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Abstract

Due to the increasing demand of wireless communication services and the limitation in
the spectrum resources, Cognitive Radio (CR) has been initially proposed in order to
solve the spectrum scarcity. CR divides the communication transceiver into two cate-
gories: the Primary (PU) or the Secondary (SU) Users. PU has the legal right to use
the spectrum bandwidth, while SU is an opportunistic user that can transmit on that
bandwidth whenever it is vacant in order to avoid any interference with the signal of
PU. Hence the detection of PU becomes a main priority for CR systems. The Spectrum
Sensing is the part of the CR system, which monitors the PU activities.

Spectrum Sensing plays an essential role in the mechanism of the CR functioning. It
provides CR with the available channel in order to access them, and on the other hand,
it protects occupied channels from the interference of the SU transmission. In fact, Spec-
trum Sensing has gained a lot of attention in the last decade, and numerous algorithms
are proposed to perform it. Concerning the reliability of the performance, several chal-
lenges have been addressed, such as the low Signal to Noise Ratio (SNR), the Noise
Uncertainty (NU), the Spectrum Sensing duration, etc.

This dissertation addresses the Spectrum Sensing challenges and some solutions are pro-
posed. New detectors based on Cyclo-Stationary Features detection and the Power Spec-
tral Density (PSD) of the PU are presented. Canonical Correlation Significance Test
(CCST) algorithm is proposed to perform cyclo-stationary detection. CCST can detect
the presence of the common cyclic features among the delayed versions of the received
signal. This test can reveal the presence of a cyclo-stationary signal in the received mix-
ture signal. Another detection method based on the cumulative PSD is proposed. By
assuming the witheness of the noise (its PSD is flat), the cumulative PSD approaches a
straight line. This shape becomes non-linear when a telecommunication signal is present
in the received mixture. Distinguishing the Cumulative PSD shape may lead to diagnose

the channel status.
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Full-Duplex Cognitive Radio (FD-CR) has been also studied in this manuscript, where
several challenges are analysed by proposing new contributions. FD functioning permits
CR to avoid the silence period during the Spectrum Sensing. In classical CR system,
SU stops transmitting during the Spectrum Sensing in order to not affect the detection
reliability. In FD-CR, SU can eliminate the reflection of its transmitted signal and at the
same time achieving the Spectrum Sensing. Due to some limitations, the residual of the
Self Interference cannot be completely cancelled, then the Spectrum Sensing credibility
is highly affected. In order to reduce the residual power, a new SU receiver architecture
is worked out to mitigate the hardware imperfections (such as the Phase Noise and the
Non-Linear Distortion of the receiver Low-Noise Amplifier). The new architecture shows

its robustness by ensuring a reliable detection and enhancing the throughput of SU.
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Introduction on Cognitive Radio 3

Due to the recent achievement toward the 5G service and the high advancement in the
Internet of Thing (IoT), and numerous recent wireless applications, the wireless commu-
nication community is facing an enormous problem of how adapting the limited frequency
resources to the increasing demand on the wireless communication services [1]. This ever
growing increase of the wireless communication and multimedia services has led to con-
gestion in the used Radio Frequency (RF) spectrum and arises a need to explore new

frequency resources.

One of the proposed solutions toward the spectrum scarcity is the going to the Optical
Wireless Communication (OWC). In fact, instead of using Radio Frequency (RF) carrier,
OWC uses optical carrier to communicate between two points. OWC offers high data-
rate with low power consumption [2, 3]. On the other hand, many limitations are facing
OWC such as the short transmission distance (up to ~ 2 Km) and a high sensitivity to
the environment factors such as the rain, snow, fog, aerosol gases, etc. [4].

In parallel with the OWC, which gained huge research works, Dynamic Spectrum Alloca-
tion (DSA) in Radio Frequency (RF) spectrum became an attractive proposed technique
to solve the Spectrum Scarcity [5]. Actually, most communication systems use static
communication parameters and operate on static frequency allocation, so that they are
designed to operate on a pre-selected frequency band. This static allocation results in
low spectrum utilisation efficiency based on the recent statistics that show that the usage
of the allocated frequency bands is lower than 15 % [6]. This low efficiency pushes the
wireless communication community to invent the Dynamic Spectrum Allocation (DSA)
as a solution to achieve wise and efficiently use of the spectrum [7, 8], which leads to
getting more frequency resources. In this context, Cognitive Radio (CR) has been intro-
duced as a candidate to perform DSA by exploiting the free frequency bands that are

called "Spectrum Holes" or "white spaces" [9].

1.1 Cognitive Radio Paradigms

Initially, Mitola has proposed the Soft-Defined Radio (SDR) [10]. SDR is a reconfigurable
and flexible system that is responsive to the user demands by adapting automatically
the communication parameters such as modulation, channel coding, frequency band etc.
CR is mainly based on SDR, with the major difference that CR is aware and adaptable
to its radio environment to optimize the use of the available frequency bands while pro-
tecting the occupied ones from the harmful interference.

