’s time to repair
them.

The aim of this thesis is to propose precise, reliable and robust
estimation tools that can be both used for navigation and metrology.

handling uncertainties

Probabilistic approach

Probabilistic robotics is a research topic that grew quickly in the last
decade Thrun, Bugard, and Fox [89], and is the de-facto approach for
many industrial application.

Set-membership approach

Also represents a whole space of guesses, but no probability is af-
fected to each subset. Instead, each subset is classified as either
compatible, not compatible, or undetermined with respect to the con-
straints of the problem.

There exist many representation for sets. Interval good nonlinear.
Linear methods less subject to wrapping effect.

goals and contributions of this thesis

As motivated in the Application Context Section page 4, in this the-
sis we are interested in a SLAM method that is reliable, precise and
robust.

Reliability

A SLAM algorithm is said to be reliable if, given a model and a set of
hypothesis for the problem, the estimates it provides are trustworthy,
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i.e. if the true estimated variable is within a confidence region that
contains all likely parameters up to a given risk threshold when the
model and the hypothesis are correct. Additionally, under model or
some hypothesis violation, a reliable algorithm should be able to de-
tect when the estimates it provides do not contain the correct param-
eter anymore: such algorithm should have a fault-detection capacity.
Reliability is therefore not the ability for an algorithm to provide cor-
rect estimates when the model is not correct or when some hypothesis
are broken. For an algorithm to be reliable under model uncertainty
or violable hypothesis, the possibility that the model is incorrect and
that some hypothesis might be violated must be in the definition of
the problem itself. To be able to survive hypothesis violations, an
algorithm should be robust.

Robustness

In the context of this thesis, we will consider robustness of a SLAM
algorithm in the sense of fault-tolerance. For example, imagine a sen-
sor that provides the position of the robot with a precision of one
meter. Due to environment constraints, there could be outliers in the
measurements: the true position might be tens of meters away from
the measured position. An hypothesis on the probability q that a mea-
sure is an outlier can be formulated. With this additional hypothesis
in the definition of the problem and a computational mean to take
this hypothesis into account, the algorithm will be robust up to q% of
outliers. A desirable but not necessary property of a robust algorithm
is the ability to identify a faulty measurements.

Precision

A SLAM algorithm is precise if it satisfies two conditions:

1. The error (the distance between the estimated parameters and
the actual parameters) is small

2. The confidence region associated with the estimation should be
tight

In that sense, a better term to qualify what we are trying to achieve
would be the accuracy. There is generally no way to estimate Prop-
erty 1 without knowing the actual parameter to estimate. This is why
Property 2 is important, as it will reflect the quality of the estimation.
A measurement that reports the position of a robot with an error of
10 centimeters with a confidence region 1 meter wide might be prefer-
able to a measurement that reports the position of the robot with an
error of 1 centimeter and a confidence region which is 10 meters wide,
unless there is a way to know the error which generally implies the
actual position is known.
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Reliability, robustness and precision in SLAM methods

Now, probabilistic-based approaches to SLAM tend to be robust and
precise, while approaches based on set-membership methods tend to
be reliable and robust. Indeed, a probabilistic approach to uncertain-
ties tend to cope well with the true nature of most uncertainties, and
a correct use of them produces precise estimates. However, when
the statistical distributions are not known ones, or when the models
involved are nonlinear, probabilistic approaches are not reliable any-
more. Indeed, in these scenarios, the distributions are approximated
either with a second order approximation as in the Extended Kalman
Filter, discretization of the distribution function as in the Unscented
Kalman Filter and the Particle Filter, or a discretization of the search-
space (grid-based approaches). None of these approaches are able to
provide a guaranteed estimate in such conditions. Set-membership
approaches based on Interval Analysis, on the other hand, are par-
ticularly well-suited for this type of problem. They are often seen
as probability-agnostic, since they assume the perturbations are un-
known but bounded, and Interval Analysis allow us to consider sub-
sets of the search space all at once without losing a single solution.
Since the image of an Interval by a nonlinear function is also an Inter-
val, they provide a coherent framework for dealing with uncertainties.
Interval Analysis provides a scheme of dealing with rare events such
as outliers by computing the set of parameters compatible with all the
observations except a given number q at most, by using relaxed inter-
section techniques. This allows for a Robust estimation. Nonetheless,
when the true nature of the noises is stochastic, they generally per-
form worse than probabilistic approaches. Indeed, since the statisti-
cal properties of the noises are ignored, information are not modeled
in the problem and they are sub-optimal.

Contribution of this thesis

Several approaches that combine probabilistic and set-membership
approaches have been proposed for state estimation Abdallah, Gning,
and Bonnifait [1], Chen, Wang, and Shieh [18], Neuland et al. [67],
and Tran et al. [90]. The main contribution of this work is to provide
a scheme combining probabilistic and set-membership approaches
while strictly remaining in a set-membership framework. Therefore,
the estimates provided will be reliable, since no approximations are
made by linearizing the equations, guaranteed with a lower-bound on
the probability that the true parameter vector is in the computed con-
fidence region, robust thanks to q-relaxation techniques, and precise
since the statistical properties of the perturbations will be modeled in
the problem instead of being ignored.
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Figure 0.2: Venn diagram of reliable, precise and robust methods. We are
looking for an approach that is both robust, reliable and precise.

detailed plan of the manuscript

The first Part of this manuscript will present the general problem of
simultaneously localizing and mapping objects underwater.

The first Chapter will be devoted to the modelling of the under-
water SLAM problem. The classical SLAM formulation of the prob-
lem will be reviewed, and the different sensors used in underwater
robotics will be presented, as well as the different types of position-
ing systems with a focus on long-baseline positioning systems (LBL).
The sources of uncertainties for each of these sensors will be explored
and discussed, and a convenient formulation of the problem will be
proposed.

We will then present the state-of-the art algorithms used to solve
our SLAM problem: the Kalman filter, a Bayesian state-estimator that
belongs to the family of probabilistic state-estimators, and the Robust
State Estimator (RSO) which relies on set-membership methods. The
theoretical strengths and weaknesses of each approach will be dis-
cussed, and they will be compared on a real data-set. From both the
theoretical and the practical analysis, we will outline the reasons why
the set-membership approach fails at producing a precise estimate.

The second Part of this dissertation will be dedicated to the contri-
butions introduced in this work.

In Chapter 3, we will focus on the equations of motion of the ve-
hicle. The simplest case of motion equation under additive Gaussian
noise will be reviewed, allowing us to sense the origin of the problem.
The statistical properties of the motion noise will be discussed, and a
geometrical constraint on those properties will be formulated. From
this constraint, we will introduce the Kalman contractor, a contrac-
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tor that reduces the search-space of the Cartesian product between
two state-vectors at different times to a region that contains the true
state-vectors with a minimum fixed probability. The gains obtained
through this contractor will be discussed on the real data-set.

Chapter 4 will concentrate on the second set of equations for the
SLAM problem: the observation equations. The observation equa-
tions model how the robot perceives its environment and therefore
how it is able to dress a map of it. We will first look at these equations
as a classical parameter estimation problem, and again examine the
statistical properties of the observation noises. It will be shown that
estimating n parameters with a probability threshold from a set of m

observations subject to additive Gaussian noise amounts to comput-
ing the pre-image of an m-sphere through the observation equations.
This problem is a typical set-inversion problem that can efficiently
solved with Interval Analysis, even for non-linear models. The prob-
lem of inverting this sphere will be treated as-is, and an other scheme
that relies on relaxed intersection techniques will be analyzed. These
tools will be applied to real data in a static localization context, i.e.
where we ignore the motion equation of the vehicle.

Now, these methods enable us to compute a set that contains the
parameter vector of interest with a given probability, but we are also
interested in a punctual estimation that is optimal according to some
criterion. In Appendix C, the problem will be slightly modified to
allow us to compute a Maximum Likelihood Estimation in a guaran-
teed manner.

Chapter 5 will conclude this thesis, and Appendix A will give a
brief introduction to Interval analysis and contractor methods for the
unfamiliar reader.





Part I

S TAT E O F T H E A RT I N R A N G E - O N LY S L A M

In Part i, we review the state of the art in SLAM algo-
rithms using range-only measurements. In Chapter 1, we
will first model the SLAM problem for our specific use
case, and in Chapter 2 we will review, compare and com-
ment the classical algorithms used to solve the problem.
From these observations, we will propose some improve-
ments in Part ii.





1
M O D E L I N G T H E S I M U LTA N E O U S L O C A L I Z AT I O N
A N D M A P P I N G P R O B L E M F O R A N U N D E RWAT E R
V E H I C L E

1.1 introduction

In this chapter we will first present the most commonly used sensors
for solving the SLAM problem in a subsea context. Our SLAM prob-
lem will then be modelized and its specificity will be discussed. For a
more complete state-of-the art in underwater robot modelization and
perception, the reader is referred to [84].

1.2 navigation and acoustic positioning systems

1.2.1 Sensors used for the navigation of an underwater vehicle

1.2.1.1 Gyroscopes

A gyroscope is a sensor that provides a measurement of the rota-
tion speed. High-end gyroscopes, which are extremely precise (about
0.001°/s), rely on the Sagnac effect: for a circular optical path revolv-
ing around its axis, a light beam traveling in the same direction as
the rotation needs to travel more than one circumference around the
ring before it attains its emission point. On the other hand, light trav-
eling in the opposite direction needs to travel a shorter distance. By
splitting a coherent light-beam in both direction and summing them
up, a shift in the interference pattern is thus observed. The shift in
the interference fringes is proportional to the optical path’s angular
velocity, which can therefore be measured. Using optical fibers, the
optical path can be made arbitrarily long, enhancing the precision of
the sensor. By combining three such gyroscopes, the full rotational
motion of the robot can be estimated. Other types of gyroscopes exist,
such as mechanical gyroscopes, mems-based gyroscopes or ring-laser
gyroscopes.

1.2.1.2 Accelerometers

An accelerometer measures the instantaneous acceleration of its car-
rier. It can bee seen as a mass-spring system, as illustrated in Fig-
ure 1.2. Usually, three accelerometers are combined to measure the
full specific acceleration (including the gravity) of the carrier.

13
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Figure 1.1: Illustration of Sagnac ’s effect principle

Figure 1.2: Accelerometer
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Figure 1.3: Pressure sensor

1.2.1.3 Pressure sensors

A pressure sensor provides a measurement of the pressure applied
by the water column plus the atmospheric pressure above the robot.
With this information, knowing the density of the seawater, it is pos-
sible to retrieve the depth of the robot with a precision of about 1cm.
For long-term navigation, the tide effects have to be taken into ac-
count and must be compensated.

1.2.1.4 Doppler velocity log

A Doppler Velocity Log (DVL for short) sensor projects a high-frequency
acoustic signal on the seafloor, and measures the frequency shift in-
duced on the reflected signal by the relative motion between the robot
and the ground. From this frequency shift, it is possible to measure
the velocity of the robot in a specific direction, and by combining
several such projectors, the full velocity vector of the robot can be
obtained with a precision of about 0.1 cm/s.

1.2.2 Acoustic positioning system

Acoustic positioning systems are sensors that use acoustic signals to
retrieve information such as the bearing and/or the distance to an-
other acoustic device (beacon).

1.2.2.1 Ultra-Short Baseline

A USBL is a sensor that combines several acoustic transducers whose
relative positions are precisely known. One of these transducers emits
a signal that is answered by a transponder. By measuring the time
taken between the emission of the signal and the reception of the
answer it is possible to estimate the distance between the system and
the beacon. By also measuring the phase difference in the received
signals in the transducers array, it is possible to estimate its angles
of arrival, providing the full 3D position of the beacon in the sensor
frame.
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Figure 1.4: DVL. The four disks (three of which are visible here) project
a high frequency acoustic signal on the seafloor and measure
the received Doppler shift, allowing to measure the speed of its
carrier in several directions.

Figure 1.5: The iXblue GAPS USBL positioning system
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Examples of such systems are the POSIDONIA and the GAPS (il-
lustrated on Figure 1.5), by iXblue. The later offers a pre-calibrated,
tight coupling with an inertial measurement unit, to provide an accu-
rate position of the transponder in the global frame.

1.2.2.2 Short Baseline

A short baseline positioning system is similar to an USBL system ex-
cept for the greater distances in the transducer’s array. SBL computes
the distance between the transponder and each array’s transducer,
and unlike USBL, it computes the transponders position by trilater-
ation. Therefore, the greater the distances in the transducer’s array,
the greater the precision in the transponder’s positioning.

1.2.2.3 Long Baseline

A Long Baseline positioning System (LBL for short) is constituted
of at least three transponders placed on the seabed, around the op-
eration zone (up to ∼ 10km), whose absolute (or at least relative)
positions are precisely known. The submarine emits an acoustic sig-
nal, and measures the time of flight of the signals answered by the
transponders, and the submarine trilaterates its position. An advan-
tage of LBL systems is that they are often deployed above the seabed,
and thus avoid reflection of the signals on the water surface. Their
main inconvenient is that it sometimes takes a long time to calibrate
(determine the relative of absolute positions of the beacons) precisely
the baseline. Due to the fact that it requires only one acoustic trans-
ducer, an LBL positioning devices such as the RAMSES developed by
iXblue is cheaper than an USBL and also smaller, making it easier to
integrate on a subsea vehicle. LBL positioning devices,and the RAM-
SES specifically, coupled with inertial navigation systems described
in the next paragraph will be the center of focus of this PhD thesis.

1.2.3 Inertial navigation system

An Inertial Navigation System is a sensor that combines accelerome-
ters and gyroscopes to estimate the motion of a rigid body without
external reference. Sometime, they also embed a three-axis magne-
tometer and an estimator, often a Kalman filter, to provide an estima-
tion of the attitude of the vehicle. In that case, The INS is referred
as an AHRS (Attitude and Heading Reference System). It can also
merge other information (as the speed measured from a DVL) to pro-
vide a more accurate estimation.



18 modeling the simultaneous localization and mapping problem for an underwa

Figure 1.6: The iXblue RAMSES LBL positioning system

Figure 1.7: On the left an iXblue PHINS INS relying on FOG gyroscopes, on
the left an SBG Systems Ellipse-E INS relying on MEMS based
gyroscopes.
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1.3 problem modelization

In this thesis, we will consider the case of an underwater vehicle
equipped with an LBL positioning device, a DVL and a high-grade
INS. Its goal will be to localize itself while localizing a set of bea-
cons lying on the seabed. This is really interesting in an operational
context, where ship time is extremely expensive. Reducing the time
taken by a surface vessel to calibrate the LBL array, as illustrated in
Figure 0.1, and instead report that task during the navigation phase
represents important costs saving. The process of localizing a set of
objects while localizing the vehicle that collects the measurements is
known as “Simultaneous Localization And Mapping”, or SLAM, a
problem widely studied in the robotics scientific community as re-
called in the General Introduction of this manual.

SLAM is a typical state estimation problem described by the fol-
lowing state equations:







xk+1 = fk (xk, uk)

yk = gk (xk)
(1.1)

where k is the time, x = (xm, xb1 , xb2 , . . . , xbn
) is the state vector, con-

taining the position xm of the mobile and the beacons xbi
and y the ob-

servations. The first equation is the evolution function, modeling the
dynamic part of the problem, the second one is the observation func-
tion that models the exteroceptive measurements the vehicle makes
on its environment.

1.3.1 Motion equation

When the robot is equipped with a high-precision INS and a DVL,
as will be the case in the framework of this thesis, the input vector
u can be considered to be its Euler angles (φ, θ, ψ) and its velocity
v =

(

vx, vy, vz

)

. A simple model of the robot motion can then be
used:

ẋm = Rφ,θ,ψ · v (1.2)

where Rφ,θ,ψ is the rotation matrix that maps the velocity vector v

measured in the robot frame to the global frame.
This model is a kinematic model, as no second order derivatives of

the state variables are involved. For a dynamic modelization of the
robot the reader can refer to [32]. An Euler discretization yields the
following evolution equation:

xmk+1 = xmk + δt · Rφ,θ,ψ · v + ωk (1.3)

where ωk is some noise.
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As the landmarks are tied on the seafloor, we have the following
evolution equation for the ith landmark:

xbik+1
= xbik

. (1.4)

1.3.1.1 Uncertainties on the robot motion

The Euler angles are provided by the INS with a high precision, in
the order of magnitude of 0.001deg. In this work we will assume the
main source of uncertainties is the DVL, and we will consider the
noise on the estimated Euler angles to be negligible in front of the
DVL noise. This assumption will allow us to later use a Kalman filter
in nominal conditions, as no multiplicative noise will be involved.

The uncertainties are therefore modeled as a centered Gaussian
perturbation αv with covariance matrix Γαv that comes from the DVL.
The final robot evolution equation will be:

xmk+1 = xmk + δt · Rφ,θ,ψ · v + δt · Rφ,θ,ψ · αv· (1.5)

Since the knowledge of Rφ,θ,ψ is supposed to be perfect, we can
simplify our model by considering a centered, Gaussian perturbation
α with covariance matrix Γα = δt2 · Rφ,θ,ψ · Γαv · RT

φ,θ,ψ corresponding
to the DVL speed measurement noise projected in the global frame,
and writing:

xmk+1 = xmk + δt · Rφ,θ,ψ · v + α. (1.6)

In subsequent part of the thesis, we will also sometime consider that
the input of the system is the mobile’s velocity directly expressed in
the global frame, noted V for example:

xmk+1 = xmk + δt · V + α. (1.7)

1.3.2 Observation equation

The RAMSES, every time of flight acoustic measuring device, emits
an interrogation at time te and receives the answer of the ith transpon-
der at time tri

. By measuring the time elapsed between the instant te

when the interrogation is sent by the RAMSES, and the instant tri

when the answer of the beacon is received, and assuming a constant
sound velocity c, we have the following observation equation that
links the the position of the robot, the position of the ith beacon and
the instants te, tri

:

yi =

√

(

xm − xbi

)2
+
(

ym − ybi

)2
+
(

zm − zbi

)2
=

c

2
· (tri

− te − δTAT)

(1.8)
with δTAT the time elapsed between the instant when the transpon-

der receivers its interrogation and the instant where it emits its an-
swers.
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Figure 1.8: An example of sound velocity profile: the velocity varies with
the water depth.

1.3.2.1 Uncertainties on the time-of-flight measurements

The proposed model is naive. The underwater acoustic channel is
highly non-linear, dispersive, and suffers from multi-path propaga-
tion, frequency fading and many other effects. The electronic circuitry
may also induce uncertainties in the time of flight measurements.

propagation delays There are uncertainties in the time it takes
for the signal to go through the hardware and the transducer before
reaching the propagation channel. However, these uncertainties can
be precisely determined in the laboratory.

velocity profile The assumption that the celerity is fixed is
gross [17]. Ocean water is a dispersive medium, which means it im-
pacts the speed of the acoustic signal. A typical approach is to use a
layered model: the celerity is assumed to depend only on the immer-
sion, and is constant between two layers zi and zi+1. When the sound
speed velocity is dependent on the depth it has two different effects:

1. The angle of reception of the signal is affected

2. The trajectory of the acoustic signal is modified (it is not a
straight line anymore and there might be multiple path con-
necting the emitter and the receiver)
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Figure 1.9: Example of paths that could be taken by an acoustic signal. Some
are reflected on the seafloor or the water surface, and the disper-
sivity of the channel is obvious. The figure has been generated
by BELLHOP [85], an acoustic ray-tracing program.

For the scope of this thesis, we will consider the case when the
submarine is approximately in the same velocity layer as the beacons,
and the distance between the submarine and the beacons is less than
a kilometer. Therefore, the model described in Equation 1.8 is reason-
able as a first order approximation, and we will not use more complex
methods for computing the path traveled by the acoustic signals.

multi-path The path traveled by the acoustic signal may not be
the shortest path between the source and the transponder: it may be
reflected on the seafloor, the water surface, or simply result from the
fact that the acoustic channel is dispersive and there may exist several
acoustic paths between the transponders.

measurement noises The received signal must be amplified,
and therefore the noise will also be. We will consider that those
noises are filtered out by the electronics at a low-level, early in the
processing chain of the signals.

doppler shift The relative motion between the robot and the
transponder may induce a Doppler shift in the signal, and “interfere”
with the detection process. A Doppler shift might for example distort
the data association of the acoustic signal, in which case the time of
flight will be considered to come from the wrong beacon.
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In this thesis we will use the constant celerity hypothesis, and
model all aforementioned sources of uncertainties as an additive per-
turbation β, resulting in the observation model of Equation :

yi =
2
c
·
√

(

xm − xbi

)2
+
(

ym − ybi

)2
+
(

zm − zbi

)2
+ δTAT + β. (1.9)

β will be modeled as a centered Gaussian distribution whose stan-
dard deviation grows linearly with the measured time-of-flight (0.03
for example).

1.4 conclusion

In this chapter, we presented the class of sensors that have been used
in the scope of this work, and described their main sources of uncer-
tainties. It must be noted that there exist many other sensors in a
subsea context, such as echo-sounders or multi-beam echo-sounders.
For a more detailed review of these sensors, the reader is referred
to [84]. Our robot will be equipped with a high-precision INS, a DVL,
a pressure-sensor, and a LBL acoustic positioning device. A simple
but effective model of motion for our robot was proposed, as well as
a simple observation model for measuring the time-of-flight between
the robot and the beacons. In the next section, we will present the
most commonly used method to solve the problem of simultaneously
localizing a robot and a set of objects using time-of-flight sensors.
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C L A S S I C A L A P P R O A C H E S T O S O LV E T H E S L A M
P R O B L E M

2.1 introduction

SLAM is a typical estimation problem which, as many estimation
problem, faces the issue of dealing with uncertainties. From imper-
fect, partial, and sometimes erroneous measurements, a SLAM algo-
rithm has to provide an estimation of the parameter vector of inter-
est. The first key to solving this problem is to chose how to model
uncertainties. The second one is to chose how to deal with uncer-
tainties. In this thesis, we will focus on the two main approaches
to dealing with uncertainties: probabilities and sets. This chapter
is organized as follow. First, principles of probabilities to treat un-
certainties in the SLAM problem will be recalled. From this, we
will recall the Kalman filter algorithm [50] and its adaptations to
deal with nonlinear problems [74, 94]. Secondly, we will present
the set-membership approach for dealing with uncertainties. We will
show that when the uncertainties are not stochastic anymore but un-
known and bounded, the SLAM problem can be formulated as a set-
inversion problem, which is a typical use case for set-membership
methods [43][79]. Furthermore, an interval representation of these
uncertainties allows for a propagation of uncertainties. The q-relaxed
intersection, a set-theoretic operator, will be introduced, which al-
lows to compute a solution set even when there are outliers in the
measurements, whose maximum number is predefined. Finally, a
comparison of solving the SLAM problem with a Kalman filter and
a set-membership state estimator based on interval analysis will be
made on a real data-set, and the results will be discussed [70].

2.2 probabilistic approaches

Probabilistic approaches model uncertainties explicitly using the cal-
culus of probability theory. Instead of relying on a punctual esti-
mation, probabilistic estimation algorithm represent information by
probability distributions. Such a representation allows for represent-
ing ambiguities and computing a likelihood associated to a solution.
When the models are linear and the distributions are well known
(Gaussian for example), probabilistic methods are easy to manipu-
late. However, when the probability density functions are not known,
or the model are nonlinear (as is often the case on real world systems),
the resulting distributions are not easily represented by parametrized

25
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functions. When this kind of situation arises, strategies must be put
in place to approximate the true probability distributions. A strategy
can be to discretize the parameter space and associate a likelihood
to each cell of the resulting array. As the measurements arrive, the
array is updated and the probability distribution is refined. This type
of approach is known as “grid-based”, and works well but is sub-
ject to the curse of dimensionality: when the size of the parameter
vector to estimate grows, the memory used to represent the distribu-
tion and the computer time to update it grows exponentially with
that size. An other non-parametric approach known as “particle fil-
ter” also consists of search space discretization, except that instead
of discretizing the whole search space, the distribution is approxi-
mated by a set of states, called particles, with a likelihood associated
to each. Such a representation also allows for representing a broad
set of distributions, and is more flexible in the sense that particles
can be concentrated on an area of the search-space that is more likely
to contain the true solution instead of being spread over the entire
search space. Also, it is easy to propagate this sample based rep-
resentation through nonlinear transformation. Finally, the approach
often taken is to approximate the distributions by Gaussian distribu-
tions, which are easy to represent and manipulate, since they are only
parametrized by their mean and covariance matrices. Even though
the image of a Gaussian distribution through a nonlinear function
might not be a Gaussian distribution anymore, a Gaussian approxi-
mation can be computed either by linearization of the function, or by
using more complex schemes such as the Unscented Transform. This
class of SLAM algorithm is known as Kalman filters, and will be the
our reference probabilistic method in this thesis.

2.2.1 Kalman filtering

The Kalman filter [51] is the most widely used and studied technique
for state estimation. It is a two step algorithm that applies to linear
systems subject to additive, white Gaussian noise of the form:







xk+1 = Ak · xk + Bk · uk + αk

yk = C · xk + βk

(2.1)

where A, B, C are respectively the evolution, command and observa-
tion matrices, and where αk, βk are some centered, independent Gaus-
sian perturbation happening at instant k. With x̂0, Γ0 an initial guess
of the esperance and covariance matrix of the Gaussian distribution
followed by x initially, and Γα, Γβ the covariance matrices of the noises
α, β, the Kalman filter is able to estimate the esperance and covariance
x̂k, Γk of the distribution followed by x at any instant k. To do so, it
acts in a two step process: the prediction, where the proprioceptive
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measurements are integrated to project the current probability dis-
tribution at instant k onto the next instant k + 1, and an update step,
where an exteroceptive measurement yk, that brings some knowledge
on the actual state xk is processed to reduce the uncertainty on its es-
timate.

prediction equation The Kalman filter prediction equation can
be written as:







x̂k+1 = Ak · x̂k + Bk · uk

Γk+1 = Ak · Γk · AT
k + Γα

. (2.2)

It can be seen that the Kalman filter prediction equation simply com-
putes the image of a Gaussian distribution through an affine function.

update equation When a measurement yk on the robot is made
at time k, that new knowledge is integrated in the estimate by the use
of the update equation:



















x̂k = x̂k−1 + Kk · (yk − Ck · x̂k−1)

Γk = (I − Kk · Ck) · Γk−1

Kk = Γk · CT
k

(

Ck · Γk−1 · Ck + Γβ

)−1

(2.3)

drawback of the kalman filter The Kalman Filter is opti-
mal for linear systems subject to white, additive Gaussian noises. No
optimality can be proved for systems which are subject to different
kind of noises. Also, most systems encountered in real life are non-
linear. The system can then be linearized in its evolution equation,
its observation equation or both in order to perform a linear first or-
der approximation of the system, in a way that enables us to apply
the Kalman filter equations. Such method is known as the Extended
Kalman filter (EKF for short). An other method consists, instead of ap-
proximating the function with its tangent, to approximate directly the
first and second order moments of the distributions by propagating
a set of carefully chosen hypotheses through the nonlinear models.
The hypothesis are then merged to recover the mean and covariance
matrices. This method is referred as the Unscented Kalman Filter [49,
94] (UKF for short), and can be thought of a special case of particle
filter, except that instead of randomly choosing the hypothesis, there
are rules to select the points to ensure the second order approxima-
tion of the distribution is precise, by making use of the Unscented
Transform.

The Kalman filter suffers from the fact that it has to maintain a cor-
related map in memory, in the form of the covariance matrix Γ. As the
number N of landmarks grows, so does the state vector (linearly with
N) and the covariance matrix (quadratically with N). While this is a
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severe limitation in scenarios where there is a huge number of land-
marks, such as large-scale visual SLAM, in an underwater context
where the number of beacons is reasonable that quadratic growth is
sustainable. However, in a subsea environment Γ has high chances to
be sparse: the more distant the beacons are from each others, the less
they are correlated. In that case, sparse methods such as the Sparse
Information Filter [89], which can be seen as the complementary of
the Kalman filter might be a better approach.

Additionally, in its extended form, the Kalman filter makes use of
the current state estimate x̂k to compute the Kalman gain Kk, as it nec-
essary to compute the Jacobian of the observation model. This depen-
dency in the current state is not present in the linear case. Therefore,
a wrong choice for the initial guess of the system state can lead to a
divergence in the estimations produced by the Kalman filter which is
problematic when no initial knowledge on the system is available.

Finally, in its basic formulation, the Kalman filter is not built with
a mechanism to accommodate for faulty measurements, aka outliers.
However, criterion on the innovation yk − Ck · x̂k−1, that is, the dif-
ference between the expected observation and the actual observation,
can be chosen in order to accept or reject a measurement. It consists
of choosing a threshold and computing a Mahalanobis distance.

2.3 set-membership slam

The study of the Kalman filter outlined the reliability problem: when
the state equations are non linear or when the noise is not white,
Gaussian, the estimates may be inconsistent, meaning that the true
solution might not be in a given confidence region, even a high-
confidence one. We are interested in set-membership methods based
on interval analysis relying on the assumption that the noises are
unknown but bounded. Indeed, interval analysis does not require
the system to be linearized, and no approximations have to be made:
the image of an interval through a nonlinear function is an interval,
whereas for example the image of a Gaussian distribution through
the same function is not a Gaussian distribution anymore. Given
that the models are correct, and the assumptions about the uncer-
tainties are satisfied, the estimates resulting from the set-membership
method can be trusted, i.e. this method is reliable . We will see that
the assumption that there are outliers in the measurements can be
incorporated in the definition of the problem, and the method can
be made tolerant to such outliers, making it both robust and reliable.
For a short introduction to interval analysis, the reader can refer to A.

Set-membership methods consist in characterizing parameters that
are compatible with the observation and their associated bounds.
Therefore, contrarily to probabilistic methods, we do not want to find
the parameter that minimizes an error criterion, but instead the set
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of parameters that are consistent with the model, the observations
and their bounds. Also, no likelihood is associated to a given subset
of parameters: a subset of parameters is either compatible, incom-
patible, or no decision can be made about its compatibility with the
observations.

It is assumed that the original position x (0) of the mobile belongs
to a known set X0 and that αk ∈ [αk] , βk ∈ [βk] , i.e. the noises are
bounded.

2.3.1 Localization with a Robust State Observer

recursive bounded state estimation The feasible set X (k)at
any instant k corresponding to the set of all pose and beacon vectors
x (k) that are consistent with the past can be computed recursively [9,
54, 55] from the relation :

X (k + 1) = fk

(

X (k) ∩ g−1
k (Y (k))

)

(2.4)

.
Therefore, solving the SLAM problem in a recursive manner amounts

to solving the following CSP at each instant k:

HRBESE



















xk = fk−1 (xk−1)

yk = gk (xk)

xk ∈ X (k) , y (k) ∈ Y (k)

. (2.5)

yk is guaranteed to be an outlier if we have:

Xk ∩ g−1 (Yk) = ∅. (2.6)

Using Equation 2.6, if an outlier is detected it is simply discarded,
and the estimator continues to iterate. However, the first problem is
that it is possible that an outlier is present without being detected. In
such situation the estimator becomes inconsistent and it may take sev-
eral iterations before the inconsistency is detected. Another problem
is that the state vector for the SLAM problem is high dimensional (i.e.:
dimension 3 · (N + 1) where N is the number of landmarks). It then
quickly becomes prohibitive to perform bisections as the dimension
of the state vector grows. A more robust scheme using a sliding data
horizon can be used instead.

contractor on a sliding window In [92], the authors com-
pare the aforementioned recursive bounded estimation with a method
based on contractors [16] propagating constraints over a sliding hori-
zon called CPSLAM.

Define:
fi

k = fk ◦ fk−1 ◦ · · · ◦ fk−i. (2.7)
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With an horizon of the l last exteroceptive measurements we can
write:

X (k + 1) = fk (Xk) ∩
⋂

i∈{0,...,l}
fi

k ◦ g−1
k (Y (k − i)) . (2.8)

The goal of the CPSLAM approach is then to compute the interval
hull [X (k + 1)] of X (k + 1). By memorizing and re-applying several
times the same past observation, it is possible to reach a good preci-
sion without performing any bisection if desired. In this formulation,
outliers are still not accounted for and will eventually become incon-
sistent as outliers are added.

the robust state observer In [38], the author describes a more
robust alternative to the recursive set estimator using the q-relaxed in-
tersection operator, denoted

⋂{q}, that computes the intersection of m

sets except q at most. The definition is recalled in Definition A.6.3 in
Appendix A. Using relation 2.4, it is straightforward to deduce the
following equation:

X (k + 1) = fk (Xk) ∩
{q}
⋂

i∈{0,...,l}
fi

k ◦ g−1
k (Y (k − i)) . (2.9)

With this formulation, our estimator is guaranteed to survive to q

outliers among the last l measurements, independently of the nature
or the amplitude of these outliers. Should a greater number of out-
liers be added to the last l measurements, the estimator will lead to
the empty ∅ set and the inconsistency will be detected. The robust
observer is the interval-based observer that we will use, alongside
with the Kalman filter in the framework of this thesis.

2.4 comparison

In this section we compare the two approaches on a data-set acquired
in the La Ciotat bay, France in February 2014. A ship equipped with
a PHINS [76], a RAMSES [81], a DVL, a GPS and a pressure sen-
sor performs a survey of a zone where 4 acoustic beacons lie on the
seafloor. The position of these 4 landmarks are precisely known. The
trajectory of the ship and the position of the landmarks are depicted
in Figure 2.1.

2.4.1 Methodology

The perfect knowledge on the vehicle’s and beacons positions gives
us the ground truth. We will first run a test-case where the robots
position is assumed to be perfectly known at the start of the mission,
and the beacons positions are known up to a bias in the order of
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Figure 2.1: Setup of the trial

magnitude of 30 meters in the X/Y plane, and in the order of 1 meter
in the Z direction. We will then run a test-case where the robots
position is still assumed to be perfectly known, but the landmarks
X/Y coordinates are supposedly totally unknown. In this case, the
Kalman filter for the landmark is initialized on the initial position of
the vehicle with a very large covariance matrix. In both scenarios,
the altitude of the beacons is known with a precision of about one
meter. We will compare the two approaches for the estimation of the
vehicle’s and the landmark’s positions.

consistency An estimation is consistent if the true value of the
estimated quantity is contained in the confidence domain provided
by the filter. For the Kalman filter, we will say that an estimated
position is consistent if the true position is inside its 99% confidence
ellipse. For the RSO, the estimation is consistent if it is contained
in its sub-paving. We will compare the rate of consistency for both
filters during all the mission.

error We define the error of an estimation as the Euclidean dis-
tance that separates it from the true value. For the Kalman filter, it
will be the distance between its mean and the true position, for the
RSO it will be the distance between the center of mass of the sub-
paving and the true position.
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Vehicle’s precision UKF RSO

Max. Error - m 1.15 71.48

Final Error - m 0.469 9.57

Consistency - % 100 100

Table 2.1: Precision for the vehicle’s localization when a small bias is added
to the beacon’s positions
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Figure 2.2: Confidence plot for the Easting and the Northing of the mobile
when the base is biased

2.4.2 SLAM with some initial knowledge

Figure 2.2 displays the confidence domains for the error on the x
(Easting) and y (Northing) position of the vehicle in the local frame
for the Kalman filter and the RSO. The Kalman filter gives an estimate
with a decimetric error, while the RSO gives a decametric error. Both
approaches contain the real position during all the mission.

Regarding the estimated positions of the beacons shown in Fig-
ure 2.3, the Kalman filter converges in less than 10 minutes to a deci-
metric precision, while the RSO’s precision quickly reaches a deca-
metric precision and doesn’t improve after that. Both approaches
give estimations that contain the true positions of the beacons during
all the mission.
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Beacons precision UKF RSO
B

ea
co

n
1

Final Error - m 0.246 10.99

Initial bias - m 28.7

Consistency - % 100 100

B
ea

co
n

2

Final Error - m 0.180 7.45

Initial bias - m 22.8

Consistency - % 100 100

B
ea

co
n

3

Final Error - m 0.221 7.56

Initial bias - m 35.1

Consistency - % 100 100

B
ea

co
n

4

Final Error - m 0.657 9.05

Initial bias - m 30.1

Consistency - % 40.63 100

Table 2.2: Precision for the beacons localization when a small bias is added
to their initial positions
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Figure 2.3: Error plot for the estimation of the beacons positions when their
initial positions are biased

Vehicle’s precision UKF RSO

Max. Error - m 4.76 71.48

Final Error - m 3.73 19.0

Consistency - % 83.9 100

Table 2.3: Precision for the vehicle’s localization when the beacons positions
are unknown

2.4.3 SLAM without initial knowledge

Figure 2.4 shows that the confidence on the error of the vehicle’s po-
sition is higher than for the previous scenario. However, both filters
are consistent during the whole mission: their 99% confidence do-
main for the vehicle’s position contain the true position. Regarding
the estimation of the beacons positions, the Kalman filter is able to
locate the second beacon with a final error of about 4 meters, while it
converges to wrong positions for the other beacons, whose 99% con-
fidence domain do not contain the true beacons positions. The RSO
on the other hand, is able to locate the beacons with a final error of
about 10 meters for all the beacons, and the true beacon’s positions
are contained in its estimate.
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Beacons precision UKF RSO
B

ea
co

n
1

Final Error - m 458.2 6.40

Initial bias - m 319.8

Consistency - % 11.6 100

B
ea

co
n

2

Final Error - m 4.29 16.85

Initial bias - m 80.4

Consistency - % 68.9 100

B
ea

co
n

3

Final Error - m 332.7 17.83

Initial bias - m 87.1

Consistency - % 24.6 100

B
ea

co
n

4

Final Error - m 48.7 13.52

Initial bias - m 387.6

Consistency - % 17.5 100

Table 2.4: Precision for the beacons localization when their initial location is
unknown
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Figure 2.4: Confidence plot for the Easting and the Northing of the mobile
when the base is unknown
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Figure 2.5: Confidence plot for the Easting and the Northing of the mobile
when the base is unknown



2.5 discussion on the pessimism of the rso 37

2.5 discussion on the pessimism of the rso

Section 2.4 shown that the RSO’s precision, despite having a 100%
consistency, is quite unsatisfying, and one might argue that its high
consistency comes from its high level of pessimism. In this section,
we describe two factors that have been identified as a unnecessary
source of pessimism.

2.5.1 Wrapping effect

Definition 1. A transformation T is said to be box-conservative if the
image of an axis-aligned box through T is also an axis-aligned box.

Remark 2. The evolution model for the vehicle involves a rotation that
maps the speed measured in the local vehicle’s frame to the global
frame. A rotation is generally not box-conservative, and this rotation
adds pessimism known as wrapping-effect [65] [80].

Since the evolution model is linear, interval are not the best repre-
sentation for sets. For this kind of models, other methods such as
zonotopes [61] or ellipsoids are a more attractive representation. To
reduce the wrapping induced by the rotation, a combination of linear
and interval methods could be used.