Being capable to identify its spectral opportunities, CR classifies the users into two types:

Licensed which are the Primary Users (PUs) and unlicensed which are the Secondary
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FIGURE 1.1: Spectrum Hole partitions

Users (SUs). The spectrum sharing between PU and SU is based on the fact that SU
should respect the PU’s Quality of Service (QoS). Any harmful interference coming from
SU to PU transmission is prohibited. For that reason, three paradigms of CR based on
the spectrum access can be distinguished according to the possibility of co-existence of
SU and PU transmissions in the same channel, and, if this co-existence is possible, the
permitted transmitted power of SU and the cooperation between SU and PU. The three

spectrum access are listed as follows:

1. Underlay Access
2. Overlay Access

3. Interweave Access

1.1.1 Underlay Access

In Underlay Access [8, 11], SU can operate on the band allocated to PU even if PU
is active. This can be done by respecting a power limit not to be exceeded in order
to do not affect PU by a harmful interference. Federal Communication Commission
(FCC) has set an interference limit called interference temperature [12], which is the
amount of interference the PU receiver can tolerate. In order to respect this power

constraint, SU can spread its signal on a very wide frequency band in order to ensure
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that the transmitted power is bellow the power of any PU transmission [5]. Ultra Wide
Band (UWB) based transmission was proposed as candidate to perform Underlay Access
[13, 14]. Such type of transmission can be used for short range communication due to
the limited transmission power.

The main advantage of the Underlay Access paradigm is that SU transmits regardless
the PU transmission status. However, the main challenge of Underlay Access paradigm

is how to measure the interference power at the PU receiver [11, 14].

1.1.2 Overlay Access

This kind of access stands for the situation where both SU and PU transmit at maximum
power simultaneously unlike underlay access which obligates SU to set a level of power
not to be exceeded. The overlay DSA model is the more recent development of DSA
type [14, 15]. Unlike Underlay Access, in Overlay Access the interference level is not the
constraint that SU abides, but the QoS of the PU is the criteria to be respected while
the SU is active. In other words, SU can continue transmitting whatever the PU’s QoS
is not affected. In fact, Overlay Access is based on high cooperation level between PU
and SU. This can be done based on channel or networking coding.

In channel coding, the cooperation between SU and PU is based on data sequence (or the
codebook of transmission) transmitted from PU and known for SU [16]. Such knowledge
permits the SU to split the power of its transmitted signal into two parts: the first one
is allocated to retransmitting the PU sequence to the PU receiver, this fact ensures a
high Signal to Interference Ratio (SIR) at PU receiver. The second one is to transmit
the SU message. Thus, SU plays an assisting role for PU while profiting from the PU
band to transmit its data. Knowledge of the PU data sequence (or the codebook) allows
SU receiver to cancel the interference coming from the PU transmission. Here, the SU
transmitter can use the Dirty Paper Coding [17] to precode the SU packet in order to
eliminate the known PU interference [14-16].

Another approach in overlay access is based on network coding, where SU becomes a
relay node between two PU nodes. While relaying the PU nodes, SU can encode its own
data sequence using network coding [18].

Consequently, Overlay Access presents an attractive solution for the DSA, in which both
PU and SU are winner since SU ensures the establishment of a robust link between
PU transmitter and PU receiver. For example, this can be useful when PU is at the
cell frontier of a mobile network, where the SNR of PU is very low, in this case, SU
can be a relay between the PU and the corresponding base station. However, Overlay
Access should be done with a high need for the cooperation between PU and SU. This

necessitates the synchronization between them in addition to the high encryption needed
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for the PU data in order to keep this data private and secured while it is received and
treated by SU [14].

.PU
Dsu

Ann  § HE NEN

Spectrum Spectrum

Spectrum

(a): Undelay Access (b): Overlay Access (c): Interweave Access

FiGURE 1.2: The PU and SU co-existence in the Spectrum according to the three
access types: Underlay, Overlay and Interweave Access

1.1.3 Inter-weave Access

Such kind of access has been the most attractive in the last decade and this is the tradi-
tional CR system. This paradigm refers to the Opportunistic Access |8, 14, 19, 20|, where
CR aims at giving an access to the SU to operate on a band allocated to an inactive PU.
SU should be continuously aware of any PUs’ activity in order to avoid any interference.
Thus, one of the main goals of the CR functionality is to protect PU from the impact
of the SU interference. If CR discovers a PU activity in an operating channel, in this
case SU should immediately stop transmitting in and find another vacant channel. Such
access ensures a transmission with maximum power thanks to the mobility of SU from
a band to another unlike Underlay Access [14, 15]. The main drawback of this CR is
the time loss during the PU discovering, since SU should stop his transmission during
this period (silence period) in order to not affect the decision on the PU status by the
Self-Interference [19]. Such a type of CR system refers to as Half-Duplex CR due to
the silence period. Based on the recent advances of the Self-Interference Cancellation
(SIC) [21, 22|, Full-Duplex CR has been proposed in order to keep SU active while CR
diagnoses transmission band status [23-26]. This needs an efficient SIC with high gain

in order to keep robust performance [27].
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Figure 1.2 shows the three access types for a CR system. In Overlay or Underlay Accesses
SU can use the same frequency band with an active PU, whereas in Interweave Access
SU operates on the Spectrum Holes (PU is absent). For Underlay and Overlay Accesses,
channel status examination is not required as in Interweave Access. For that reason,
in Underlay and Overlay Accesses, SU can be active continuously regardless of the PU
status at the cost of low power transmission in Underlay Access and high cooperation
between PU and SU in Overlay Access. In contrast, in Interweave Access, although SU
should stop transmitting during the channel status examination which affects the data
rate, the transmission power is maximal whenever the PU is absent and without any

need for cooperation. When PU returns active, SU moves to another available band.