2.5.2 Non-compensation of noises

Assume the robot moves in a fixed direction. We have ∀k, Rk =

R, Γαk
= Γα. At the beginning the robot knows its exact position,

so Γ0 = 0. If the robot does not make any observation, we have the
following properties.

Proposition 3. Without exteroceptive measurements, the precision given

by a Kalman filter for the position of the system described previously grows

as a square-root of the time.

Proof. We have






























Γ1 = Γα

Γ2 = Γ1 + Γα = 2 · Γα

...

Γk = k · Γα

. (2.10)

Given a fixed time-step dt between instant k and instant k + 1, the
elapsed time is t = k · dt, and we have

Γk =
t

dt
· Γα. (2.11)
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A confidence domain with confidence η for a random variable x

following a normal distribution with mean µ and covariance matrix
Γk is an ellipse described by the following inequality

√

(xk − µk)
T · Γ−1

k · (xk − µk) ≤ α (η) (2.12)

with α (η) the radius of the ellipse, a function that gives the confi-
dence threshold α for a confidence η.

Consequently, introducing Equation 2.11, we have:

√

(xk − µk)
T · Γ−1

α · (xk − µk) ≤ α (η) ·
√

t

dt
(2.13)

which means that the radius of the ellipse grows as a square root
of time.

Proposition 4. Without exteroceptive measurements, the precision given by

the RSO for the position of the system described above grows linearly with

time.

Proof. The perturbation on the integrated speed is supposed to be-
long to some interval [wff].

From that we have






























[xm1 ] = xm0 + R · u + [wα]

[xm2 ] = [xm1 ] + R · u + [wα] = xm0 + 2 · R · u + 2 · [wα]
...

[xm2 ] = xm0 + k · R · u + k · [wα]

(2.14)

Given a fixed time-step dt between instant k and instant k + 1, the
elapsed time is t = k · dt, and with w ([x]) the width of the largest
interval component of [x], we have

w
([

xmki

])

=
t

dt
· w ([wαi

])

which concludes the proof.

Propositions 3 and 4 shows that the Kalman filter is much more
precise when integrating the proprioceptive measurements than its
interval counterpart. By taking into account that the proprioceptive
noises are Gaussian, it is able to provide a precision that grows as a
square root of the time, whereas the RSO provides an estimate whose
precision grows linearly with time.
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2.6 conclusion

In this chapter, we compared the use of a Kalman filter against an
interval filter for the SLAM problem of an underwater vehicle on
a real data-set. As expected, the Kalman filter gives estimates that
are of high precision when we have a reasonable prior knowledge
on the beacons positions, and might converge towards wrong solu-
tions when no such knowledge is available. The RSO, on the other
hand, is consistent during all the mission with or without good prior
knowledge, but its precision is quite poor. To improve the preci-
sion of the Kalman filter, we could use an approach similar to [11],
where the initial state is first estimated with an interval method, and
then a Kalman filter is initialized from this estimate. An other ap-
proach would be to overcome the sources of pessimism described in
Section 2.5. Since the evolution model is linear, the wrapping effect
could be reduced by combining an interval approach with a linear ap-
proach such as ellipsoidal methods [9, 19, 77] or zonotopes [61]. An
other way of drastically reducing the pessimism of the RSO would be
to make it able to integrate the uncertainties as a square-root of time,
which would make the propagation-retro-propagation described in
Equation 2.7 much more precise. This approach will be described in
the next chapter.





Part II

C O N T R I B U T I O N S

In Part i we reviewed, compared and analyzed the perfor-
mances of two SLAM algorithms on a real data set. We
observed that set-based methods tend to be less precise
than their probabilistic counterparts, with the benefit of a
greater robustness. Part ii will be dedicated to the study of
the sources of pessimism that makes interval approaches
less precise, and tools to overcome this problem will be
presented. Thus, Chapter 3 will focus on diminishing the
pessimism when propagating information between states
xk, xl at two instants k, l in the trajectory. Chapter 4 will
focus on the static aspect of SLAM, more precisely on the
fusion of exteroceptive measurements, and how to make
it more precise. Finally, the results of this thesis will be
discussed and Chapter 5 will conclude this manuscript.





3
T H E K A L M A N C O N T R A C T O R

3.1 introduction

In Chapter 2 we have seen how, for a simple open-loop motion model,
a Kalman filter’s confidence domain grows as a square root of time
whereas an interval filter’s grows linearly with time. We will put
aside the observation and update equations of the Kalman filter to
focus only on the prediction equation. This focus is motivated by
the model of our underwater robot. In Chapter 1, Equation 1.6, we
have seen that the motion model of the robot is linear, and that the
uncertainties applied on the motion can reasonably be modeled as
Gaussian. This is the perfect use case for a Kalman filter, as has been
discussed in Section 2.2.1. On the other hand, the observation model
described in Equation 1.9 is non-linear and non-invertible, which
means that the full robot’s state cannot be recovered from a single
observation. Additionally, the sources of noises on the observations
are highly uncontrolled, and we have seen that modeling it as an ad-
ditive, white Gaussian noise is a coarse simplification. Therefore, the
observations are not well suited for being processed by a Kalman fil-
ter. The goal of this chapter is therefore to study how a Kalman filter
achieves a good processing of the motion uncertainties, and see how
we can take advantage of its properties in a set-membership frame-
work [70]. Note that combining the Kalman filter with set member-
ship uncertainties has already been considered by Jauberthie et al.
[34] [96] [90].

By studying a simple example, we will highlight how we can give
the ability to integrate the uncertainties as a square root of time to
an interval filter, to finally result in an elegant and compact tool to
achieve that goal.

3.2 case study : the random walk

Let’s consider the simple motion model of the random walk:

xk+1 = xk + wk (3.1)

.
Equation 3.1 could for example describe the motion of a submarine

that stays fixed above the seafloor, where its imperfect DVL reports a
velocity which is centered and normally distributed with a covariance
matrix Γw.

43
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Figure 3.1: Monte-Carlo propagation for Equ. 3.1 after 10 seconds: the cross
are the hypothesis, the ellipse are the confidence domain for var-
ious confidence thresholds, the inner square is the confidence
region for an interval propagation.

Figure 3.1 shows an integration of Equation 3.1 for 10 time steps
with a Monte-Carlo method and an interval integration. It is clear
that the interval method is extremely conservative, and provides a
confidence region which contains x10 with a confidence greater than
1 − 10−10.

Figure 3.2 shows how the confidence region grows with time both
with a Kalman filter and an interval filter integration of Equation 3.1,
which confirms what we observed in the previous chapter.

3.3 the kalman contractor

In this section, we will take a closer look on the prediction equations
of statistical relationship that links the states xk, xl at two instants
k, l of a system with linear motion model subject to additive, white
Gaussian noise. An IMU generally provides inertial data at a high
rate. As has been explained in Section 2.3.1, solving the SLAM prob-
lem with a robust state observer requires to propagate information
between the current instant k and previous instants where exterocep-
tive measurements were gathered. This requires us to compute the



3.3 the kalman contractor 45

Figure 3.2: 1D projection of the confidence region as a function of time

composed function f i
k = f k ◦ f k−1 ◦ · · · ◦ f k−i such that xk = f i

k (xi).
For the general case, there is no known method to find f i

k by other
means than actually computing the composition. As there is at least
as many composition to perform as there were proprioceptive mea-
surements between instant k and instant l, and as an IMU generally
provide attitude data at a high rate, computing f i

k will prove to be
an expensive operation, forcing us to use very short sliding windows
to perform real-time estimations. For example, for an IMU that pro-
duces orientations at a rate of 100Hz, computing xk = f i

k (xi) with xk

and xl distant by 10 seconds will require us to perform about 1000
operations. Now, interval constraint propagation methods are based
on fix-point methods, which means that information must be prop-
agated and retro-propagated many times between xk and xl . Since
there is also no way to easily compute f k

i , the inverse of f i
k for the

general case, we can see how quickly fix-point methods will become
computationally too expensive for real-time use. For our specific use-
case, where the attitude of the system can be seen as inputs and is not
part of the state vector, and where the evolution equation is linear, we
will show that it is possible to “pre-integrate” the motion equations
of the vehicle. This means that it is possible to efficiently compute the
transformation f i

k and its inverse, allowing us to compute xk from xl
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and reverse in a single operation. To do so, we will unroll the Kalman
filter prediction equations and rewrite them in an “integral” form.

3.3.1 Principle

Let’s iterate the Kalman filter prediction equation for the following
general linear system:

xk+1 = A · xk + uk + wk (3.2)

.
For k ∈ [0, 3], we have the predicted mean x̂k:



















x̂1 = A0 · x̂0 + u0

x̂2 = A1 · A0 · x̂0 + A1 · u0 + u1

x̂3 = A2 · A1 · A0 · x̂0 + A2 · A1 · u0 + A1 · u1 + u2

(3.3)

and the predicted covariance matrix Γk:































Γ1 = A0 · Γ0 · AT
0 + Γw

Γ2 = A1 · A0 · Γ0 (A0 · A1)
T + A0 · Γw · AT

0 + Γw

Γ3 = A2 · A1 · A0 · Γ0 (A0 · A1 · A2)
T + A1 · A0 · Γw (A0 · A1)

T

+A0 · Γw (A0)
T + Γw

(3.4)
.

Definition 5. Now define the transition matrix Pi
k as:



















Pi
k = Ak−1 · Ak−2 . . . Ai, if k > i

Pk = P0
k = I

Pi
k = Pk

i , if k < i

(3.5)

The transition matrix satisfies the Chasle equation:

Pi
k = Pl

k · Pi
l (3.6)

and
Pi

k = Pk · P−1
i (3.7)

which means that matrices Pi
k can all be obtained from the Pk.

Remark 6. The state at any time k can be expressed only as a function
of x0:

xk = Pkx0 +
k−1

∑
i=0

Pi
k · (ui + αi) (3.8)
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Proof. We have:

x1 = A0x0 + u0 + α0

x2 = A1A0x0+ A1 · (u0 + α0) + u1 + α1

x3 = A2A1A0x0+ A2A1 · (u0 + α0) + A2u1 + A2α1+ u2 + α2

x4 = P3x0+ P3 · (x0 + α0) + P1
3 (u1 + α1) + P2

3 · (u2 + α2) + u3 + α3

· · · = . . .

xk = Pkx0+ ∑
k−1
i=0 Pi

k · (ui + αi)

.

(3.9)

Then from Equation 3.9, x̂k, Γk can be obtained for any instant k:






x̂k = P0
k · x̂0 + ∑

k−1
i=0 Pi+1

k ui

Γk = P0
k · Γ0 ·

(

P0
k

)T
+ ∑

k
i=1 Pi

k · Γwi
·
(

Pi
k

)T (3.10)

.
Equation 3.10 can also be written as:










x̂k = P0
k ·
(

x̂0 + ∑
k−1
i=0

(

P0
i+1

)−1
ui

)

Γk = P0
k ·
(

Γ0 + ∑
k
i=1
(

P0
i

)−1 · Γwi
·
(

P0
i

)−1T
)

·
(

P0
k

)T
(3.11)

and by introducing the matrices:






Qk = ∑
k−1
i=0

(

P0
i+1

)−1
ui

Rk = ∑
k
i=1
(

P0
i

)−1 · Γwi
·
(

P0
i

)−1T
(3.12)

we get a very compact writing for Equation 3.10:






x̂k = P0
k · (x̂0 + Qk)

Γk = P0
k · (Γ0 + Rk) ·

(

P0
k

)T
. (3.13)

Now, if we look at the states xk, xl taken at two different instants
k, l:










x̂k = P0
k · x̂0 + ∑

k−1
i=0 Pi+1

k (ui + wi) = P0
k

(

x̂0 + ∑
k−1
i=0

(

P0
i+1

)−1
(ui + wi)

)

x̂l = P0
l · x̂0 + ∑

l−1
i=0 Pi+1

l (ui + wi) = P0
l

(

x̂0 + ∑
l−1
i=0

(

P0
i+1

)−1
(ui + wi)

)

(3.14)
we can see that x̂k, x̂l are linear combinations of the same, inde-

pendent, normally distributed random variables which implies that
the random variable x̂kl resulting of the concatenation of x̂k, x̂l is also
normally distributed:

(

x̂k

x̂l

)

∼ N (x̂kl , Γkl) (3.15)
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.
We can fully characterize its distribution by computing its first and

second order moments:

E (xkl) = x̂kl =

(

E (xk)

E (xl)

)

=

(

x̂k

x̂l

)

(3.16)

E
(

xkl · xT
kl

)

= Γkl =

(

E
(

xk · xT
k

)

E
(

xk · xT
l

)

E
(

xk · xT
l

)

E
(

xl · xT
l

)

)

=

(

Γk E
(

xk · xT
l

)

E
(

xk · xT
l

)

Γl

)

(3.17)
.

Now, x̂k, x̂l , Γk, Γl can naturally be obtained from Equation 3.13,
while a quick calculation for the of-diagonal block-matrices of Γkl

gives:

E
(

xk · xT
l

)

= P0
k

(

Γ0 + x0 · QT
l + Qk · xT

0 + Rl

)

P0T

l (3.18)

.
From the now fully characterized Gaussian distribution of Equa-

tion 3.15 we can compute a confidence region.

Definition 7. The inter-temporal confidence ellipsoid Σkl containing
the states xk, xl at instants k, l with a probability η is the set:

Σkl =
{

x| (x − x̂kl) · Γ−1
kl · (x − x̂kl)

T − α2 (η) ≤ 0
}

(3.19)

with α a confidence threshold.

A contractor can be defined for the set described in Definition 7:

Definition 8. The Kalman contractor Ck,l : IR
2n → IR

2n contracts
[x] = [xk]× [xl ] with respect to the constraint x ⊆ Σkl .

The Kalman contractor enables us to propagate information be-
tween two states at different instants k, l with a single constraint,
without having to re-integrate the motion equations between k, l. Fig-
ure 3.3 illustrates the contraction of a box [x] made of the concatena-
tion of two boxes [xk] , [xl ] with respect to their inter-temporal confi-
dence region Σkl .

Selecting the right confidence threshold is important: there is a
probability of 1 − η that the Kalman contractor will eliminate the
correct value. Also, care should be taken when composing several
Kalman contractors. Say we apply successively the Kalman contractor
for different pairs: Ck,l , Ck,m, Ck,n. In that case, [xk] would contain xk

with a probability η3. If we selected for example η = 0.9, that means
that [xk] now contains xk with a probability 0.729, a 17% decrease. An
obvious solution is to use the confidence threshold η′ = η1/n, with n

the number of different Kalman contractors acting on xk. We could
also construct a “big” inter-temporal ellipse Σklm... in the trajectory
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Figure 3.3: Illustration of an inter-temporal confidence ellipsoid Σkl and the
contraction of a box [x] = [xk]× [xl ] with respect to Σkl .

space with an appropriate radius α (η) taking into account the dimen-
sion of the problem, and then compute the inter-temporal ellipsoids
as as many projections of the bigger ellipsoid onto each desired pair
of instants.

The approach taken here suffers from the fact that it is not feasible
to solve the global localization problem, as the mean x̂0 and covari-
ance matrix Γ0 must be known to derivate the mean and covariance
matrix for any other state xk at instant k. To model the total lack of
knowledge about the initial state when there is no way to compute
a reasonable initial guess, the covariance matrix is generally chosen
very large so that its associated confidence ellipse covers a large area
over search-space of interest. For nonlinear functions, linearizing and
sigma-point methods tend to fail in such situation because they will
linearize the model or propagate sigma-points around a point that is
very far away from the correct one.

In the next section we will derive a relative formulation of the
Kalman contractor presented here to get rid of the initial condition
knowledge problem.

Moreover, when Σkl is not diagonal, according to [40] a contractor
based on forward-backward propagation will not be optimal, as there
will be several variable repetition in the expression of Equation 3.19.
The next section will detail how the multi-occurrence of variables can
be solved in this context, and Appendix B will develop the method
in details.

Remark 9. When the initial state is not known and the estimate is ini-
tialized with a very large confidence matrix, one might think that the
Kalman contractor from Definition 8 will not efficiently propagate
information between two states xk, xl . Indeed, since Γ0 is large, the
diagonal terms of Γkl will also be large, and the ellipsoid will be huge.
However, the information gain will be carried by the correlation be-
tween xk, xl , which is carried by the off-diagonal elements of Γkl given
by 3.18. For a random walk, two states xk, xl with k, l close will be
highly correlated, resulting in a tight ellipsoid Σkl . The further xl will
be from xk, the less correlated the two states will be, and the more
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Σkl will be shaped like a ball. The ability to propagate information
precisely will thus depend on the tightness of Σkl .

3.3.2 The Kalman contractor without initial conditions

We are now giving an alternative, relative formulation for the Kalman
contractor which does not require the knowledge of the initial condi-
tion x̂0. Such a formulation allows for example to solve the problem
of global localization, where no prior assumption is available on the
initial localization of our vehicle. Modeling such an absence of in-
formation in a Gaussian framework is generally solved by setting
Γ0 = λ · I, with I the identity matrix and λ some huge value. The
following formulation enables us to overcome this limitation by fo-
cusing on a relative representation of the state equations.

Proposition 10. The signal cl
k = xk − Pl

k · xl is Markovian, and a Kalman

filter can be applied.

Proof. We have:






























cl
k+1 = xk+1 − Pl

k+1 · xl

= Ak · xk + uk + αk − Ak · Pl
k · x0

= Ak ·
(

xk − Pl
k · x0

)

+ uk + αk

= Ak · cl
k + uk + αk

(3.20)

cl
k is indeed Markovian, and a Kalman filter may be applied.

Since cl
l = 0 and Γl

c (l) = 0, a Kalman filter gives the following
prediction equations:







ĉl
k = ∑

k−1
i=l Pi

k · ui

Γl
c (k) = ∑

k−1
i=l Pi

k · Γα ·
(

Pi
k

)T
. (3.21)

Which means a confidence ellipsoid for cl
k is:

(

cl
k − ĉl

k

)T
·
(

Γl
c

)−1
(k) ·

(

cl
k − ĉl

k

)

≤ a (3.22)

Theorem 11. A confidence region containing the inter-temporal state vector

xl
k = (xk, xl) with a probability η is the ellipsoid El

k (η) defined as:

E
l
k (η) =



































(xk, xl) |




xk − ĉl
k

xl





T

·






(

Γl
c

)−1
(k)

(

Γl
c

)−1
(k) ·

(

−Pl
k

)

−Pl
k ·
(

Γl
c

)−1
(k)

(

Pl
k

)T ·
(

Γl
c

)−1
(k) · Pl

k






·




xk − ĉl
k

xl



 ≤ α2 (η)

(3.23)
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with α (η) a function that gives the radius of the confidence ellipse with

probability η for a normally distributed random variable of dimension d =

dim (xk) + dim (xl).

Proof. From Equation 3.22, and since cl
k = xk − Pl

k · xl , a confidence
region containing xl

k with a probability η is:

(

xk − Pl
k · xl − ĉl

k

)T ·
(

Γl
c

)−1
(k) ·

(

xk − Pl
k · xl − ĉl

k

)

≤ α2 (η)

⇔
(

xk − ĉl
k

)T ·
(

Γl
c

)−1
(k) ·

(

xk − Pl
k · xl − ĉl

k

)

−
(

Pl
k · xl

)T ·
(

Γl
c

)−1
(k) ·

(

xk − Pl
k · xl − ĉl

k

)

≤ α2 (η)

⇔
(

xk − ĉl
k

)T ·
(

Γl
c

)−1
(k) ·

(

xk − ĉl
k

)

−
(

xk − ĉl
k

)T ·
(

Γl
c

)−1
(k) ·

(

Pl
k · xl

)

+xT
l · PlT

k ·
(

Γl
c

)−1
(k) ·

(

Pl
k · xl

)

− xT
l · PlT

k ·
(

Γl
c

)−1
(k) ·

(

xk − ĉl
k

)

≤ α2 (η)

⇔
(

xk − ĉl
k

xl

)T

·







(

Γl
c

)−1
(k)

(

Γl
c

)−1
(k) ·

(

−Pl
k

)

−Pl
k ·
(

Γl
c

)−1
(k)

(

Pl
k

)T ·
(

Γl
c

)−1
(k) · Pl

k






·
(

xk − ĉl
k

xl

)

≤ α2 (η)

Definition 12. A contractor that contracts the box [xl ]× [xk] with re-
spect to El

k (η) is a Kalman contractor.

Theorem 13. The problem of contracting optimally the box [xl ]× [xk] with

respect to Equation 3.23 amounts to solving 2 · d semi-definite programming

problems, and an optimal contractor for this constraint can be built using

the LMI contractor.

Proof. Schur complement theorem states that for a set of matrices
A, B, C, D respectively of dimensions p× p, p× q, q× p, q× q, we have
the following equivalence:







A ≻ 0

A − BD−1C � 0
⇔
(

A B

C D

)

� 0, (3.24)

therefore since α2 (η) ≥ 0, Equation 3.23 can be rewritten as:

















α2 (η)

(

xk − ĉl
k

xl

)T

(

xk − ĉl
k

xl

)







(

Γl
c

)−1
(k)

(

Γl
c

)−1
(k) ·

(

−Pl
k

)

−Pl
k ·
(

Γl
c

)−1
(k)

(

Pl
k

)T ·
(

Γl
c

)−1
(k) · Pl

k























� 0,

(3.25)
which is an LMI [13]. Therefore, finding the smallest box satisfying
Equation 3.25 amounts to minimizing then maximizing each compo-
nent xi of [xl ]× [xk], which is done by the LMI contractor.

The reader is referred to Appendix B for a more detailed on con-
tracting optimally a box under LMI constraint.
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Remark 14. When the evolution matrix A = I, the shape matrix






(

Γl
c

)−1
(k)

(

Γl
c

)−1
(k) ·

(

−Pl
k

)

−Pl
k ·
(

Γl
c

)−1
(k)

(

Pl
k

)T ·
(

Γl
c

)−1
(k) · Pl

k






(3.26)

is singular and Schur complement theorem doesn’t apply as is, and
Moore-Penrose pseudo-inverse should be used. In this situation, it
is better to use Equation 3.22 which is also an LMI and yields to an
optimal contractor since the transformation by the identity matrix is
box-conservative.

In this work, we refer to “the” Kalman contractor as a Kalman
contractor based on the LMI contractor, but any (preferably optimal)
contractor satisfying Definition 12 or Definition 8 is a Kalman con-
tractor.

3.4 algorithm

We will now describe the steps necessary to implement the Kalman
contractor for state estimation using the Definition 12 derived from
Theorem 11. However, it is straightforward to deduce the steps used
to apply the version of the Kalman contractor defined at the begin-
ning of Section 3.3.

3.4.1 Initialization

At instant k = 0 we initialize P0
0, ĉ0

0, Γ0
c (0) as follows:

P0
0 = I

ĉ0
0 = 0

Γ0
c (0) = 0

. (3.27)

3.4.2 Prediction

For every instant k, compute P0
k+1, ĉ0

k+1, Γ0
c (k + 1) such that:

P0
k+1 = Ak · P0

k

ĉ0
k+1 = Ak ·

(

uk + ĉ0
k

)

Γ0
c (k + 1) = Ak ·

(

Γα + Γ0
c (k)

)

· AT
k

. (3.28)

For instants that will be later used for constraint propagation, these
three quantities should be memorized. In the case of mobile robot
navigation, we will want to store these quantities at instant when an
exteroceptive measurement is received.
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Figure 3.4: The raw signal x (k), its interval tube, the tube given by a Kalman
predictor.

3.4.3 Contraction

When the current state should be updated according to the measure-
ment history, compute the quantities:

ĉl
k = ĉ0

k − ĉ0
l

Γl
c (k) = Γ0

c (k)− Γ0
c (l)

Pl
k = P0

k ·
(

P0
l

)−1

and apply the Kalman contractor for El
k (η) to the box [xl ]× [xk].

3.5 illustration

To illustrate the use of the Kalman contractor, we will simulate a
simple system described by the following state equations:







xk+1 = sin (0.1 ∗ k) · xk + ωk

yk = cos (xk) + αk

(3.29)

with ωk, αk two white, normalized centered Gaussian vectors. For
the simulation, we set x0 = 0, and for the Kalman filter we use x̂0 =

0, σ0 = 1.
This system has a linear evolution equation, which makes it a per-

fect candidate for a Kalman filter. On the other hand, the observa-
tion equation is non-linear, and can’t be processed reliably as-is by a
Kalman filter (we would have to linearize it or to propagate sigma-
points to approximate the distributions).

Figure 3.4 illustrates the integration of that system without any
observation over 100 steps with a Kalman filter and an Interval esti-
mator. Figure 3.5 and the following figures represent only the width
of these tubes.

Now, if after integrating the trajectory we had two observations
y41, y81 at times t = 41, t = 81, the interval observer would be able to
contract the trajectory at these instants as illustrated on Figure 3.6.
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Figure 3.5: Illustration of the system described in Equation 3.29 over a time
horizon of 100 steps.

Figure 3.6: Contraction of the trajectory using two observations at times t =
41, t = 81



3.5 illustration 55

(a) (b)

Figure 3.7: Application of the Kalman contractor on [x10]× [x50]

(a) (b)

Figure 3.8: Forward-Backward propagation after using the Kalman con-
tractor on [x10] × [x50](a), fix-point after applying the Kalman
contractor at several random locations followed by forward-
backward propagation

Now, we randomly chose two instants k = 10, l = 50, and apply
the Kalman contractor on the box [x] = [x10] × [x50]. The result of
the contraction is shown on Figure 3.7(a), while Σ10,50 is shown on
Figure 3.7(b).

Figure 3.8(a) shows the trajectory tube when a forward-backward-
propagation is performed after having applied the Kalman contractor
on [x10] × [x50], and Figure 3.8(b) shows the trajectory tube after re-
peating the process for several random instants up to the fix point. We
see that the trajectory tube contracted with the Kalman filter is more
precise than the one contracted using the forward-backward contrac-
tor only and the one using the Kalman filter in dead-reckoning only.
The resulting tube can be visualized on Figure
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Figure 3.9: Interval tube at the fix-point compared to the Kalman predictor
tube

3.6 discussion

Of course, the example treated in Section 3.5 is both simplistic and
naive. Instead of applying the Kalman contractor several times at
random locations, it should be applied only to the instants where
observations have been made and where we want to benefit from
these observations (ex: at the current instant). In the case of this
simulation, since only two observations were made at instants 41 and
81, we should have contracted the state x100 with only two Kalman
contractors: C41,100, C81,100.

3.7 conclusion

In this Chapter, we have presented a new contractor that enables us to
propagate uncertainties on the motion equations in the way a Kalman
filter does but in a set-membership framework, without having to re-
integrate the motion equations every-time new data have to be pro-
cessed. This allows to treat systems with a linear evolution equation
and a non-linear observation equations, much like the model of our
underwater robot motion. In the next chapter, we will focus on the
observation part of the Kalman filter equations. Assuming the robot
does not move and accumulates measurements, we will see how a
Kalman filter incorporates uncertainties in the observation equations.
Finally, a method will be proposed which, as in this chapter, enables
us to have Kalman-filter-like precision properties on the processing
of observations, but in a reliable way.



4
N O N L I N E A R G A U S S I A N PA R A M E T E R
E S T I M AT I O N

4.1 introduction

In this chapter, we will zoom on the observation equations of the
SLAM problem. Disregarding the dynamic aspect of the problem (the
motion equations), and assuming that the poses xk at each sampling
time is known to belong to a given set Xk and are variables of the
problem (i.e.: we are not interested in contracting the Xk’s anymore),
we show that finding the set Xbi , the set containing the ith beacon,
amounts to solving a classical static parameter estimation problem.

Recall the equations of the SLAM problem:






x̊ = f (x, u)

y = g (x)
. (4.1)

In this chapter we will completely disregard the evolution equation
(the first one), and focus on the observation equation (the second line).
Given a vector y of normally distributed measurements available at
some instant k, we will want to retrieve xk. While in the previous
chapter we were dealing with linear equations subject to additive
Gaussian noise, here we have nonlinear equations, also subject to
additive Gaussian noise.

Parameter set estimation deals with characterizing a set (prefer-
ably small) which encloses the parameter vector p of a parametric
model from data collected on the system. In the context of bounded-
error estimation [63, 73, 93], the measurement error is assumed to be
bounded and computing the feasible set for p can be described as
a set inversion problem for which interval methods are particularly
efficient, even when the model is nonlinear [44]. In a probabilistic
context, the error is not anymore described by membership intervals,
but by probability density functions (pdf), and the correspondence
between the two approaches has been studied by several researchers
[8] [57]. For instance, in a Bayesian context, the Bayes rule makes it
possible to get the posterior pdf for p (see, e.g., [30]). The set to esti-
mate becomes the minimal volume credible set [7] and corresponds
to the minimal volume set, in the parameter space, which contains
p with a given probability η. This problem cannot be cast into a set
inversion problem but existing interval methods can still be used [35].
Now, the approach is limited to few parameters (typically less than
3) and few measurements (typically less than 10).

57
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Recently, an original approach [21] named Sign-Perturbed Sums (SPS)
has proposed to constructs non-asymptotic confidence regions which
is guaranteed to contain the true parameters with a given probability
η. This approach has been used for nonlinear models to compute
confidence regions which have not a minimal volume (at least in the
Gaussian case). Interval analysis has also been considered to deal
with the SPS method [56] to compute guaranteed confidence regions.
Other methods such as [28] or [36] are also able to compute guaran-
teed confidence regions using interval analysis, but the computed set
is not of minimal volume and it is difficult to evaluate the resulting
pessimism.

There exist other approaches that combine bounded-error estima-
tion with probabilistic estimation [2] [67] [34], [96], or that use other
frameworks such as random sets [64, 83] or fuzzy-sets [29, 88], but
all these methods do not solve a problem which is expressed only
in terms of probabilities only and can thus not be used to compute
confidence regions.

This chapter considers a problem which can be considered as clas-
sic on probabilistic parameter estimation: compute a set which en-
closes the parameter vector with a fixed probability η. Our main
contribution is to be able to solve this problem in a reliable way in
the case where the error is Gaussian and the model is nonlinear. To
our knowledge, no such method exists in the literature.

This chapter considers the case where the error is additive and
Gaussian.

In Section 4.2 we will recall the principles of set-inversion for the
specific case where the noises are Gaussian, and will propose differ-
ent models for the set to invert, by taking into account a confidence
threshold. Section 4.3 recalls the principle of the linear Gaussian esti-
mation that will be used for comparison. Section 4.4 will illustrate the
proposed approach on simple simulated examples, and compare the
discussed approaches as well as a classical linear Gaussian estimator.
Section 2.6 will conclude the chapter.

4.2 bounding a white gaussian random vector

In this section we will treat the problem of parameter estimation in a
set-membership framework. Consider the following static parameter
estimation problem

y = ψ(p) + e, (4.2)

where ψ is the model, y ∈ Rn is the vector of all measurements
(which is known) and e is the error vector. Fact 15 shows that even
if only treating the special case of a centered, normalized Gaussian
error vector e, the results are applicable with any non-white Gaus-
sian error vector. Therefore, in an effort to maximize readability and
without loss of generality we assume that e follows a Gaussian dis-
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N
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(
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))

and their images

x = Γ−1/2 (y − µ)

tribution with zero mean and a covariance matrix equals to In, i.e.:
e ∼ N (0, In).

Remark 15. As illustrated by Figure 4.1, a random variable y follow-
ing a normal distribution N (µ, Γ) can always be whitened into a
random variable x distributed as N (0, In) by the affine transform
x = Γ−1/2 (y − µ).

Proof. We have E [y] = E [µ] + Γ
1/2E [x] = µ. The covariance Γy of y is

E
[

(y − µ) · (y − µ)T
]

= E
[

Γ
1/2 · x ·

(

Γ
1/2 · x

)T
]

= E
[

Γ
1/2 · x · xT · Γ

1/2T
]

=

Γ
1/2. E [x] · E

[

xT
]

· Γ
1/2T

= Γ
1/2 · I · IT · Γ

1/2T
= Γ.

When the yi’s are bounded, finding the set of all feasible parame-
ters compatible with the model and the measurements consist of com-
puting the pre-image of the set Y = [y1]× [y2]× · · · × [yn] through
the function ψ (p) = (ψ1 (p) , ψ2 (p) , . . . , ψn (p))

T, and is a classical
set-inversion problem:

P = ψ−1 (Y) . (4.3)

Now, what happens when the observations are not bounded any-
more, as is often the case for true systems? In such situation, it is still
possible to bound the observations, except that the resulting bound-
ing will not be guaranteed to contain the true measurement, but will
contain it with a probability νi. Assuming the observations are inde-

pendent, the set Yη = [y1]ν1
× [y2]ν2

× · · · × [yn]νn
will contain y with

a probability η = ∏
n
i=1 νi.

Definition 16. Define the function f (p) = y − ψ (p) corresponding
to the error e and a set Eη containing e with a probability η. The
probabilistic set associated to Eη is defined as

P̂Eη
= f−1 (

Eη

)

. (4.4)

P̂Eη
contains p with a prior probability of η [36]. As a consequence,

a probabilistic set estimation can be viewed as a set inversion problem
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n α(η)

1 α =
√

2erf−1(η)

2 α =
√

−2 · log (1 − η)

n ≫ 1 α ≃
√

n + 2
√

n · erf−1
(

2η + erf
(

−√
n

2

))

.

Table 4.1: α(η) for n = 1, 2 and n ≫ 1

for which guaranteed set inversion techniques could be used. Now,
there exists several manners to choose such a set Eη . The purpose
of this section is to study different bounding shapes for the case of a
white, Gaussian measurement vector.

4.2.1 Bounding with a sphere

Recall from [75] some results useful to get a set which encloses the
normal error e with a given probability η.

Theorem 17. The minimal volume confidence region of probability η asso-

ciated with e ∼ N (0, In) is the centered n-dimensional sphere Sη of radius

α, where (α, η) are linked by the relation

η =
∫ α2

0

z(
n
2 −1)e−

z
2

2
n
2 Γe

(

n
2

) · dz (4.5)

where Γe the Euler function. For n ∈ N the Euler function satisfies

Γ (n) = (n − 1)! (4.6)

Proof. The random variable z = eT · e follows a χ2 distribution with
n degrees of freedom whose probability density function is

π(z, n) =
z(

n
2 −1) · e−

z
2

2
n
2 Γe

(

n
2

) . (4.7)

The minimal volume confidence region Sη is the set of all e such that

z = eT · e ≤ α2 (η) (4.8)

and the probability η to have e ∈ S is

η =
∫ α2

0
π (z, n) · dz =

∫ α2

0

z(
n
2 −1)e−

z
2

2
n
2 Γe

(

n
2

) · dz. (4.9)

For n = 1, n = 2 or n large, from the integral in Equation (4.5), we
can have an expression of the radius α(η) [7] as recalled in Table 4.1.
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In our context, the dimension of e is large and we can consider that
the formula corresponding to n ≫ 1 is correct.

Thus, from Theorem 17 we know that P̂Sη
, the invert of the η-

confidence sphere is the smallest feasible set of parameters. Now,
inverting a sphere is is not particularly well suited for interval meth-
ods. Indeed, each parameter appears many times in the expression of
the sphere equation, and we know from [48] that an inclusion func-
tion is minimal if each variable appears only once in the function’s
expression.

Example 18. Consider two functions f from Rn to Rm, and g from
Rm to R. With a measurement vector y ∈ Rm, expressions for these
functions could be:

f (x) =









x1 + cos2 (x2)− y1

. . .

x1 + cos2 (x2)− yn









(4.10)

g (z) =
n=dim(z)

∑
i=1

z2
i . (4.11)

Both the fi’s and g expressions are made up of a finite composition
of the operators +,−, ∗, / and elementary functions (cos, sqr in our
case). Moreover, the variables appear only once in their expression.
Therefore, their inclusion functions [f] ([x]) , [g] ([z]) are minimal, i.e.
[f] ([x]) and [g] ([z]) are the smallest box and interval that contain
f ([x]) and g ([z]) [48]. If, however, we look at the function h from Rn

to R with h (x) = g ◦ f (x) defined by:

g ◦ f (x) =
(

x1 + cos2 (x2)− y1
)2

+ · · ·+
(

x1 + cos2 (x2)− yn

)2
(4.12)

its expression contains many occurrences of the xi’s, and conse-
quently its natural inclusion function may not be minimal.

Experience shows that an inclusion function for the sphere involved
in the equation describing Sη is indeed very pessimistic, and linear
methods such as the centered inclusion function [48] or affine arith-
metic [71] should be used to decrease this pessimism.

4.2.2 Bounding with boxes

Inverting a box is well suited for interval methods. We show here
some theoretical results of inverting the box-hull of the η-sphere and
the η-box, the box that contains e with a probability η.

4.2.2.1 Hull of the η−sphere

Definition 19. We define the box-hull
[

Sη

]

as the smallest box that
contains Sη .
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It might be tempting to approximate Sη by its box-hull
[

Sη

]

. How-
ever, as shown in Theorem 20, it is not a good idea since even with a
low value of η, when the dimension of the sphere is high, the proba-
bility that

[

Sη

]

contains e tends toward 1. This fact is illustrated on
Figure 4.2.

Theorem 20. With n ≫ 1 , the probability φη to have e ∼ N (0, In) ∈
[

Sη

]

is:

φη = erf





√

√
n · erf−1

(

2 · η + erf

(

−
√

n

2

))

+
n

2





n

. (4.13)

Proof. From Table 4.1 with n ≫ 1, for a given confidence η, the radius
α of Sη is

α =

√

2 ·
√

n

[

erf−1

(

2η + erf
(

−
√

n

2

))]

+ n. (4.14)

Now,
[

Sη

]

is the Cartesian product of n intervals [ei] of length 2α:

[

Sη

]

= [e1]× [e2]× · · · × [en] . (4.15)

From Table 4.1 with n = 1, we know that the probability to have
ei ∈ [ei] is

Pr (ei ∈ [ei]) = erf
(

α√
2

)

. (4.16)

Therefore

Pr
(

e ∈
[

Sη

])

=
n

∏
i=1

Pr (ei ∈ [ei]) = erf
(

α√
2

)n

. (4.17)

By combining (4.14) with (4.17), we get (4.13).

4.2.2.2 Bounding with the η-box

When bounding with
[

Sη

]

, the fact that φη grows with the number
of measurements even when η is fixed is not desirable. Since e is a
Gaussian vector and the ei’s are independent, an other obvious bound-
ing shape for e is the box whose radius is derived from the nth root
of η.

Theorem 21. The minimal volume box Bη which encloses e ∼ N (0, In)
with a probability η is the centered cube with half-width

α =
√

2erf−1 ( n
√

η) . (4.18)
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Figure 4.2: As the dimension n of e (or the number of measurements) grows,
the probability φη (n) to have e ∈

[

Sη

]

grows as well.