Whatever the type of access and in order to detect, manage and switch among available
bands, several parts of CR have to be cooperating in order to increase the efficiency of

CR. These parts can be listed as follows [8]:

1. Spectrum Sensing
2. Spectrum Decision
3. Spectrum Mobility

4. Spectrum Sharing

1.2 Main parts of Cognitive Radio

The Cognitive Radio System can manage the communication activities of several SUs in a
radio environment where several bands are available. First, CR should diagnose available
bands, then choose the best one. In addition, CR should manage the transmission priority

of the SUs, and the mobility of the SUs among available bands.

1.2.1 Spectrum Sensing

Spectrum Sensing is a key function of Interweave Access CR. Spectrum Sensing provides
CR with the status of the channels (occupied or vacant); based on that, CR makes a
decision and sets the transmission parameters of SU [19].

Robust Spectrum Sensing allows CR to efficiently profit from the spectrum opportunities.
However, If the Spectrum Sensing decides wrongly that a channel is vacant, in this case
SU starts to operate on that channel and affects the PU communications. On the other

hand, if the Spectrum Sensing detects an occupied channel while it is really vacant, we can
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miss the opportunity to access that available band. In other words, unqualified Spectrum
Sensing can lead to either, harmful interference or inefficient use of the spectrum.

Spectrum Sensing can be performed locally or cooperatively [19, 20]. In local Spectrum
Sensing, SU makes individually a decision on its radio environment. This decision is
vulnerable to be wrong due to hidden PU phenomenon [19] (that happen due to fading,
shadowing and other issues). To solve this problem, Cooperative Spectrum Sensing (CSS)
has been proposed [28-30]. In CSS, several SUs are cooperating to make a decision
on frequency band by exploiting their spatial diversity. A significant enhancement is

achieved by using CSS comparing to local Spectrum Sensing.

1.2.2 Spectrum Decision

CR serves to meet the Quality of Service requirement of the SUs (QoS-SU). After sensing
the channels, Spectrum Decision in CR selects and allocates the best available channel to
a SU [11, 31|. In this context, in |31, 32] the authors show that the decision model which
is based only on the channel capacity using the SNR is not the optimal one. In fact, in
addition to that channel capacity, several parameters have to be identified and examined
to satisfy the QQoS-SU. Channel Holding Time (CHT) is an essential parameter which
deals with idle PU duration [33, 34| predicted based on a provided Data-Base by PU or
by a historical monitoring [11]. A long CHT ensures better QoS-SU. Other parameters
such as spectrum switching delay [35-37], channel interference [38, 39|, and others have

to be taken in account |11, 31].

1.2.3 Spectrum Mobility

The Spectrum Mobility objective is to ensure a seamless switchover while SU changes
the operating frequency band [40]. The main aim of Spectrum Mobility is the Spectrum
Handoff, which means the mobility from an operating band to another one. This can be
done by cooperating with Spectrum Sensing and Spectrum Decision. When SU discov-
ers a PU activity, it should vacate this channel and transfers its ongoing transmission
to another available channel. The new channel is selected by the Spectrum Decision.
Thus, Spectrum Mobility functionality is related to both Spectrum Sensing and Spec-
trum Decision. The Spectrum Handoff should be performed as fast as possible in order
to decrease as possible the degradation of SU data rate.

Omne can distinguish two strategies of Spectrum Handoff [40, 41]: the reactive and the
proactive handoff. In reactive handoff, SU should sense available spectrum after the
knowledge of a Spectrum Handoff trigger. The advantage of this strategy is the accurate

decision of the channel availability as the Spectrum Sensing is performed in the most
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relevant spectrum environment. In contrast, this strategy increases the SU delay before
restarting the transmission.

For proactive handoff [42], SU performs Spectrum Sensing to detect available channels
before Spectrum Handoff triggering occurs. This helps PU to avoid long delay before
returning active. For that strategy, SU uses a historical tracking of PUs activities to
predict the future ones. This fact allows SU to prevent multiple Spectrum Handoffs by
selecting an appropriate channel before evacuating the actual channel. Even though this
strategy is efficient, the poor prediction may deteriorate the Spectrum Mobility.

In contrast, some SU do not perform a Spectrum Handoff [40]. In fact, in some situa-
tions, when PU activity is detected by Spectrum Sensing, SU remains inactive and waits
till the end of the PU’s activity, then it can return active on the same channel. In such
situation, Spectrum Mobility is not required. This fact leads to inflexible CR, with a
degradation on the SU data rate.