Proof. The symmetry of the problem implies that Bη should be cen-
tered. Since the ei are independent, we have:

η = Pr (∀i, ei ∈ [−α, α])

= ∏
n
i=1 Pr (ei ∈ [−α, α])

= ∏
n
i=1 erf

(

α√
2

)

= erf
(

α√
2

)n

(4.19)

α =
√

2erf−1 ( n
√

η) . (4.20)

Despite its simplicity, Theorem 21 is often overlooked when choos-
ing lower and upper bounds for experimental data. A measurement
ỹ often comes with a variance σ (or covariance matrix Γ when ỹ is not
a scalar) given by the sensor, its data-sheet or a pre-treatment, and an
interval representation for y is often chosen of the form

[y] = ỹ + n · σ · [−1, 1] (4.21)

with n an integer. This representation comes from the fact that when
y is Gaussian, centered and normalized (i.e.: y ∼ N (0, 1)), some
typical values for its inverse cumulative distribution Φ−1 (p) are:

Using Fact 15 we easily get Expression 4.21. For example, [y]1 =

ỹ + σ · [−1, 1] contains y with a probability of 68%, while [y]2 = ỹ +

2 · σ · [−1, 1] contains y with a probability of 95%. This choice for
bounding y is wrong in two frequent situations:

1. when y is not scalar Equation 4.21 is not valid anymore and is
an underestimation, i.e.:

Pr (y) ∈ y + Φ−1 (p) · Γ
1/2 · [−1, 1]×dim(y)

< p (4.22)
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p Φ−1 (p)

68% 1

95% 2

99.7% 3

Table 4.2: Typical integer values for the probit function.

2. when N measurements ỹi are available, the probability that
f−1 ([y]) contains the true parameter p decreases with N as is
easily shown from Equation 4.18:

η = erf
(

α√
2

)N

(4.23)

with α = n · σ.

This observation is trivial, but is often overlooked, and leads to think
for example that from N = 100 measurements each bounded with a
probability 0.99 we compute P̂ that encloses p with the same proba-
bility, while the actual probability is actually only 0.99N = 0.37.

Now, bounding e with Sη ,
[

Sη

]

or Bη wont tolerate the cases where
some data are outliers, i.e.: some of the ei’s do not belong to proji

(

Sη

)

, proji
([

Sη

])

or proji
(

Bη

)

. In that case, of course, it simply means that either the
event “e is not in the bounding” with its associated probability 1 − η

happened, or that our Gaussian assumption doesn’t hold. In the lat-
ter case, other shapes enabling the measurement to occasionally be
far from the origin should be chosen. Such a shape is the cross-shape,
and interval methods are able to manipulate those shapes.

4.2.3 Bounding with a relaxed box

Interval methods allows to tolerate the presence of faulty measure-
ments when their number is bounded by a known number, i.e.: there
are at most a fixed number q of them. The robustness to outliers is
obtained by relying on the Q-intersection operator [14, 47], which is
more thoroughly discussed in Appendix A.

Solving the Q-relaxed CSP:

H{q} :







∧q

i={1,...,N} fi (p) = ei

p ∈ [p] , ei ∈ [ei]
(4.24)

where ∧q denotes the logical q-relaxed AND operator, i.e. the op-
erator that combine all the constraints except q at most, amounts to

computing f−1
(

[e]{q}
)

, where [e]{q} is the q-relaxed box defined be-
low in Definition 22.
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Figure 4.3: Illustration of the q-relaxed box [x]{q} = [−1, 1]×3 with q = 0
(left), q = 1 (middle), q = 2 (right, truncated in [−10, 10]×3 for
visibility purpose)

Definition 22. A q-relaxed box [x]{q} associated to a box [x] ⊂ Rn is
a union of boxes of the form:

[a1]× [a2] · · · × [an] (4.25)

where at least q of the [ai]’s are equal to [−∞, ∞] and the others
correspond to the [xi]’s.

We will write

[x]{q} =
{q}
∏

i∈{1,...,n}
[xi] (4.26)

which defines the q-relaxed Cartesian product operator.

Example 23. For a box [x] = [x1]× [x2]× [x3], we have:

[x]{0} = [x1]× [x2]× [x3]

[x]{1} = [−∞, ∞]× [x2]× [x3] ∪ [x1]× [−∞, ∞]× [x3] ∪ [x1]× [x2]× [−∞, ∞]

[x]{2} = [−∞, ∞]×2 × [x3] ∪ [x1]× [−∞, ∞]×2 ∪ [−∞, ∞]× [x2]× [−∞, ∞]

[x]{3} = [−∞, ∞]×3

.

(4.27)
This example is illustrated on Figure 4.3 for the case where [x1] =

[x2] = [x3] = [−1, 1].

We see on Figure 4.3 that the q-relaxed box is simply an unmodified
box when q = 0, an infinite axis-aligned cross-shape when q = 1,
and its extension to higher dimension when q > 1. Finally, when
q = dim (x) we have [x]{q} = Rn. It is obvious that we have the
following relation:

[x]{0} ⊂ [x]{1} ⊂ · · · ⊂ [x]{dim(x)} .

As such, when we increase the number q of relaxed measurement,
the measurement space is less and less constrained. It would be
tempting to say that the measurement space covered by the q-relaxed
box increases with q, but it would have no sense since the volume
of the q-relaxed box is infinite as soon as q is greater than 0. A con-

sequence of this decrease of constraint is that Pr
(

e ∈
(

Bη

){q}) ≥
Pr
(

e ∈ Bη

)

, i.e.: the q-relaxation of Bη is of course an over-approximation
of Bη . We define the domain B

q
η as follows:
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Definition 24. With either ν = Pr (ei) ∈ proji
(

B
q
η

)

or q fixed, the set
B

q
η is the smallest q-relaxed box containing e with a probability η.

The goal of the following statements is to provide a way to compute
ν, q such that Pr (e) ∈ B

q
η = η when the dimension of e is large.

Theorem 25. With ν the probability of having ei ∈ [ei], N = dim (e), γ

the probability to have strictly more than q outliers we have the following

relation:

γ (q, N, ν) =
1
2
·
(

1 + erf

(

N · (1 − ν)− q − 1
√

2 · N · ν (1 − ν)

))

(4.28)

Proof. The number k of inliers among the N normalized measure-
ments follows a binomial distribution, and the probability of having
exactly k inliers among N measurements is

β (k, N, ν) =
N!

k! (N − k)!
· νk · (1 − ν)N−k . (4.29)

Thus, the probability of having strictly more than q outliers is

γ (q, N, ν) =
N−q−1

∑
k=0

β (k, N, ν) . (4.30)

The central limit theorem states that when N is large, which is the
case for us, γ (q, N, ν) can be approximated by a normal distribution
with mean N · ν and variance N · ν · (1 − ν).

The probability that there are more than q outliers among the N

ν−confidence intervals is therefore

γ (q, N, ν) =
1
2
·
(

1 + erf

(

N · (1 − ν)− q − 1
√

2 · N · ν (1 − ν)

))

(4.31)

from which we deduce for a given γ, ν, N:

q (N, ν, γ) = N (1 − ν)− 1 −
√

2 · N · ν (1 − ν) · erf−1 (2γ − 1) .
(4.32)

It naturally follows that the probability η of having more than q

outliers is:

η (q, N, ν) = 1 − 1
2
·
(

1 + erf

(

N · (1 − ν)− q − 1
√

2 · N · ν (1 − ν)

))

. (4.33)

Example 26. With N = 1000, ν = 0.9, η = νN , Figure 4.4 shows the
probability γ as a function of q, the number of relaxed measurements.
For each value of ν, we see γ decreases abruptly from almost 1 to
approximately 0 when q becomes higher than some threshold.
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Figure 4.4: Risk of having more than q outliers as a function of q with ν ∈
{0.5, 0.7, 0.9}. When q grows, the the risk diminishes.

Corollary 27. With N, γ fixed, an expression for q as a function of ν is:

qN,γ (ν) = N (1 − ν)− 1 −
√

2Nν (1 − ν) · erf−1 (2γ − 1) . (4.34)

Proof. From Equation 4.28 it is trivial to obtain Equation 4.34.

Corollary 28. With N, γ, q fixed, an expression for ν is:

νN,γ (q) =







αN,γ (q) + βN,γ (q) when γ < 0.5

αN,γ (q)− βN,γ (q) when 0.5 ≤ γ < 1
(4.35)

with










αN,γ (q) =
erf−1(2γ−1)2+N−q−1

2erf−1(2γ−1)2+N

βN,γ (q) =
erf−1(2γ−1)·

√

(2Nq+Nerf−1(2γ−1)2+2N−2q2−4q−2)/n

2erf−1(2γ−1)2+n

(4.36)

Proof. From Theorem 25 it is straightforward to get a polynomial
PN,γ,q in ν, which is easily solved by a formal mathematical solver
such as Mathematica [95] or Maple [4] yielding the results in Equa-
tions 4.35 and 4.36.

Corollary 29. Given q, the smallest q-relaxed box B
q
η of n intervals which

contains e ∼ N (0, In), with a probability η is:

[x]{q} =
{q}
∏

i∈{1,...,n}
εn,1−η (q) · [−1, 1] (4.37)

with

εn,1−η (q) =







√
2erf−1

(

1 − αn,1−η (q)− βn,1−η (q)
)

when η < 0.5
√

2erf−1
(

1 − αn,1−η (q) + βn,1−η (q)
)

when 0.5 ≤ η < 1
(4.38)
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with αN,γ (q) , βN,γ (q) defined in Equation 4.36 and where B
q
η is the

smallest in the sense that there exists no other q-relaxed box B
′q
η such that

B
′q
η ⊂ B

q
η .

Proof. From Table 4.1, we know that the radius r of a confidence in-
terval containing the correct value with a probability ν is

r (ν) =
√

2 · erf−1 (ν) (4.39)

and by inserting Equation 4.35 in 4.39 we get 4.37.

Now, For computing P̂
B

q
η

from a set of N measurements, the couple
of parameters (q, ν) has to be chosen: fixing a value for q amounts to
fixing ν and reverse, so there is one degree of freedom left in the
problem. One might ask whether there is a choice for (q, ν) that
minimizes the volume of P̂

B
q
ν
. We define here two criterion that could

be further investigated in order to constraint this degree of freedom
surplus.

Definition 30. Given a set Eη which contains e ∼ N (0, In) with a
probability η. We define the pessimism of Eη as:

pess
(

Eη

)

= prob
(

e ∈ Eη \ Sη

)

− prob
(

e ∈ Sη \ Eη

)

(4.40)

The set that minimizes the pessimism is of course the η-sphere
Sη . It is generally difficult to compute analytically this pessimism. It
however easy to evaluate it using a Monte-Carlo method. A choice
for q would be one that minimizes the pessimism.

Definition 31. Given a set Eη which contains e ∼ N (0, In) with a
probability η. We define the accuracy of Eη as:

acc
(

Eη

)

=
∫

Eη

π2 (e) · de (4.41)

This quantity corresponds to the mathematical esperance of the
likelihood inside Eη , and can be seen as the complementary of the
pessimism. Again, the set that maximizes the accuracy is the η-sphere
Sη . There is still no easy way to generally compute the accuracy of a
set analytically, but it should be easy to evaluate it using Monte-Carlo
methods.

In the frame of this work, we will arbitrarily fix a value for q or ν

when computing B
q
η .

It should be noted that B
q
η is more suited to deal with situation

where rare events such as a multi-path occur. Of course, in those
situation the Gaussian assumption simply doesn’t hold anymore, but
while there is a high risk that computing P̂Sη

, P̂[Bη], P̂Bη
will return

the empty set ∅ even for high values of η, it is less likely to also be
the case for P̂

B
q
η
. Indeed, cross-shapes are more suited to represent
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Figure 4.5: Idealized representation for (darkest to lightest):
[

Sη

]

, B
q
η , BηSη

heavy-tailed distributions, where most of the events are distributed
around the mean, but where the likelihood to be far away from the
mean doesn’t decrease exponentially with the distance from the mean.
When events that should be rare occur frequently, the error is heavy-
tailed and B

q
η should be chosen.

4.3 linearizing method

A classical probabilistic approach to estimate the set P̂Eη
is the Max-

imum Likelihood Estimator (MLE) that uses a linear approximation of
the model. Unfortunately, the linearization error cannot be quanti-
fied in a reliable way, and therefore the result of the MLE cannot
be trusted. Additionally, we will show that a Maximum Likelihood
Estimation for the case of additive Gaussian noise is only able to rep-
resent ellipsoidal sets even if PEη

can be an arbitrary set.
The linearization method searches for the parameter vector p̂ which

maximizes the likelihood function

L (yi|p) = ∏
i

π (yi|p) . (4.42)

In our case, recall that the noise follows a centered, normal distri-
bution such that π (yi|p) ∝ e−(ψi(p)−yi)

2
and Equation 4.42 becomes:

L (yi|p) ∝ ∏
i

e−(ψi(p)−yi)
2
. (4.43)
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Now, as the logarithm function is monotonic increasing, this is
equivalent to minimizing:

λ (p) = −log (L (yi|p)) = ∑
i

(ψi (p)− yi)
2 (4.44)

which corresponds to a non-linear least-square minimization prob-
lem.

It seems reasonable to assume that the true value for p is close
to the minimizer p̂ and that λ (p) can be approximated by a second
order Taylor development of Equation 4.44 around p̂. Since p̂ mini-
mizes λ (p), the gradient of λ at p̂ is zero and we get:

λ (p) ≃ λ (p̂) +
1
2
· (p − p̂)T · Hλ · (p − p̂) (4.45)

where Hλ is the Hessian matrix of of λ (p) in p̂.
With eT · e ≤ α2 (η) and eT · e = ∑i (ψi (p)− yi)

2 a confidence
region that contains p with a probability η is:

λ (p̂) +
1
2
· (p − p̂)T · Hλ (p̂) · (p − p̂) ≤ α2 (η) (4.46)

which is an ellipsoid of radius 2 ·
(

α2 (η)− λ (p̂)
)

and shape ma-
trix Hλ (p̂). Note that Hλ (p̂) corresponds to the observed Fisher
information matrix at p̂ which is the inverse of the covariance matrix
Σp̂ for the estimated maximum likelihood parameter p̂ from which
the Cramér-Rao bound is derived [82].

4.4 comparison

We will now illustrate our method with three illustrative test-cases in-
volving parameter estimation under white, additive Gaussian noise.
In these test-cases, the method based on the q-relaxed intersection
discussed in Section 4.2.3 will not be tested, and will instead be more
thoroughly covered in Appendix C to conduct robust, reliable Maxi-
mum Likelihood Estimation (MLE) on real-data.

4.4.1 Test-case 1

Consider the following model

y (t) = p2 · e−p1·t + p1 · e−p2·t + w (t) (4.47)

where t ∈ {0, 0.01, 0.02, . . . , 12} and w(t) is a white centered Gaus-
sian noise with a variance σ2 = 1. Figure 4.6 represents the collected
data y(t).

Figure 4.7 represents the three sets P̂0.99 obtained by an inversion
of [S0.99] , B0.99 and S0.99. This comparison confirms that the box-hull
inversion P̂[S0.99] is too pessimistic. Figure 4.8 illustrates a situation
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Figure 4.6: Measurements y (t) for Test-case 1

where P̂S0.99 6⊂ P̂B0.99 . From Theorem 34 we could have expected an
inclusion. Now, this example is quite atypical: the parametric model
is not globally identifiable, i.e., p1 and p2 can be interchanged with-
out any effect on the output. Figure 4.8 also represents the confidence
ellipsoid generated by the linear estimator. Due to the non identifia-
bility problem, we have two global minimizers. We chose to draw the
ellipsoid centered around the minimizer corresponding to the true pa-
rameter vector p∗. Otherwise, the 0.99 ellipsoid would not contains
p∗.

Figure 4.7: P̂[S0.99] (top left), P̂B0.99 (top right), P̂S0.99 (bottom). The black star
is the true parameters vector.
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Figure 4.8: Superposition of P̂[S0.99] (light gray), P̂B0.99 (gray), P̂S0.99 (dark
gray), and the 0.99 confidence ellipse obtained with a linear esti-
mator. The black star is the true parameter vector p∗

4.4.2 Test-case 2

Consider the following model studied in [45]

y(t) = 20 · e−p1·t − 8 · e−p2·t + w (4.48)

which is similar to the model of Test-case 1 but the model is now iden-
tifiable. Again, w(t) is a centered normal noise with a unit variance.
We collected 1000 measurements for y(t) at different times t ∈ [0, 25]
as represented on Figure 4.9.

Figure 4.10 shows that the inversion P̂S0.99 of the confidence sphere
S0.99 is more precise than the inversion of [S0.99] and B0.99. The set
P̂S0.99 has two disjoint components at a confidence level η = 0.99.
Figure 4.11 shows that the linear estimator was able to capture the
correct parameters vector.

Remark 32. Figure 4.10 shows that the proposed approach suffers from
an important pessimism: the border of the computed set is quite
thick, and the generated sub-paving is not minimal. This is due to
the multiple-occurrences in the parameter variables in the expression
of the inequalities describing Sη . Interval methods are sensitive to
this type of situation which adds pessimism in the propagation of
uncertainties [41]. To limit this phenomena, linear approximations
such as the centered or affine forms of the constraints could be used.

4.4.3 Test-case 3

In this example, a lost underwater vehicle tries to get its position by
gathering range-only measurements to three beacons. The position
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Figure 4.9: Collected data y(t) for Test-case 2

Figure 4.10: P̂[S0.99] (top left), P̂B0.99 (top right), P̂S0.99 (bottom). The black
star is the true parameter vector p∗



74 nonlinear gaussian parameter estimation

Figure 4.11: Superposition of P̂[S0.99] (light gray), P̂B0.99 (gray), P̂S0.99 (dark
gray), and the 0.99 confidence ellipse obtained with a linear
estimator.

xj =
(

xj yj zj

)

of the jth beacon is precisely known from a previ-
ous survey of the area, as well as the altitude zm of the robot, thanks
to a pressure sensor.

The three beacons are almost aligned, which causes a bad condi-
tioning. The robot is assumed to be static during the acquisition. For
each measurement d̃i to the beacon j we have

d̃ij =
√

(

xj − xm

)2
+
(

yj − ym

)2
+
(

zj − zm

)2
+ w (4.49)

where w is a white centered Gaussian noise, whose variance is given
by the sensor for each measurement. The signals associated to the
three beacons are pictured in Figure 4.12.

From Figure 4.14, we observe that P̂S0.99 ⊂ P̂B0.99 ⊂ P̂[S0.99], which
confirms that the P̂S0.99 is more precise than the two other confidence
regions. Figure 4.15 is the superposition of P̂S0.99 , P̂B0.99 , P̂[S0.99] and the
0.99 confidence ellipse of a linear estimator. While the linear estima-
tor gives an estimate that is consistent (it contains the true solution), it
is obvious that it doesn’t fully capture the underlying banana-shaped
probability density function, which is more accurately seized by our
nonlinear methods.

Table 4.3 compares the time it takes to compute P̂[S0.99], P̂B0.99 , P̂S0.99

on a classical laptop for the three test-cases. As it could have been
anticipated, it is clear that inverting boxes, which are convenient rep-
resentations for interval methods, takes much less time than inverting
a sphere.
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Figure 4.12: Range signals received from the three beacons

Figure 4.13: An underwater robot stays fixed on the seafloor and gath-
ers range measurements from 3 beacons whose positions are
known, in order to estimate its position

Computation time (s) Test-case 1 Test-case 2 Test-case 3

P̂[S0.99] 35 sec 1sec 26sec

P̂B0.99 62sec 6sec 45sec

P̂S0.99 839sec 89sec 510sec

Table 4.3: Computation times for Test-cases 1, 2 and 3
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Figure 4.14: P̂[S0.99] (top left), P̂B0.99 (top right), P̂S0.99 (bottom). The black
star represents p∗

Figure 4.15: Superposition of P̂[S0.99] (light gray), P̂B0.99 (gray), P̂S0.99 (dark
gray), and the 0.99 confidence ellipse of the linear estimator
(black). The black star represents p∗
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4.5 discussion

We will now want to see if we could have anticipated some of the
results of Section 4.4. More specifically, are there properties of the
proposed shapes that we could use to prove that one is more precise
than the other, where a bounding shape Sa is more precise than Sb if
P̂Sa

⊂ P̂Sb
.

A trivial case happens when Sa ⊂ Sb: in that case, Sa is obviously
more precise than Sb since P̂Sa

⊂ P̂Sb
. This is the case for the two

non-relaxed box bounding: as shown in Theorem 33, since Bη ⊂
[

Sη

]

, bounding e with Bη will result in more precise estimation than
bounding it with

[

Sη

]

.

Theorem 33. Bounding e with Bη is more precise than bounding with the

box-hull
[

Sη

]

of Sη .

Proof. Bη and
[

Sη

]

are both centered boxes. It then suffices to show
that rad

(

Bη

)

< rad
(

Sη

)

to prove that Bη ⊂
[

Sη

]

. From Equation 4.18

we have rad
(

Bη

)

=
√

2 · erf−1 ( n
√

η
)

and from Equation 4.14 we have

rad
(

Sη

)

=

√

2 · √n
(

erf−1
(

2η + erf
(

−
√

n
2

)))

+ n.

Now, is it preferable to use Bη or Sη? We don’t have an inclusion
relation for these two representation, as their intersection Bη ∩ Sη is
non-empty. From Theorem 17 we know that Sη is the minimal volume
set that contains e with a probability η, and is therefore de facto the
most precise shape. However, we propose a reflection based on the
ratio of the volumes of the two sets when the dimension d of e grows.
In that sense, Theorem 34 shows that the ratio of the volume of Sη

over Bη tends towards zero when d tends towards infinity.

Theorem 34. We have:

lim
n→∞

vol
(

Sη

)

vol
(

Bη

) = 0 (4.50)

Proof. Since the volume of an n-dimensional sphere Sη of radius α is

Vn =
πn/2 · αn

Γe (n/2 + 1)
, (4.51)

we have:

ρη (n) =
vol
(

Sη

)

vol
(

Bη

) =

π
n/2·
√

n+2
√

n·erf−1
(

2η+erf
(

−√
n

2

))

n

Γe(n/2+1)
(

2
√

2erf−1 ( n
√

η
)

)n . (4.52)

The Stirling formula Γe (n + 1) = n! ∼
√

2πn
(

n
e

)n implies that:

ρη (n) ∼
πn/2 ·

√

n + 2
√

2 · erf−1
(

2η + erf
(

−√
n

2

))

n

√

2π n
2

(

n
2e

)n/2 ·
(

2
√

2erf−1 ( n
√

η
)

)n . (4.53)
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Now, 2η + erf
(

−√
n

2

)

∼ 2η − 1. Therefore:

ρη (n) ∼
πn/2 ·

√

n + 2
√

n · erf−1 (2η − 1)
n

√
πn
(

n
2e

) n
2 ·
(

2
√

2erf−1 ( n
√

η
)

)n . (4.54)

Since n + 2
√

n · erf−1 (2η − 1) ∼ n, we get:

ρη (n) ∼ π
n/2·√n

n

√
πn( n

2e )
n
2 ·(2

√
2erf−1( n

√
η))

n

= π
n/2·n n

2 ·(2e)
n
2

√
n( n

2e )
n
2 ·(2

√
2erf−1( n

√
η))

n

∼ (eπ)
n
2

(2erf−1( n
√

η))
n

=

( √
eπ

2erf−1( n
√

η)

)n

.

(4.55)

which converges to zero as n increases.

Theorem 34 doesn’t serve as a proof that Sη is more precise than
Bη , but it gives an intuition on how pessimist each set becomes when
we add more measurements: as the number of measurements grows,
the volume of Sη becomes more and more negligible in comparison
of the volume of Bη .

Such intuition based on the volume can not be extended when treat-
ing the case of relaxed boxes, because we know from Definition 22

that it is obvious that vol
(

B
q
η

)

is infinite when q is positive. In the
framework of this thesis we therefore do not further try to discuss
the pessimism of B

q
η , and its precision relatively to Bη or Sη . That

notion of precision may even depend on the model considered. Ex-
perimentation shows however that this representation is precise for
our problem, and that it can naturally accommodate the presence of
outliers in an elegant way, as will be demonstrated in Appendix C.

4.6 conclusion

In this chapter, we have presented a new approach for parameter
estimation of nonlinear models with additive Gaussian noise. The
resulting method makes it possible to compute a set which contains
the parameter vector with a given probability. The main contribution
of this chapter is that the results are guaranteed, which is not the
case for existing approaches. Indeed, although existing methods are
also able to provide an estimation of such a confidence region of
probability η, they perform some linearization without quantifying
the corresponding approximation error.

Three simulated test-cases were presented and compared to exist-
ing and linear methods. The computing time is clearly a limitation
and our method cannot be considered yet as suitable for online esti-
mation. A future extension would be to adapt this work to be able to
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run in real time, so it could be embedded in a sensor’s software for
example.





5
C O N C L U S I O N S A N D P R O S P E C T S

5.1 conclusion

In this thesis, we tackled the problem of simultaneously localizing
an underwater vehicle while mapping a set of beacons lying on the
seafloor using range-only measurements. Chapter 1 was dedicated to
the modeling of the SLAM problem, as well as the most commonly
used sensors in the subsea domain and the sensors used in the scope
of this thesis. We highlighted the fact that for our scenario, using
a high grade INS coupled with a DVL, the motion equation can be
considered linear. On the other hand, the observation equations, the
equations that link the measurement gathered by the vehicle with its
state variables, are non-linear and non bijective. In Chapter 2 we re-
viewed two of the most common approaches used to solve this prob-
lem, the Extended Kalman Filter, a probabilistic filter, and the Robust
State Observer which is based on set-membership methods using in-
terval analysis, and compared them on real data. From that compari-
son, we observed that the reliability and the robustness of the interval
approach came at the cost of a very coarse precision. We made the
hypothesis that the Gaussianity of the motion and observation noises
were not exploited extensively. Additionally, since the motion equa-
tion of our SLAM problem are linear and the observation equations
nonlinear, we observed that the Kalman filter was the most appro-
priate tool to treat the motion equations, while an interval approach
would be best suited to treat the observation. The following two chap-
ters were dedicated to finding a way to combine both approaches.
In Chapter 3, we focused on the propagation of the motion model
noises. We observed that for a random walk model, a Kalman filter’s
uncertainty grows as a square root of time, while an interval based
filter’s uncertainty grows linearly with time, leading, in part, to its
huge pessimism. In addition, contrarily to a Kalman filter, a Robust
State Observer is not recursive and is based on a fix-point method on
a sliding horizon. Therefore, its computational complexity is depen-
dent on the sampling rate of the inertial sensors. By reformulating the
Kalman filter’s prediction equations in an integral form, we showed
that the joint probability distribution of two states xk, xl at different
instants k, l is Gaussian, and that the covariance matrix Γk,l of the vec-
tor (xk, xl)

T can be easily computed. A contractor on the confidence
ellipsoid for (xk, xl)

T was defined, and enables us to benefit from the
square root of time propagation of uncertainties of the Kalman filter,
but in a set-membership framework. This reformulation not only also
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enables us to pre-integrate the motions equation, removing the com-
putational dependency on the motion sensors sampling rate, but the
fact that we can stay in a set-membership framework means we can
naturally treat our observation equations with interval methods, stay-
ing in a coherent, unique structure. Now Chapter 4 was dedicated to
the processing of the observations, namely the range measurements.
Assuming the noise on the observations y = (y1, y2, . . . , yi)

T is white,
additive and Gaussian, we were interested in the possible boundings
of such such a vector, and their effects on the confidence associated
with the resulting estimation. We concluded that bounding with a
sphere is the most precise option, but also the most computationally
expensive. An other option, based on the q-relaxed intersection was
explored more in depth in Appendix C. Treating y with q-relaxed
methods not only allows us to compute precise confidence regions
when the noise is not Gaussian, but we also explored the situation
when a confidence region is not enough, and a close-to-punctual esti-
mation is needed. For that situation there exist an estimator, GOMNE,
which is best suited. We have shown that in our context, GOMNE is
a maximum likelihood estimator, and that it can compute a precise,
close to punctual estimation of the 2D position of an acoustic beacon
on real data. In Appendix B, we presented a contractor based on
linear matrix inequalities, which enables us to contract optimally sets
for general quadratic constraints, for which simple forward-backward
methods are not optimal. The development of this contractor was
motivated by the fact that for the method developed in Chapter 3,
we need a contractor on possibly high dimensional ellipsoid, which
are described by quadratic constraints. Finally, Appendix A quickly
introduced interval methods to the unfamiliar reader.

5.2 prospects

A future development of this thesis is the combination of the Kalman
contractor with the methods developed in Chapter 4 and in Appendix C
to get the desired real-time, reliable, precise and robust estimator for
the SLAM problem. Indeed, in this thesis we have shown why in-
terval methods are pessimistic with additive Gaussian noises, and
proposed tools to reduce this pessimism, but we haven’t combined
them to obtain a complete estimator. An other possible development
would be to study the use of the Kalman contractor in the case where
the attitude provided by the INS is noisy. Indeed, in our scenario, the
attitude is provided with an extreme precision, allowing us to neglect
the associated uncertainty, but such a precision is not available with
cheaper INS based, for example, on MEMS sensors. In that sense,
the relative formulation of the 6DOF equations of motion proposed
in [31] could be the way to our the Kalman contractor for the 6DOF
SLAM problem with range-only measurement and low-cost INS.



Part III

A P P E N D I C E S

In the Part iii of this manuscript, we will present some
of the research conducted during this thesis that were
not directly related to the subject of localization and map-
ping. But first, in Appendix A, we will briefly recall the
main concepts behind set-theoretical tools used in this the-
sis, and their implementation using interval analysis. Ap-
pendix B will present a contractor based on Linear Matrix
Inequalities, that is used among other things to implement
the Kalman Contractor introduced in Chapter 3 for the
general case. Finally, in Appendix C, as a continuation of
Chapter 4, we will show how to retrieve a punctual, statis-
tically meaningful estimation from a set of measurements
based on probabilistic considerations, for where estimat-
ing a confidence set is not precise enough for practical
applications.





A
I N T R O D U C T I O N T O I N T E RVA L A N A LY S I S

This section briefly introduces the basics of interval analysis, which
is the main tool used in this thesis for representing uncertainties. For
an in-depth presentation of interval analysis the reader is referred
to [40, 78]. In the first section, the motivation for developping interval
methods in first place is presented. The second section will present
interval arithmetic.

a.1 introduction

To represent numbers, computers use a binary system whose preci-
sion and extent are limited by the number of bits on which they are
coded. The binary coding makes it impossible to exactly represent the
set of real numbers. The accumulation of imprecisions can become,
along the computations, a real problem.

An illustration of the problems that can occur with rounding error
can be found in [71] and is recalled in Example

Example 35. Consider the following equation:

f (x, y) = 33.75y6 + x2
(

11x2y2 − y6 − 121y4 − 2
)

+ 5.5y8 +
x

2y
(A.1)

By evaluating f at the point x = 77617 and y = 33096 in python on
a 32 bits platform, we get:

f (77617, 33096) = −3.9425235 · · · ∗ 1029 (A.2)

while the true result is:

f (77617, 33096) = −54767
66192

= −0.8273960599. (A.3)

As can be seen, the true result has nothing to do with the value
computed by the computer.

Interval analysis was developped by Moore to obtain a range of
values instead of an approximated value. A real number is then rep-
resented, not by an approximated value anymore, but by an interval
containing the exact value. It is for example possible to express the π

number with a precision to the tenth by using the interval [3.14, 3.15].

Definition 36. An interval [x] is defined as the set of real numbers x

between its lower bound x and its upper bound x̄:

[x] = [x, x̄] = {x ∈ R|x ≤ x ≤ x̄} . (A.4)
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.

Definition 37. The center of a non-empty interval is given by:

mid ([x]) =
x + x̄

2
. (A.5)

.

Definition 38. The width of a non-empty interval is defined by:

w ([x]) = x̄ − x. (A.6)

We write {x} = [x, x] a punctual interval.
An interval being a set, set-membership operations can be defined

over intervals.

Definition 39. The union of two non-empty intervals [x] and [y] sat-
isfies:

[x] ⊔ [y] = [min (x, y) , max (x̄, ȳ)] . (A.7)

Example 40. Example:

[−1, 7] ⊔ [12, 19] = [−1, 19] . (A.8)

It should be noted that [x]∪ [y], not to be confused with [x]⊔ [y], is
not considered as an interval in the framework of this thesis.

Definition 41. The intersection of two non-empty intervals [x] and
[y] satisfies:

[x] ∩ [y] =







[max {x, y} , min {x̄, ȳ}] if max {x, y} ≤ min {x̄, ȳ}
∅ otherwise

(A.9)

a.2 interval arithmetics

Operations over real numbers, such as the division, multiplication,
addition, subtraction, can be extended to intervals.

For two intervals [x] and [y] and an operator ⋄ ∈ {+,−, ∗, /}, we
define [x] ⋄ [y] as the smallest interval containing all feasible values
for x ⋄ y when x ∈ [x] and y ∈ [y], or:

[x] ⋄ [y] = [{x ⋄ y ∈ R|x ∈ [x] , y ∈ [y]}] (A.10)

In the case of closed intervals, we have:


















[x] + [y] = [x + y, x̄, ȳ]

[x]− [y] = [x − ȳ, x̄ − y]

[x] ∗ [y] = [min (xy, xȳ, x̄y, x̄ȳ) , max (xy, xȳ, x̄y, x̄ȳ)]

. (A.11)
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The inversion is given by:

1
[y]

=















































∅ if [y] = [0, 0]

[1/ȳ, 1/y] if 0 /∈ [y]

[1/ȳ, ∞] if y=0 and ȳ>0

[−∞, 1/ȳ] if y < 0 and ȳ = 0

[−∞, ∞] if y < 0 and ȳ > 0

. (A.12)

Note that in the case of punctual intervals, these operations are
identical to their equivalent for real numbers.

a.3 extension to higher dimension

A vectorial interval, also called interval vector or box [x] of dimension
n is the Cartesian product of n intervals. The set of all boxes of Rn is
denoted by IR

n.

[x] = [x1]× [x2]× · · · × [xn] (A.13)

An interval vector can be represented by an axis-aligned box.
Most of the operations defined for intervals can be extended to

their vectorial counterparts. The upper and lower bounds for a box
are:

x = (x1, . . . , xn)
T

x̄ = (x̄1, . . . , x̄n)
T

. (A.14)

The width of a box is

w ([x]) = max
1≤i≤n

w ([xi]) . (A.15)

And operations on intervals can be extended to operations on boxes
by considering interval computation on each component of the boxes.

a.4 inclusion function

The image of f ([x]) of a box is not a box in general:

f ([x]) = { f (x) |x ∈ [x]} . (A.16)

There exist no general representation to manipulate the image set
of a box through a function. We will then use interval functions,
called inclusion functions, which is defined as the function returning
the interval hull of f ([x]):

[ f ] ([x]) = [{ f (x) |x ∈ [x]}] . (A.17)
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The interval function [ f ] : IR
n → IR

m is an inclusion function for
f → Rn → Rm if and only if

∀ [x] ∈ IR
n, f ([x]) ⊂ [ f ] ([x]) . (A.18)

An inclusion function is minimal if, for all [x], [ f ] ([x]) is the small-
est box enclosing f ([x]). This inclusion function is unique and is
noted [ f ]∗. Minimality is a desired property for an inclusion func-
tion, in order to reduce the pessimism.

An inclusion function is thin if the image of a punctual interval {x}
is a punctual interval, i.e. if [ f ] ({x}) = f ({x}).

An inclusion function is convergent if for a series of boxes [x] (k),
we have:

lim
k→∞

w ([x] (k)) = 0 ⇒ lim
k→∞

w ([ f ] ([x] (k))) = 0. (A.19)

The convergence property is generally required for the convergence
of algorithms based on interval methods.

An inclusion function is said to be monotonic with respect to the
inclusion if

[x] ⊂ [y] ⇒ [ f ] ([x]) ⊂ [ f ] ([y]) . (A.20)

A function f built as a finite number of composition of elementary
functions such as sin, cos, exp, √., max . . . and operators +,−, ∗, /.
The simplest method to build an inclusion function for f is by replac-
ing the scalar variables by their interval counterpart and replacing
the elementary functions by their interval extension. The function
obtained is called the natural inclusion function, and is denoted [ f ]n.
It is finite and monotonic with respect to the inclusion. Moreover,
if f is solely made of continuous elementary functions, the [ f ]n is
convergent.

Natural inclusion functions are usually not minimal because of de-
pendencies between variables and the wrapping effect [58, 65]. How-
ever, the natural inclusion function will be minimal if each variable
appears only once in the definition of f and if all operators and ele-
mentary functions used are continuous.

a.5 contractors

Consider nx real variables xi ∈ R, i ∈
{

1, . . . , n f

}

linked by n f rela-
tions (or constraints) of the form:

f j (x1, x2, . . . , xnx) = 0, j ∈
{

1, . . . , n f

}

(A.21)

whereby f j denotes the function for each coordinate j. We know
that each variable xi belongs to a domain Xi. To simplify, we consider
the domains as intervals noted [xi]. We define x = (x1, x2, . . . , xnx)

T

and the domain fo x as [x] = [x1] × [x2]× · · · × [xnx ]. We also note
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that f is a function with coordinate functions f j. We can therefore
re-write Equation A.21 in a vector form f (x) = 0 and this represents
a constraint satisfaction problem (CSP) that we can call H and write

H : ( f (x) = 0, x ∈ [x]) . (A.22)

Therefore, a CSP is composed of a set of variables, domains con-
taining these variables and constraints. The solution set S of H is
defined as

S = {x ∈ [x] | f (x) = 0} . (A.23)

Contracting a CSP H consists in replacing the domain [x] with a
smalled domain [x′] ⊂ [x] without changing the solution set. We have
S ⊂ [x′] ⊂ [x]. We define the minimal contractor as the contractor re-
placing [x] by the smallest box containing S. An operator that allows
the contraction of H is called a contractor.

Different existing basic contractors enable the contraction of CSP [16].
Depending on the class of the problem to solve, several methods can
be used to optimally contract the domains: Gauss elimination, Gauss-
Seidel Algorithm, Krawczyk method, Newton algorithm, etc... [40].
A minimal contractor dedicated to problems involving quadratic con-
straints is developped in this thesis in Appendix B. One of the most
commonly used contractor in interval robotics is the forward-backward
contractor [5], which contracts the domains of the CSP H : ( f (x) = 0, x ∈ [x])
by isolating each constraint separately. We suppose that each con-
straint has the form f j (x1, x2, . . . , xnx) = 0, and that the function f j

can be broken down into a series of operations involving operators
and elementary functions such as +,−, ∗, /, etc. The the constraint is
broken down into primary constraints.

a.6 set inversion via interval analysis (sivia)

Intervals and boxes, thanks to interval arithmetics and inclusion func-
tions, are easy to manipulate. Contractors allow us to reduce a box
according to one or several constraints.