1.2.4 Spectrum Sharing

When multiple SUs are looking to access a limited number of frequency bands, a bal-
anced rule should be maintained by taking into account the QoS of the SUs transmission
and their priorities [1, 15]. This can be done by considering a policy rule providing a
fair schedule to share available bands. In addition to policy fairness, the policy should
take into account the collision of SUs and the interference amount caused by SUs to PU
receiver [5]. That policy can be set based on a cooperation among the SUs. This refers to
the CR network topology: Centralized or Distributed Network. In centralized network,
the SUs send their informations to the network entity, which defines the most suitable
policy to share available bands among the SUs. In distributed network, SUs exchange
their informations, then each SU makes an individual decision on accessing the channel.
Although the distributed cooperation leads to non fair Spectrum Sharing, it is preferred
in a situation where users can make their own decisions on the spectrum access based

mainly on local information.

Figure 1.3 shows the CR cycle. Spectrum Sensing informs Spectrum Decision on the
available bands to choose best ones based on the SU transmission requirement. Later
on, Spectrum Sharing assigns a channel to a SU. The allocated channels can be changed
according to Spectrum Mobility, which is updated by the Spectrum Sensing decisions on
the available channels.

In our manuscript, we are focusing on the Spectrum Sensing function, which plays the
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Spectrum Sensing

Radio
Environment

Spectrum Decision Spectrum Mobility

Spectrum Sharing

FiGUurE 1.3: The Cognitive Radio Cycle

most important role in Interweave CR system, since the CR cycle is based on the decision
of the Spectrum Sensing. When Spectrum Sensing truly provides this cycles with the
available channels, the efficiency of CR is enhanced. Contrariwise, if the Spectrum Sens-

ing is malfunctioned, both, the spectrum use efficiency or the PU QoS will be affected.

1.3 Thesis Organization

In this manuscript, we are focusing on the Interweave Access Cognitive Radio !, espe-
cially on the Spectrum Sensing part. The important role of the Spectrum Sensing comes
from that CR transmission is opportunistic, so that its operations are mainly based on
the status of the frequency bands. In fact, many algorithms were presented in the liter-
ature to perform the Spectrum Sensing. Each of those algorithms has strong and weak
points based on many criteria such as the robustness of detection, the blindness with
respect to the PU signal, the vulnerability to the noise variance, the complexity, the
oversampling effect, etc.

In our work, we are aiming at adapting and/or inventing new Spectrum Sensing algo-
rithms for Half Duplex Cognitive Radio by taking into account the criteria listed above.
Besides that, Full Duplex Cognitive Radio is also considered, where our main goal in
such a system is the elimination of the hardware imperfections which affect greatly the

Spectrum Sensing.

Our manuscript is organized as follows:

!Throughout the rest of the manuscript, Cognitive Radio means that uses the Interweave Access
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Chapter 2 presents a state of the art on Spectrum Sensing. This chapter analyses popular
algorithms according to several criteria, and focusing on their limitations and drawbacks
of these algorithms. Different Spectrum Sensing strategies are also discussed in this

chapter.

Chapter 3 will explain the application Canonical Correlation Theory (CCT) in Spectrum
Sensing. CCT was applied on such domain to be candidate to test the cyclostationary
of the received signals on Multi-Antenna System (MAS), in this case spatial diversity is
exploited to discover the cyclostationarity of the PU signal. In this chapter, we extend
CCST to Single-Antenna System (SAS), where a new algorithm is proposed based on the
time diversity of the received signal. Exploiting the time diversity make CCST applicable
on SAS. Moreover, this new proposed algorithm is then extended to MAS, where both
time and spatial diversities are exploited. Several simulations are carried out in order to

show the effectiveness of the proposed detector.

New Spectrum Sensing algorithms are proposed in chapter 4. In this chapter, new detec-
tion criterion based mainly on the cumulative sum of the Power Spectral Density (PSD)
of the received signal is proposed. When assuming the whiteness of the noise samples,
the noise’s PSD becomes flat. This aspect does not exist for the PU signal, which is
assumed to be oversampled. Therefore its PSD is no longer flat. If the PU is absent, the
cumulative sum of the received signal PSD has a close shape to a straight line. Whereas
a curved shape is obtained when PU exists.

Several algorithms will be proposed based on the PSD of the received signal, with a
detailed analytic study. In this context, the False Alarm and Detection probabilities are
evaluated analytically under Gaussian and Rayleigh fading channels. Our proposed al-
gorithms are compared with other well known state-of-the-art ones, where they present a
robust performance even at a low oversampling rate, where some detectors such as the au-
tocorrelation and cyclostationary detectors provide a poor performance relatively to the
energy detector. Furthermore, our detectors are less sensitive to the Noise Uncertainty
problem than the energy detector. In particular, we demonstrate that the detectors we

present can be made independent from noise variance.

Chapter 5 addresses the Full-Duplex Cognitive Radio (FD-CR), where the Secondary
User (SU) can transmit and perform the Spectrum Sensing simultaneously unlike Half-
Duplex Cognitive Radio (HD-CR) which stops the transmission during the sensing pe-
riod. The main challenge in Full-Duplex (FD) consists in minimizing the Residual Self

Interference (RSI) which represents the error of the Self Interference Cancellation (SIC)



State of Art on Spectrum Sensing 12

and the receiver impairments mitigation such as the oscillator Phase Noise (PN), the
Non-Linear Distortion (NLD) of the receiver Low-Noise Amplifier (LNA), the Analog to
Digital Converter (ADC) noise etc. In Cognitive Network, SU should be aware of the
Primary User (PU) activity; Hence, the RSI represents an important challenge for the
SU to make a decision on the presence of PU. To mitigate the PN and the NLD of LNA|
a new receiver model of the FD system is proposed.

At first, an analytic relationship is derived to show the effect of the RSI on the Spectrum
Sensing performance in FD-CR comparing to HD-CR. After that, an auxiliary chain is
presented to help the receiver avoid the PN effect. Further, the new receiver architecture
is proposed in order to estimate the NLD coefficients. This estimation is followed by
a re-generation and a subtraction of the NLD from the received signal. Such proposed
model shows its efficiency by both enhancing the channel estimation and reducing the
RSI power. A performance analysis of the proposed receiver model on FD-CR with all
Full-Duplex receiver impairments is presented. Obtained ROC curve shows an important
enhancement in the detection rate relative to the classical Self-Interference Canceller, this
fact impacts positively the CR throughput gain as corroborated by intensive numerical

results.

Chapter 6 stands for a general conclusion of our work by opening a new horizon in this

domain.
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List of Acronyms

ACD Autocorrelation Detector
AWGN Additive White Gaussian Noise
BSS Blind Source Separation

CAF Cyclic-Autocorrelation Function
CDF Cumulative Density Function

CF Cyclic Frequency

CFAR Constant False Alarm Rate

CR Cognitive Radio

CSD Cyclo-Stationary Detector

CLT Central Limit Theorem

CSCGN Circular Symmetric Complex Gaussian Noise
CSS Cooperative Spectrum Sensing
ED Energy Detector

EME Energy with Minimum Eigenvalue

EVD Eigenvalues-based Detector
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FC Fusion Center

FD Full-Duplex

FD-CR Full-Duplex Cognitive Radio
GLRT Generalized Likelihood Ratio Test
GoF Goodness of Fit

HD Half-Duplex

HD-CR Half-Duplex Cognitive Radio
HCS Hard Combining Scheme

HD Half-Duplex

HD-CR Half-Duplex Cognitive Radio
HIM Hardware Imperfections Mitigation
IoT Internet of Things

KD Kurtosis Detector

LLR Likelihood Ratio

LNA Low-Noise Amplifier

MAS Multi-Antenna System

MME Maximum-Minimum Eigenvalue
NU Noise Uncertainty

OFDM Orthogonal Frequency Division Multiplex
PDF Probability Density Function

PU Primary User

ROC Receiving Operating Characteristics
SCS Soft Combining Scheme

SU Secondary User

TS Test Statistic

WED Wave-Form Detector
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In the Cognitive Radio (CR) operation cycle, distinguishing the Primary User (PU)
status is the first step to access (or not) a frequency band by a Secondary User (SU).
To achieve an accurate decision, SU should stop the transmission during the Spectrum
Sensing, which is performed periodically. This fact refers to the so-called Half-Duplex
CR (HD-CR) system which divides its activity time into two periodic time slots: the
first one stands for the Spectrum Sensing (SU is in silence period), while the second
one is devoted for the transmission. To overcome this limitation, Full-Duplex CR (FD-
CR) system has recently been proposed [26, 43|. FD-CR concerns mainly the Spectrum
Sensing part in CR, where it aims at making SU active even when the Spectrum Sensing
is under progress. This can be done by the Self-Interference Cancellation (SIC) of the

SU signal (Self-Interference) at the SU receiving antenna.

SU is idle SU is idle SU is idle
If PU is absent If PU is absent
(a): HD-CR
SU is active SU is active SU is active
| SET e ST pemy  S&T
(b): FD-CR

FIGURE 2.1: CR activity under both HD and FD modes. (a) HD-CR: the SU should
stop the transmission while it performs the sensing of the channel. (b) FD-CR: SU can
continue transmitting while the Spectrum Sensing is established

Figure (2.1) shows the time allocation of CR for HD and FD modes. In HD-CR, there is
a time slot where SU is inactive, while in FD-CR, SU remains active continuously. This

fact leads to data rate enhancement.

Traditionally, Spectrum Sensing algorithms are designed to deal with HD-CR. Spectrum
Sensing is based on the basic but fundamental binary Bayesian detection problem: Under
the hypothesis Hy, the PU is absent, whereas under the alternate hypothesis H; PU
exists. The received signal y(n) at the CR antenna in HD mode can be modelled under

both hypotheses as follows:
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(2.1)

where h stands for the complex channel effect on the PU signal s(n). w(n) = wy(n) +
iwg(n), is assumed to be an 4.i.d zero mean circular symmetric complex Gaussian noise
(CSCGN), i.e. E[w(n)] = 0 = E[w?(n)], where E[.] stands for the mathematical expec-
tation. The real part, wy(n), and the imaginary part, wq(n), of w(n) are independent
with the same variance.

2
Blud(n)] = Blu(n)] = 2 (22)

where 02 = E[jw(n)|?]. Without loss of generality, we can assume that s(n) is power

normalized. In this case, the Signal to Noise Ratio (SNR), =, is defined as follows:

_ P

2
w

(2.3)

g

Regarding Full-Duplex mode, received signal becomes under both hypotheses of pres-

ence/absence of PU as follows:

Hy : y(n) = a4(n) +w(n) (2.4)

Hi :y(n) = hs(n) + z4(n) + w(n)

xg(n) is the image of the SU signal x(n) received by the CR receiving antenna (Rx)
where z(n) is the transmitted signal by SU at the transmitting antenna (Tx). z4(n)
holds the channel effect between Tx and Rx and the receiver imperfections.