However, generally the solutions of the problems treated by set-
membership approach are not boxes. Approximating the solution set
by a box is, most of the time, not satisfying, particularily when the
solution set is not connected.

a.6.1 Subpaving

In order to represent an arbitrary set X while being able to make use
of the computation tools specific to intervals and boxes, we will use
subpavings of Rn.

A subpaving of a box [x] ⊂ Rn is the union of non-empty boxes
of [x] that do not overlap. Two boxes of a single subpaving can have
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a non-empty intersection if they share a common border, but their
interior must be disjoint. A subpaving of [x] that covers [x] is called
a paving of [x].

We can enclose a set X between two sub-pavings: an inner approxi-
mation X and an outer approximation X̄ = X ∪ ∆X (where ∆X is the
subpaving of the border), such that:

X ⊂ X ⊂ X̄ (A.24)

Knowing X and X̄ brings us much insight on the set X. If X is not
empty then X is not empty. If X̄ is empty, then X is empty as well.
The volume of the subpaving of the border enables us to characterize
the precision of the approximation.

When each box of a subpaving can be obtained by a finite num-
ber of bissections of the original box, the subpaving is called regular.
Regular subpavings have several advantages, including their repre-
sentability as a binary tree which limits their storage requirement
and makes them easy to manipulate for operations like the union,
intersection, the inclusion etc... [55].

a.6.2 Set Inversion Via Interval Analysis

We want to characterize the set X such that f (x) = y with f : X → Y,
i.e. we want to characterize the pre-image X = f−1 (Y). Given an in-
clusion function for f , the Set Inversion Via Interval Analysis (SIVIA
for short) algorithm computes an inner approximation X and an outer
approximation X̄ for X. SIVIA can also be used together with con-
tractors for a more efficient computation of the subpaving. The reader
should refer to [41] for a detailed presentation of the algorithm.

a.6.3 Q-relaxed intersection

The q-relaxed intersection is a set membership operator. Given m sets
X1, X2 . . . , Xm, their q-relaxed intersection, noted ∩qXi is the set of
all x ∈ Rn that belongs to the X′

is except q at most. This operator is
deeply covered in [15, 20, 62].

a.7 conclusion

In this Appendix, we briefly reviewed the interval set-membership
tools that are commonly used for parameter estimation and that have
been used in this thesis. For a complete introduction on the topic, the
reader should read [41].



B
T H E L M I C O N T R A C T O R

b.1 introduction

Linear Matrix Inequalities (LMI for short) is a large class of convex
constraints. Boxes, Ellipsoids, linear constraints, can be represented
by LMIs. Intersections of LMIs are also LMIs. Interior point methods
are able to minimize or maximize any criterion of LMIs with a com-
plexity which is polynomial regarding to the number of variables. As
a consequence, as shown in this appendix, it is possible to build opti-
mal contractors for sets represented by LMIs. When solving a set of
nonlinear constraints, one may extract from all constraints those that
are LMIs in order to build a single optimal LMI contractor for a sub-
set of the original CSP. A combination with all contractors obtained
for other non LMI constraints can thus be performed up to the fixed
point. The resulting propagation is shown to be more efficient than
other conventional contractor-based approaches.

Research on this contractor has been motivated in Chapter 3: in
the general case, the Kalman contractor consists of contracting the
state vectors at two instants k, l with respect to some ellipsoid. An
ellipsoid is described by quadratic constraints potentially containing
crossed terms, thus shows multi-occurrences causing classical con-
straint propagation methods to be non-optimal [40].

Using well-known convex optimization methods, which have al-
ready been used to contract optimally interval matrices for the semi-
definite positive constraint [39], this appendix will introduce a new
optimal contractor for the LMI constraint for which, to the best of
my knowledge, no optimal algorithms have been presented yet. This
work has been published in [69].

This appendix is organized as follows. We shall first recall what an
LMI is and present a few problems that can be represented as LMIs.
In the third section we will present the problem of convex optimiza-
tion under LMI constraints, and see how it can be used in the con-
text of Interval Analysis. In the fourth section we will make a brief
recall on Interval Constraints Propagation and contractor program-
ming, more deeply covered in Appendix A, and show how to lever-
age optimization under LMI constraints methods to create a minimal
contractor for the LMI constraint. In Section B.5 we will present some
examples of application, compare the efficiency of our contractor with
existing ones, and illustrate the power of contractor programming by
mixing convex and non-convex constraints.

91
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b.2 linear matrix inequalities

In this section, we will recall some properties about LMIs. For an in
depth review on the topic, see [12] and [13].

A Linear Matrix Inequality (LMI) has the form:

F (x) = F0 + x1F1 + x2F2 + · · ·+ xnFn � 0 (B.1)

with x = (x1, x2, . . . , xn) ∈ Rn the unknown, F i=0...,n ∈ Rn×n the
set of symmetric matrices.

The inequality � means that F (x) is a positive definite matrix, i.e.:

∀u ∈ R
n, uT · F · u > 0, u 6= 0. (B.2)

Since the set
S = {x ∈ R

n|F (x) � 0} (B.3)

is convex, an LMI is a convex constraint on x.

a system described by several lmis can be described by

a single lmi . The set S12 = S1 ∩ S2 with S1, S2 two convex sets
described by the LMIs S1 (x) � 0, S2 (x) � 0 is convex and is also
described as an LMI S12 (x) � 0, obtained by concatenation of S1 (x)
and S2 (x):

S12 (x) = diag (S1 (x) , S2 (x)) =

(

S1 (x) 0

0 S2 (x)

)

� 0. (B.4)

a set of linear inequalities is an lmi . For example:






I1 (x) = a11x1 + a12x2 + b1 ≥ 0

I2 (x) = a21x1 + a22x2 + b2 ≥ 0
(B.5)

is equivalent to the following LMI:

(

I1 (x) 0

0 I2 (x)

)

=

(

a11x1 + a12x2 + b1 0

0 a21x1 + a22x2 + b2

)

� 0

(B.6)
i.e.,

(

b1 0

0 b2

)

+ x1

(

a11 0

0 a21

)

+ x2

(

a12 0

0 a22

)

� 0. (B.7)

a box is described by an lmi . x ∈ [x], with x = (x1, x2, . . . , xn) ∈
Rn, [x] =

[

x1, x1
]

×
[

x2, x2
]

× · · · ×
[

xn, xn

]

∈ IR
n is the set of all the

intervals of Rn, is an LMI. Indeed, it can be decomposed as a set of
2 × n linear inequalities:
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





































































I−1 (x) = −x1 + x1 ≥ 0

I+1 (x) = x1 − x1 ≥ 0

I−2 (x) = −x2 + x2 ≥ 0

I+2 (x) = x2 − x2 ≥ 0
...

I−n (x) = −xn + xn ≥ 0

I+n (x) = xn − xn ≥ 0

(B.8)

which in turn can be formulated as an LMI. For example, the box:

[x] = [−10, 15]× [3, 7] (B.9)

is an LMI and is written as:

B (x) =













x1 + 10 0 0 0

0 15 − x1 0 0

0 0 x2 − 3 0

0 0 0 7 − x2













� 0 (B.10)

i.e.,

B (x) =













−x1 0 0 0

0 x1 0 0

0 0 −x2 0

0 0 0 x2













+ x1













1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0













+ x2













0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1













� 0

(B.11)

an ellipsoid in Rd is described by an lmi . An ellipsoid
E ∈ Rd is described as:

E =
{

x ∈ R
d|r − (x − c)T P−1 (x − c) ≥ 0

}

(B.12)

with r > 0 its radius, c ∈ Rd its center and P its characteristic
matrix.

Using Schur complement theorem, which states that for a set of
matrices A, B, C, D respectively of dimensions p × p, p × q, q × p, q ×
q,







A ≻ 0

A − BD−1C � 0
⇔
(

A B

C D

)

� 0 (B.13)

we show that E can be described as the LMI:

E (x) =

(

r x − cT

x − c P

)

� 0. (B.14)
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For example, the unit disk D ∈ R2 is an ellipsoid with a character-

istic matrix P = Id =

(

1 0

0 1

)

, a radius r = 1, centered on the origin

c = (0, 0)T:

D =
{

x ∈ R
2|1 − xT Idx ≥ 0

}

(B.15)

i.e.,
1 − x2

1 − x2
2 ≥ 0. (B.16)

Using the Schur complement theorem with

A = 1, B = CT = (x1x2) , D =

(

1 0

0 1

)

(B.17)

we get the LMI:








0 x1 x2

x1 1 0

x2 0 1









� 0 (B.18)

i.e.,








1 0 0

0 1 0

0 0 1









+ x1









0 1 0

1 0 0

0 0 0









+ x2









0 0 1

0 0 0

1 0 0









� 0 (B.19)

Many other convex sets can be represented by LMIs. See [13][6] for
a presentation of a consequent amount of LMI-representable sets.

b.3 optimization under lmi constraints

Given a vector of variable x ∈ Rn, a cost vector c ∈ Rn and a matrix F,
an optimization problem under the LMI constraint F (x) � 0 is stated
as follows:

Pc,F(x) =







minimize : cTx

under the constraint : F (x) � 0
. (B.20)

Many engineering problems, for example in the field of control the-
ory [Arzelier02multi-objectiveh2/h=00221E/impulse-to-peak], can be
framed as an optimization problem under LMI constraints. The book [13]
presents a consequent amount of problem that can be formulated as
optimization problems under LMI constraints. Only trivial cases of
optimization under LMI constraints can be solved analytically. On
the other hand, numerical methods have been developed to solve this
type of problem efficiently.
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Among such methods, the most efficient are based on interior point
methods. Interior point methods were introduced in 1984 by Kar-
markar for solving linear programming problems with a polynomial-
time algorithm [53]. A lot of research activities followed, leading
to [66], where general interior-point methods solving LMI problems
are introduced. We refer the reader to [12] for a more detailed review
on the algorithms for solving LMI optimization problems and their
implementation.

Unlike simplex method commonly used in linear programming,
which moves along the edges of the polytope defining the feasible set
until it reaches the vertex of optimum solution, interior point meth-
ods start from a feasible solution and iterates inside this set until the
optimal solution is found.

computing the box-hull of a set in Rd described by an

lmi reduces to solving 2d optimization problems under

lmi constraints . The box-hull, or the bounding-box [X] of a
set X in Rd is the smallest axis-aligned box enclosing X.

Indeed, for each dimension d, we are looking for the maximal and
minimal values xd, xd of xd, giving us the interval [xd] = [xd, xd] , their
Cartesian product [x] = [x1]× [x2]× · · · × [xd] being the box-hull of
X.

Since finding these 2 × d extremas reduces to solving an optimiza-
tion problem under LMI constraints for each of them, each minimiza-
tion problem having a polynomial-time complexity, the box-hull prob-
lem also has a polynomial-time complexity.

illustration. Given two sets of R2: an ellipsoid S1 and a trian-
gle S2 described by the LMIs S1 (x) � 0, S2 (x) � 0, we want to find
the box-hull [S∩] for their intersection S∩ = S1 ∩ S2, described by the

LMI S (x) =

(

S1 (x) 0

0 S2 (x)

)

� 0. S∩, S1 and S2 are illustrated on

Figure B.1.
First, we are looking for an upper-bound x1 for x1. Therefore we

solve the optimization problem:

Pc,S(x) =







minimize: cTx

under the constraint: S (x) � 0
(B.21)

with cT = (−1, 0). The dashed line (a) illustrates the solution found
by the algorithm while searching for x1. We are then looking for the
lower-bound x1 for x1, which is done by solving Pc,S(x) with cT =

(1, 0). The solution is the dashed-line (b). The same process is then
repeated for x2 as illustrated on the dashed lines (c), (d).

The box-hull [S] is then given by the Cartesian product [x1]× [x2]
of the intervals [x1] = [x1, x1] , [x2] = [x2, x2].
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Figure B.1: Characterization of [S1 ∩ S2](a) maximization of x1, (b) mini-
mization of x1, (c) minimization of x2, (d) maximization of x2

b.4 optimal contractor under lmi constraints

The basic definitions and properties of contractors have been given
in Chapter A. We simply define here the optimal contractor for the
LMI constraint. Let S be a convex set described by the LMI S (x) ≻ 0

and [x] ∈ IR
n a box described by the LMI B (x) ≻ 0. The opera-

tor CLMI , which maps [x] to the box-hull of the set S∩ described by
(

B (x) 0

0 S (x)

)

� 0 is a contractor for S, and it is minimal.

b.5 examples

Using the C++ library SDPA [33], we implemented the LMI contractor
for the IBEX library [3, 16, 72]. Given a set of matrices F0, F1, . . . Fn

and a box [x] ∈ IR
n as inputs, it contracts [x] with respect to the LMI

constraint:

CLMI (x) = diag

(

B (x) , F0 +
n

∑
i=1

F i (xi)

)

� 0 (B.22)

where B (x) � 0 is the LMI constraint for x ∈ [x] as presented in
Section B.2. All the illustrations shown here were made using the
VIBEs [26] drawer and its C++ API.

b.5.1 Representation of a simple LMI-set

Consider the following LMI:

F (x) =

(

x1 x2

x2 x1 + x2

)

� 0 (B.23)
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(a) (b)

Figure B.2: Sub-paving of F (a) with forward-backward contractors only, (b)
with a forward-backward and a LMI contractor

which means that the two eigenvalues λ1, λ2 of F are real positive,
i.e.:

λ1 =
2x1+x2+

√
x2

2+4x2
2

2 ≥ 0

λ2 =
2x1+x2−

√
x2

2+4x2
2

2 ≥ 0
. (B.24)

Using set-inversion and contractor programming methods, we want
to approximate this LMI-set F with a sub-paving. For this we need
two contractors:

Cin
↑↓ = Cin

λ1↑↓ ∪ Cin
λ2↑↓ (B.25)

which sill remove part of the search space that are consistent with the
constraints λ1 ≥ 0 and λ2 ≥ 0 and

Cout
↑↓ = Cout

λ1↑↓ ∩ Cout
λ2↑↓ (B.26)

which will remove part of the search space that are inconsistent
with the constraints λ1 ≥ 0 and λ2 ≥ 0. The boxes removed by Cin

are drawn in red, the boxes removed by Cout are drawn in blue while
the ones undetermined will be drawn in yellow.

Since the constraint F (x) � 0 is an LMI constraint, we can replace
the outer contractor Cout

↑↓ with our LMI contractor CLMI introduced
in Section B.4. On the other hand, the constraints defining Cout are
non-convex, and a forward-backward approach is appropriated.

Figure B.2 compares the two approaches, with the same allowed
number of bisections. As can be seen, the sub-paving computed by
the combination of the forward-backward and the LMI contractor is
much finer than the one computed with the forward-backward ap-
proach only. This is due to the fact that since CLMI is minimal, less
time is spent bisecting parts of the search space that do not satisfy
the positive definite constraint for sure, and more bisection can be
performed elsewhere.
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(a) (b)

Figure B.3: Characterization of E (a) with forward-backward contractions
only (b) with forward-backward contractor and the LMI contrac-
tor.

b.5.2 Characterization of ellipsoidal sets

In this example we want to characterize the set

E =
{

x ∈ R
2|xTP−1x ≤ r

}

(B.27)

which is an ellipsoid with P =

(

1 0.7

0.7 1

)

, r = 5. As in the pre-

vious example, we want to approximate E with a sub-paving. Since
it can be described as an LMI-set, we compare the results obtained
with the LMI contractor and forward-backward contractor for the
outer contractor. The sub-pavings generated are shown in Figure B.3.
Again, thanks to the minimality of the LMI contractor, we see that
the sub-paving generated in (b) is much more precise than the one
generated in (a) using forward-backward contractors only.

b.5.3 Manipulating the LMI contractor using contractor algebra

In this example we have two sets: a triangle

T =
{

x ∈ R
2|x2 + x1 − 1 ≥ 0, x2 − x1 − 1 ≥ 0, x2 ≥ 0

}

(B.28)

and an ellipse:

E =
{

x ∈ R
2| (c − x)T P−1 (x − c) ≤ r

}

(B.29)

with P =

(

1 0.7

0.7 1

)

, r = 0.5, c = (0.5, 0.5)T .

We would like to compute a sub-paving for the set S = (T ∪ E) \
(T ∩ E).
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(a) (b)

Figure B.4: Characterization of S (a) with forward-backward contractions
only (b) with forward-backward contractors and LMI contrac-
tors

For this we need the inner and outer contractors Cin
T , Cout

T for T and
the inner and outer contractors Cin

E , Cout
E for E.

Using contractor algebra, we obtain the outer and inner contractors
for S:

Cout
S

=
(

Cin
E ∩ Cout

T

)

∪
(

Cout
E ∩ Cin

T

)

Cin
S
=

(

Cout
E ∪ Cin

T

)

∩
(

Cin
E ∪ Cout

T

) . (B.30)

In Figure B.4 we compare the sub-pavings obtained when Cout
E and

Cout
T are forward-backward contractors (a) and when they are LMI

contractors. Again, we observe the gain in precision when using the
LMI-based contractor.

b.6 conclusion and outlook

In this appendix, we introduced a new contractor based on convex
optimization under LMI constraints. To the best of our knowledge,
this kind of constraint is under-exploited in the interval analysis com-
munity and has never been implemented in the contractor framework
before.

LMI constraints are omnipresent in the context of robotics. For
example, range or pseudo-range measurements can be framed as LMI
constraints [10, 24, 37], and therefore the use of our contractor could
be used in this kind of application.

Furthermore, in many Bayesian estimation techniques, the param-
eters to be estimated are modeled as Gaussian random variables, for
which the confidence domain is an ellipsoid, which can be repre-
sented by an LMI. Such is the case for the inter-temporal distribution
presented in Chapter 3, whose confidence domain is used to define
the Kalman contractor. Therefore, we anticipate that our contractor
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could be used to combine probabilistic and non-probabilistic estima-
tions methods in some other possibly interesting ways.



C
G U A R A N T E E D M A X I M U M L I K E L I H O O D
E S T I M AT I O N

c.1 introduction

In our context, detailed in Section 2, as in many operational appli-
cation, a set of feasible solution guaranteed to be consistent with
the definition of the problem is a valuable piece of information, but
it does not suffice. Even if interval analysis set-membership based
methods can accommodate arbitrary parameter distribution shapes,
even multi-modal ones, for practical application (e.g.: sizing of a
pipe, computation by a control algorithm of the next control input
for an autonomous vehicle based on its current state...), a punctual
estimation is often required.

Now there exist many ways to extract a punctual estimation from
a set. In Section C.2 we present and discuss the most frequently
used methods. As we will see, they are mostly based on Geometri-
cal considerations. As we deal with probabilistic errors, the classical
punctual extraction methods discard a lot of statistically relevant in-
formation, and therefore are often not precise.

Based on probabilistic considerations, we review in Section C.3 a
reliable version of the linearizing Maximum Likelihood Estimator dis-
cussed in Section 4.3 that doesn’t approximate the model. In Sec-
tion C.3 we extend that principle to accommodate for faulty measure-
ments to get a reliable and robust Maximum Likelihood Estimator
based on the methods developed in Chapter 4.

c.2 classical punctual estimators

centroid A widely used estimator that returns a point from a set
is the centroid. It is defined as follows.