The existence of the SU signal at Rx makes the major difference between equations (2.1)
and (2.4). When CR detects a PU activity, SU should immediately vacate the channel of
PU. By estimating the channel coefficients and the circuit imperfections, CR regenerates
an estimate, Z4(n), of x4(n) and subtracts it from y(n) to obtain g(n). The Spectrum

Sensing is then performed on g(n).

§(n) = y(n) — 24(n) (2.5)

For an ideal SIC (i.e. Z4(n) = z4(n)), y(n) = y(n), the equation (2.4) corresponding to
FD mode becomes the same as that of HD mode (equation (2.1)). (More details about
FD-CR will be given in Chapter 5).
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2.1 Spectrum Sensing Measurements

Generally, in order to perform the Spectrum Sensing, the received signal is down-converted
to the baseband, on which a Test Statistic (TS) is applied to diagnose the channel status:
PU exists or PU is absent.

y() b . Comparison with a pre-
° SN TS determined threshold

Decision

FIGURE 2.2: General architecture of Spectrum Sensing in a CR receiver

Figure (2.2) shows the CR receiver capable to evaluate the TS. The received RF analogue
signal y(t) should be amplified using a Low-Noise Amplifier (LNA) and converted to base-
band signal using the oscillator (OX). Using Analog to Digital Converter (ADC) one can
generate the equivalent digital signal y(n), on which TS is applied and compared to a pre-
determined threshold to make a decision on the channel status. It is worth mentioning
that LNA normally introduces a distortion in the amplified signal due to its non-linearity.
In addition, the oscillator results in multiplicative noise due to noise phase error plus the
ADC additive quantization uniform noise [21, 27]. In HD mode, the circuit imperfections
(such as the LNA distortion, the ADC noise and the oscillator noise) are not taken into
account since their appearance is related to the PU signal existence, in other words, these
imperfections are presented only when PU signal is received and they are of negligible
power compared to the PU signal. In contrast, in FD mode, these imperfections should
be taken into account since the Self-Interference to be cancelled is coming with a very
high power compared to PU signal, due to the short distance between SU’s T'x and SU’s
Rx (see figure 2.3).

For that reason, the hardware imperfections and other noises should be considered in or-
der to not affect TS, and consequently the Spectrum Sensing performance. More details

on the effect of the receiver imperfections are given in chapter 5.
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transmitting
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FIGURE 2.3: Effect of the distance on the power of the received signal in FD-CR system

2.1.1 Detection Criteria

In order to detect the PU signal, TS is generally evaluated based on one or many criteria

such as:

1. Incremental Energy

When PU starts to transmit, the energy of the received signal should be incre-
mented compared to the noise-only case. By estimating previously the power of
the stationary noise, and by comparing the energy of the received signal to a
pre-defined threshold depending on the noise power, CR decides if the channel is
occupied by a PU signal or not. This type of detection is used for the Energy

Detector in both time and frequency domains.

2. PU signal pattern

Many features (such as the modulation process, the sine-wave carrier, the periodic
pilot, the cyclic-prefix (for OFDM signal), etc) make telecommunication signals
distinguishable from the noise. A major characteristic of the modulated signals is
the cyclo-stationarity property [44-46].

Other aspects can also be employed by CR (such as the oversampling of the base-
band PU signal, the periodic pilot sent by PU, the cyclic-prefix (for OFDM signal)
etc) to detect the PU. Several detectors such as Auto-Correlation Detector (ACD)
[47] and Eigenvalue-based Detector (EVD) [48| exploit the correlation presented in
the PU signal due to aspects listed above.
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Moreover, some detectors, such as Goodness of Fit test [49, 50] and Kurtosis de-
tectors [51], compare the distribution of the received signal to the distribution of

the noise-only-case.

3. PU signal’s waveform: In some circumstances, CR has an image of the PU signal
shape. Waveform and Matched filter detectors correlate the received signal with

the PU signal shape in order to test the channel opportunity [52, 53].

2.1.2 Detection Decisions

Whatever the used criterion to detect the PU activity, the corresponding TS should be

compared to a predefined threshold X in order to make a decision:

Hy: TS <X: PUisidle
(2.6)

Hy:TS>X: PU istransmitting

That comparison leads to one of the four following cases:

1. Reject

SU decides correctly that PU is absent. Such decision helps CR to efficiently exploit
the spectrum holes. Thus, the Reject probability p,e can be presented as:

Dre = Pr <TS < >\|H0> (2.7)

2. False Alarm

This case happens when CR decides that an absent PU is active. This wrong
decision leads to miss the opportunity of available bands. The probability of False
Alarm py, is evaluated by:

Pia=Pr (TS > A!H()) (2.8)

3. Detection

When CR truly detect an active PU. That decision protects PU against the inter-
ference of SU which should be idle in such case. Accordingly, the probability of

Detection py is found as follows:

pa = Pr (TS > A\H1> (2.9)
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4. Missed Detection

CR cannot detect an active PU. This decision leads to an interference on the PU’s
signal since that decision gives the permission to SU to transmit on the same band
of an active PU. Therefore, the Probability of Missed Detection p,,q is defined as

follows:

Pmd = Pr (TS < )\|H1) (2.10)

We should emphasize that:
Pre +Pfa =1 (2.11)
Pd + Pmd =1 (2.12)

To analytically find the above probabilities, one should derive the Probability Density
Function (PDF) of TS under Hy and H;. The importance of finding the PDF under
Hy is to set an appropriate threshold in order to satisfy both: protecting the PU from
the interference and get a maximum profit of the channel opportunities. According to
the IEEE.802 WRAN regulation [54], p, = 0.1 and pg = 0.9 should be satisfied by the
Spectrum Sensing at a limit SNR of -20 dB in the CR system. However, when py, is set,
a suitable threshold can be found based on other parameters such as the noise variance

and the number of used samples.

False Alarm

f(TS | Hy)

Detection

Missed Detection

FIGURE 2.4: The distribution of a TS under noise-only (f(T'S|Hy)) case and signal-
plus-noise case (f(T'S|H1))
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Figure (2.4) shows the distribution of a given T'S under the noise-only and the noise-
plus-signal cases. The nature of the decision area is related to the chosen threshold,
which is set to satisfy the CR detection requirement. Note that minimizing the area
of overlapping between the distribution of TS under Hy and H; leads to enhance the
detection performance. This can be done by increasing the observation time of the
received signal.

A wrong decision on the channel status (False Alarm or Missed Detection) can affect
either the PU transmission or the efficient use of the channel. In fact, a missed detection
can cause a harmful interference due to the transmission of the SU in the same band
with the PU. A false alarm, however, decreases the profit of the channel. Therefore, the
probability of detection (pg) should be increased as much as possible, by keeping a small

the probability of false alarm (pg,). .

2.2 Classic Spectrum Sensing Algorithms

2.2.1 Energy Detector

The Energy Detector (ED) is a simple and blind detector who does not require any
information about the PU signal. ED consists in evaluating its T'S, Tgp, in the band of

interest over N received samples and comparing it to a predefined threshold A [55-57].
1N

Tep = & 21 ly(n)|? (2.13)
n=

The threshold X is set according to a target py,, and using the distribution of the test
statistic under Hp to meet the detection requirement. When a target py, is fixed, the
detector sets the required number of samples in order to reach that probability.
It has been proved that the distribution of Trp under Hy tends toward a central x?2
distribution with 2N degrees of freedom [55, 57]. Under a low SNR, the number of
samples required to perform the Spectrum Sensing increases largely. In this case, the
distribution of Tgp tends toward a Normal Distribution according to the Central Limit
Theorem (CLT):

Tep 4 N (P, ViEP) (2.14)

where & stands for the asymptotic distribution under H;, i € {0,1}, and N (u, V) rep-

resents a Normal distribution of a mean p and a variance V.
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Under Hj, the distribution of Trp depends on the ones of s(n) and w(n). Some re-
searchers suggest to use the Gaussian distribution as generic model when s(n) is un-
known [57]. Such suggestion leads to obtain a Normal Distribution of Tgp under H; for

a large number of samples according to CLT.

Tpp & N (pfP, ViEP) (2.15)

PU’s signal is assumed in some cases to be deterministic with unknown value, in order
to derive the analytic distribution of the test statistic [45, 46, 57]. When no assumption
is considered on the distribution of the PU signal, the distribution of the test statistic
becomes non-derivable [57].

The probabilities of False Alarm and Detection of ED for a large N and the Gaussian

assumption of the PU signal, can be derived as follows [57]:

ED A—og,
WP =a (2% (2.16)
VN W
A — (02 4 02)
ED __ w s
pd - Q (1(0_2 n 0_2) (217)
\/ﬁ w w

Where Q(x) is the Q-function which is defined as follows [58]:

1 +oo 2
Qx) = \/ﬂ/x e “du (2.18)

According to equation (2.16), the threshold A can be expressed as follows:

1
A= ﬁQ_l(pfa)U?u + 01211 (2.19)

Equation (2.19) shows the dependency of A to the noise variance, which should be esti-
mated by the SU prior to perform the Spectrum Sensing. Any error in the noise variance
estimation may lead to so-called Noise Uncertainty (NU) problem, which degrades harm-

fully the performance of ED as it is shown in section 2.3.4.

2.2.2 Autocorrelation Detector

A linearly modulated PU signal can be modelled in a base-band form as follows:
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s(n) = Zbkg(n — ENg) (2.20)
k

by, are the transmitted independent symbols and g(n) is the shaping window, and Ny > 1
stands for the number of Samples per Symbols (sps).