Definition 42. Let S ∈ Rn, x ∈ Rn, and g (x) the characteristic func-
tion of S, i.e.:

g (x) =







1 if x ∈ S

0 otherwise
. (C.1)

The centroid xc of S is defined by the integral:

xc =

∫

Rn x · g (x) · dx
∫

Rn g (x) · dx
. (C.2)

The centroid is a good feature in the framework of Interval meth-
ods: it can be estimated recursively, which is convenient for paving
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algorithms, and well-suited for real-time applications where the algo-
rithm may be interrupted as in [27]. It corresponds to the arithmetic
mean position of all the points inside S.

From a probabilistic point of view, we can view x as a uniformly
distributed random variable defined over S. Int that case, xc is simply
the Expected Value of x. There is, however, no justification to assume
that x is uniformly distributed over S. A common interpretation of
interval methods is to view the bounding of a random variable r by
the box [r] as a formulation of the hypothesis that r is uniformly
distributed over [r]. Now even if that hypothesis was acceptable, it
still wouldn’t justify to view our parameter as uniformly distributed
over a set of confidence η.

Indeed, let’s assume that in our scenario we do have e ∼ IE. Then
it is generally not correct to assume that p = f−1 (e) is uniformly dis-
tributed over P̂E = f−1 (IE), as the image of an uniformly distributed
random variable through a nonlinear function is generally not uni-
formly distributed. Finding which distribution that random variable
follows is hard in the general case, and that difficulty is the one that
justifies the use of nonlinear methods.

Therefore, even if this feature is convenient, it is not statistically
meaningful.

chebychev center The Chebychev center of a set S is the center
of the minimal-radius ball enclosing the entire set. In the framework
of parameter estimation, the Chebychev center minimizes the worst
feasible estimation error for the true parameter vector given S, the set
of all feasible parameters. Not that it can also be defined as the center
of the maximal-radius ball enclosed by the set, but in that case it may
not be unique and it is ill-defined when S is not connex.

center of the box-hull This representation simply computes
the center of the minimum-width box enclosing S. It is easy to com-
pute with a complexity linear with respect to the number of boxed
that makes the sub-paving. However, this is not a precise represen-
tation: when the main axis of S are not axis-parallel, [S] is a gross
approximation of S and may lead to great pessimism.

center of a smallest enclosing ellipse This feature is an
extension of the Chebychev center for the case of Ellipsoids. The
criterion according to what the ellipse will be minimized is funda-
mental. Two examples of criterion commonly used are the trace and
the volume of the ellipsoid. In the first case, we are computing the
ellipsoid whose shape matrix’s trace is minimized, and in the second
case we are computing the ellipse whose volume (proportional to the
determinant of its shape matrix) is minimized. This approach has the
advantage of better capturing the shape of S than using its box-hull,
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Figure C.1: On this figure, we show several ways to get a punctual estima-
tion (star shape) x from a set X: (a) Centroid of X, (b) : Center
of the smallest volume ellipse Evol enclosing X, (c) : Chebyshev
center of X, (d) : Center of [X], the box-hull of X.

but has the drawbacks that it may be computationally intensive, and
the choice of whether minimizing the trace or the determinant of its
shape matrix will greatly influence the results.

Figure C.1 illustrates the centroid, center of the smallest volume
enclosing ellipse, Chebychev center and center of the box-hull for an
arbitrary set S. Of course there are many other features that are good
candidates for providing a punctual estimation, such as the geomet-
ric median as discussed in [27]. However, all these methods have the
drawback that they are based solely on geometrical considerations,
and discard the information we have about the probabilistic nature of
the uncertainties. Worse, they can lead to situations where the punc-
tual estimation is known to not belong to the set of feasible solutions,
as is illustrated in Figure C.1, which is contradictory with the reliabil-
ity aspect of the estimator. Also, our methods can naturally estimate
multi-modal parameter distributions as illustrated in Figure C.2, but
when such situation occurs, how do which chose which mode is more
likely to contain the correct one to make a decision?

Classical probabilistic approaches produce a punctual estimate that
is best according to some criterion. As defined in Section 4.3, a punc-
tual estimation in the sense of Maximum Likelihood estimation will
be the parameter vector that minimizes the likelihood function

L (yi|p) = ∏
i

π (yi|p) (C.3)

and reduces to a nonlinear least-square parameter estimation when
the yi’s are independent, normally distributed as recalled in Section 4.3..



104 guaranteed maximum likelihood estimation

Figure C.2: In case of symmetrical or ill-defined problems, the parameter set
may be non connected, as is the case for the underconstrained
global localization problem. When this situation occurs, which
set should be chosen to make a decision based on the robot
position? On this figure, we illustrate this problem for localizing
a robot in two dimensions with only two landmarks.
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Figure C.3: To get a statistically meaningful, close to punctual estima-
tion, one might be tempted to compute Pη with the small-
est value of η such that Pη 6= ∅. From darkest to clearest:
Pη1 , Pη2 , Pη3 , Pη4 , Pη5 with η1 > η2 > η3 > η4 > η5.

Interval methods are perfectly able to solve global, nonlinear op-
timization problems, so a first step will be to simply translate the
Maximum Likelihood Estimation problem as a CSP to be solved by
an interval solver. We will remark that this approach cannot easily be
made robust to the presence of outliers.

Another, robust approach will be proposed that simply computes
P̂

B
q
η̄
, the probabilistic parameter set obtained from the q-relaxed error

box with a confidence η̄ described in Chapter 4, with η̄ the smallest
value of η such that P̂

B
q
η

is not empty. Indeed, for any bounding
Eη containing the error with a probability η, PEη

is a level-set of the
probability distribution function for the parameter vector p (i.e.: the
set of all parameters whose likelihood is greater than some thresh-
old), for which we don’t have an expression. Computing P̂Eη̄

there-
fore amounts to computing p̂, the parameter vector that maximizes
the pdf of p, which is nothing more than the MLE for p, with η̂ its
likelihood. Choosing B

q
η as a bounding allows to tolerate faulty mea-

surements, and we will see it is a special application of the OMNE
and GOMNE estimators proposed in [42, 59]. Figure C.3 shows an il-
lustration of the principle of computing smaller and smaller level-sets
enclosing the Maximum Likelihood Estimator until some precision is
reached.
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Figure C.4: Illustration of π (e) and 1 (e)

c.3 omne as a maximum likelihood estimator

omne OMNE (Outlier Minimal Number Estimator) introduced in [60]
is a well known bounded-error estimator which is robust with respect
to outliers. It returns the set of parameter vectors that are consistent
with the maximal number of data bar. OMNE proposes to minimize
the number of outliers or equivalently, to maximize the number of in-
liers. The relaxed intersection made it possible to implement OMNE
in a reliable way for nonlinear models [46]. OMNE has been used in
several applications such as the localization of robots [23], and has
received some probabilistic interpretations [25].

Consider the static parameter estimation mode:

y = ψ (p) + e (C.4)

where ψ : Rn → Rm is the model, p ∈ Rn is the parameter vector
to be estimated, y ∈ Rm is the measurement vector and e the noise.
Define the function f (p) = e = y − ψ (e). Given an error interval
[e] ⊂ R that is supposed to contain the error ei if the corresponding
data yi is an inlier. In practice, [e] is a small interval which contains
0. The OMNE estimator returns the set of all p such as the property
fi (p) ∈ [e] is satisfied for a maximal number of data. More precisely,
OMNE returns the set

P̂ = argmaxp∈Rn ∑
i

1[e] ( fi (p)) (C.5)

where 1X denotes the characteristic function of the set X or equiv-
alently, 1[e] ( fi (p)) = 1 if and only if fi (p) ∈ [e] and 1[e] ( fi (p)) = 0
otherwise, as illustrated on Figure C.4.

Theorem 43 shows that OMNE corresponds to a maximum likeli-
hood estimator.

Theorem 43. Assume that the error vector e = (e1, . . . , en) is white, i.e.,
all ei are independent and identically distributed with the probability density

function πe which is half uniform. More precisely, πe(ei) = a if ei ∈ [e]

and πe(ei) = b < a otherwise. Then the maximum likelihood estimator

corresponds to OMNE.
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Figure C.5: Illustration of a two-dimensional independent half-uniform ran-
dom variable vector

Proof. The likelihood is defined by

π (y | p) = ∏i πe (yi − ψi (p)) = ∏i πe ( fi (p))

= ∏

(

a · 1[e] ( fi (p)) + b · 1R\[e] ( fi (p))
)

.
(C.6)

It is maximal if the log-likelihood

log π (y | p) = ∑i log
(

a · 1[e] ( fi (p)) + b · 1R\[e] ( fi (p))
)

= ∑i log
(

(a − b) · 1[e] ( fi (p)) + b
) (C.7)

is also maximal. Now, since the function log ((a − b) · x + b) is in-
creasing with respect to x, we conclude thatlog π (y | p) is maximal
if ∑i 1[e] ( fi (p)) is maximal, which corresponds to what OMNE com-
putes.

Now the “half uniform” distribution has two advantages. First, it
is an appropriate approximation for a statistical distribution whose
expression is not known, but for which it can be seen that most of its
values are concentrated in a single mode whose width can be mea-
sured. A probability ν is assigned for events arising in this mode,
and there is a probability 1 − ν assigned for events arising outside
this main mode, that can be looked at as rare events. The second
advantage is that this kind of distribution can be easily represented
in an interval framework. Indeed, consider a vector of two indepen-
dents identically distributed half-uniform variables e = (e1, e2), with
πe (ei) = 0.8 if ei ∈ [−1, 1], 0.2 otherwise. Figure C.5 illustrates their
joint probability distribution function.

That probability density function satisfies the probabilities given
on the following table.

In that scenario, there is a 64% chance that e will be in the box
K0 = [−1, 1] × [−1, 1], a 96% chance that e will be in the cross-
shaped domain K1 = [−∞, ∞] × [−1, 1] ∪ [−1, 1] × [−∞, ∞] and a
100% chance that e will be in K2 = R2. Now if we recall Chapter 4,
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[e2]\[e1] [−∞,−1] [−1, 1] [1, ∞]

[1, ∞] 0.01 0.08 0.01

[−1, 1] 0.08 0.64 0.08

[−∞,−1] 0.01 0.08 0.01

Table C.1: Probabilities for the random vector described in Figure C.5

Figure C.6: The surface vessel’s trajectory above the set of 4 acoustic beacons

interval representations for such domains are easily defined using q-
relaxed boxes. Indeed, if we define the box [x] = [−1, 1]× [−1, 1], we
note that the q-relaxations of [x] corresponds to the Ki’s : [x]{0} =

K0, [x]{1} = K1, [x]{2} = K2. From Theorem 25, Corollaries 27 and 28,
we have expressions to get the probabilities associated to the Ki’s,
and therefore the probabilities associated to the parameter set result-
ing from the inversion of the Ki’s. Therefore, we will be able to
associate a probability to the maximum likelihood set computed by
OMNE. The following section illustrates this approach on real data.

c.4 application

In this section, we will consider once again the data-set described in
Section 2. As a reminder, a surface vessel followed a survey-like grid
trajectory above a set of 4 acoustic beacons installed on the seabed.
The surface vessel is precisely located by a GPS with RTK correction
and its attitude is precisely determined with a PHINS INS. Addition-
ally, the ship is equipped with a DVL and a RAMSES LBL positioning
device. Each beacon’s position is precisely known thanks to previous
calibrations. The setup is illustrated on Figure C.6.

As it flies over the beacons, the RAMSES interrogates all the bea-
cons at an individual rate of about 1Hz. The ranges are then de-
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Figure C.7: Ranges measured by the RAMSES during the survey from the
center of its acoustic head to the 4 beacons, as a function of time.

Figure C.8: Histogram of the error between the measured and the actual
range for the third beacon, as well as a Gaussian approximation,
a Gaussian approximation after removing 1% of the biggest er-
rors, and a half-uniform approximation of the histogram.

duced from the measured time of flights, producing the signals on
Figure C.7.

We can see that the signal for the third beacon gets a huge outlier
toward the end of the survey. Therefore, estimating this beacon’s
position using the methods developed in Chapter 4 would likely fail
unless a huge confidence threshold is used. Since we know the ship’s
and the beacon’s positions with a centimetric precision, we are able to
compute the histogram of the error between the measured range and
the actual range to each beacon for the survey. For this illustration,
we will work with the ranges to the third beacon, and the histogram
of the error is depicted in Figure C.8.

We can see from Figure C.8 that the distribution seems to have
three modes, and a tail on the positive side of the error. Even if an
expression for such distribution could be found, it would be far from
trivial to work with it. Therefore, a Gaussian modelization of the er-
ror seems like a good candidate. An other model is the previously
discussed half-uniform distribution, represented by the green rectan-
gle on Figure C.8. The green rectangle is the centered rectangle which
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Figure C.9: From left to right: the 2d position of the beacon with 50% con-
fidence, with 0.25% confidence, with ∼ 0.8% confidence, with
∼ 10−7% confidence. The green dot represents the true beacon
position.

Figure C.10: From left to right: q = 20, q = 17, q = 15, q = 14. The green dot
represents the true beacon position.

contains 80% of the errors, while its tail, not visible on the figure, con-
tains the remaining 20%. By using the knowledge that the error is
biased positively, we could have reduced the width of its main mode
by shifting its center towards the right. It should be noted, however,
that this bad approximation will only lead to a less precise estimation,
but will not affect the probability associated with the estimated set.
This is not the case for a mis-centered Gaussian approximation.

The next figures represent the confidence sets computed by GOMNE
on the signal from the third beacon. The z-component of the beacon is
assumed to be known for easier representation. The signals contains
1338 range measurements, and the sets are computed by dichotomy
on q, the number of relaxations. The signal is assumed to be per-
turbed by a half-uniform distribution whose radius is 0.3% of the
measured range, centered on the measured range.

Figure C.9 shows 4 level-sets with confidence thresholds ranging
from 0.5 to 10−9. Figure C.10 then represents 4 level sets on a zoomed
region with confidence thresholds close to zero. From the last set com-
puted by GOMNE, we have an error of approximately 10 centimeters
which is well suited for practical application.

c.5 conclusion

In this chapter, we have shown that OMNE and its nonlinear ver-
sion, GOMNE, are Maximum Linear Estimators. By recalling obser-
vations made in Chapter 4, we have shown that a probability can
be computed for the sets return by GOMNE, and that the smallest
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non-empty set it returns is distant from about 8 centimeters from the
real beacon’s position. Now, we should note that there is no interior
for the sets pictured on Figure C.10, which could mean that those sets
may actually be empty, and that a more precise Maximum Likelihood
estimate could be obtained by running GOMNE with a smaller ǫ.

A limitation of this method is that it is computationally expensive
to run. It could be a useful tool as a double-checker for least-squares
methods traditionally used in the industry. Also, this kind of algo-
rithm is perfectly suited for used on massively parallel architecture,
and could benefit from an implementation on a GPU [86] or on a
FPGA [91] for example.
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LoĐalisatioŶ et Đartographie eŶ siŵultaŶé 
fiaďle, préĐise et roďuste d’uŶ roďot sous-

ŵariŶ. 
Mots-clés: SLAM, Filtre de Kalman, Méthodes ensemblistes, Analyse par intervalles, 

Méthodes probabilistes  

 

Dans cette thèse on s'intéresse au problème de la localisation d'un robot sous-marin 

et de la cartographie en simultané d'un jeu de balises acoustiques installées sur le 

fond marin, en utilisant un distance-mètre acoustique et une centrale inertielle. 

Nous nous focalisons sur les deux approches principales utilisées pour résoudre ce 

type de problème: le filtrage de Kalman et le filtrage ensembliste basé sur l'analyse 

par intervalles. Le filtre de Kalman est optimal quand les équations d'état du robot 

sont linéaires et les bruits sont additifs, Gaussiens. Le filtrage par intervalles ne 

modélise pas les incertitudes dans un cadre probabiliste, et ne fait qu'une seule 

hypothèse sur leur nature: elles sont bornées. De plus, l'approche utilisant les 

intervalles permet la propagation rigoureuse des incertitudes, même quand les 

équations sont non linéaires. Cela résulte en une estimation hautement fiable, au 

prix d'une précision réduite. 

Nous montrons que dans un contexte sous-marin, quand le robot est équipé avec 

une centrale inertielle de haute précision, une partie des équations du SLAM peut 

raisonnablement être considérée comme linéaire avec un bruit Gaussien additif, en 

faisant le terrain de jeu idéal d'un filtre de Kalman. De l'autre côté, les équations 

liées aux observations du distance-mètre acoustique sont bien plus problématiques: 

le système n'est pas observable, les équations sont non linéaires, et les outliers sont 

fréquents. Ces conditions sont idéales pour une approche à erreur bornées basée sur 

l'analyse par intervalles. 

En prenant avantage des propriétés des bruits Gaussiens, cette thèse réconcilie le 

traitement probabiliste et ensembliste des incertitudes pour les systèmes aussi bien 

linéaires que non linéaires sujets à des bruits Gaussiens additifs. En raisonnant de 

manière géométrique, nous sommes capables d'exprimer la partie des équations du 

filtre de Kalman modélisant la dynamique du véhicule dans un cadre ensembliste. 

De la même manière, un traitement plus rigoureux et précis des incertitudes est 

décrit pour la parties des équations du filtre de Kalman liée aux mesures de 

distances. 

Ces outils peuvent ensuite être combinés pour obtenir un algorithme de SLAM qui 

est fiable, précis et robuste. Certaines des méthodes développées dans cette thèse 

sont illustrées sur des données réelles. 

 

  



Roďust, preĐise aŶd reliaďle siŵultaŶeous 
loĐalizatioŶ aŶd ŵappiŶg for aŶd 

uŶderwater roďot. 
Keywords: SLAM, Kalman filter, Set-membership methods, Interval analysis, 

Probabilistic methods 

In this thesis, we work on the problem of simultaneously localizing an underwater robot while 

mapping a set of acoustic beacons lying on the seafloor, using an acoustic range-meter and an 

inertial navigation system. We focus on the two main approaches classically used to solve this 

type of problem: Kalman filtering and set-membership filtering using interval analysis. The 

Kalman filter is optimal when the state equations of the robot are linear, and the noises are 

additive, white and Gaussian. The interval-based filter do not model uncertainties in a 

probabilistic framework, and makes only one assumption about their nature: they are 

bounded. Moreover, the interval-based approach allows to rigorously propagate the 

uncertainties, even when the equations are non-linear. This results in a high reliability in the 

set estimate, at the cost of a reduced precision. 

We show that in a subsea context, when the robot is equipped with a high precision inertial 

navigation system, a part of the SLAM equations can reasonably be seen as linear with 

additive Gaussian noise, making it the ideal playground of a Kalman filter. On the other hand, 

the equations related to the acoustic range-meter are much more problematic: the system is 

not observable, the equations are non-linear, and the outliers are frequent. These conditions 

are ideal for a set-based approach using interval analysis. 

By taking advantage of the properties of Gaussian noises, this thesis reconciles the 

probabilistic and set-membership processing of uncertainties for both linear and non-linear 

systems with additive Gaussian noises. By reasoning geometrically, we are able to express the 

part of the Kalman filter equations linked to the dynamics of the vehicle in a set-membership 

context. In the same way, a more rigorous and precise treatment of uncertainties is described 

for the part of the Kalman filter linked to the range-measurements. These two tools can then 

be combined to obtain a SLAM algorithm that is reliable, precise and robust. Some of the 

methods developed during this thesis are demonstrated on real data. 
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