In such model, the autocorrelation rs5(m) of s(n) for some non-zero lags, m, becomes

non zero:

rss(m) = E[s(n)s*(n —m)] # 0 (2.21)

For the linearly modulated signals (such as BPSK, M-QAM, ASK, etc), rss(m) can be

evaluated as follows|59|:

U?(l — |]7z;|), |m| < Nj
Tss(m) = s (2.22)

where 02 = E[|s(n)[?].

s =

The autocotrrelation 7,,(m) of the received signal y(n) can be found as follows [60-62]

Tyy(m) = Ely(n)y*(n —m)]

— B (hs(n) + w(n)) (hs(n — m) + w(n — m>>*]
= B||hPs(n)s*(n — m) | + B |w(n)w*(n - m)]
+ E|hrw(n)s*(n —m)| + E [hw(n - m)s(n)] (2.23)
Since w(n) is a white noise then
Blw(n)w* (n — m)] = 026(m) (2.24)
where 6(m) stands for Dirac distribution:
sy = 41 =0 (2.25)

0 elsewhere
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By assuming that s(n) and w(n) are zero mean independent signals, then E[h*w(n)s*(n—
m)] + E[hw*(n —m)s(n)] = 0. Equation (2.23) becomes as follows:

ryy(m) = E|[h*s(n)s"(n —m) | + Elw(n)w"(n —m)]

= \h\2rss(m) + Jié(m) (2.26)

As shown in Equation (2.26), 7y,(m) vanishes when the PU signal is absent for any
m # 0, and it is non zero for only the case when an oversampled PU signal exists and
1 < m < N,;. Based on the above discussion, the autocorrelation for 1 < m < N

becomes a candidate for the sensing of the spectrum:

0 under Hy
ryy(m) = (2.27)
% 0 under Hy

In |47], the proposed Auto-correlation Detector (ACD) algorithm tests a linear combi-
nation of {ry,(m)} where m € [1; N, — 1]. The test statistic to be derived, Tacp, is
presented as follows [47]:

Tacp =

Z emRe{Tyy(m)} (2.28)

y

Where Re{.} stands for the real part, fy,(m) = % 27]:[:1 y(n)y*(n —m) is an estimator
of the autocorrelation function r,,(m) and ¢, is a set of weighting coefficients. 7, (0) is
the power of the received signal.

The division operation by 7,(0) avoids the vulnerability of ACD to NU, since ACD
becomes independent of the noise variance under Hy [47]. This operation makes ACD
a Constant False Alarm Rate (CFAR) detector, so that the threshold of comparison is
only depending on the number of samples used in the detection process.

According to [47], the False Alarm and Detection probabilities of ACD are expressed as

[N
N\ — B
PP =Q (””) (2.30)

follows:

PP =Q

VVacp
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Ns—1 Ns—1

1'% > rss (1+ A2 —4BYA+ Z + 1y

h — = g
Where ¢ = ;:1 i, B= § , Vacp CESIE ;
Ns—1 Ny—1
N c SSs l_ k ss l k . .
n= E E clckT ( ) tOr) ( i ) and ~ is the SNR as mentioned above.

Tss

I=1 k=L;l#k
2.2.3 Cyclostationary Detector

The Cyclo-Stationary Detection (CSD) is widely used in the Spectrum Sensing context
due to its robustness under low SNR and its capacity to distinguish between modulated
signals and noise, based on the fact that almost of telecommunications signals are cyclo-
stationary due to the modulation process, the sine-wave carrier, the periodic pilots, etc.
These existing cyclo-stationary features present in telecommunication signals are not
present in the noise.

The signal s(n) is said to be Cyclo-Stationary if its autocorrelation function is periodic
with a period T, [63].

rss(n,m) = E[s(n)s*(n —m)] = rss(n + Tp, m) (2.31)

Since 7s5(n, m) is periodic with respect to n, then it can be expanded using Fourier Series
as follows [63, 64]:

rss(n, m) Z RSS< > exp (jZﬂ'j{?n) (2.32)

p=—00 @

Where the Fourier Coefficient Rys(7-,m) are referred to be the Cyclic-Autocorrelation
Function (CAF), and {#-} is the set of Cyclic-Frequencies.

Accordingly, Rss(a, m) can be evaluated by:

Rss(o,m) = lim 1

yim s(n)s*(n —m))exp (—j2mwan) (2.33)

L[]
=

n= )

Rss(a,m) # 0 if a € {#-}, in this case « is a cyclic-frequency [44]. If o = 0, R(0,m)
refers to the classical autocorrelation. When m = 0 and o = 0, Rs5(0,0) stands for the

energy of s(n).
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Cyclic Autocorrelation Function (CAF) as a Test Statistic in Spectrum Sens-

ing

Due to the cyclo-stationary features of the PU signal, it is sufficient to examine the
cyclo-stationarity of the received signal to analyse the channel status. According to

model (2.1), the CAF R, (a, m) of the received signal can be derived as follows:
N
2

Ryy(o,m) = lim Z y(n)y*(n —m)exp (—j2ran)

= lim Z <h5(n) + w(n)) (h*s*(n —m)+w*(n— m)) exp (—j2man)

3

2

= Nh—n>100 Z <h|2s(n)s*(n —m) +w(n)w*(n —m) + s(n)w*(n —m)

n=—=45

+ w(n)s*(n — m)) exp (—j2man)

= Rss(ap m) + wa(a7 m) + st(aa m) + Rws(ay m) (2'34)

Since the noise w(n) does not exhibit any cyclo-stationarity then Ry, (o, m) = 0, Va # 0.
Rys(a,m) = Rgy(cr,m) = 0 since there is no common cyclic-frequency between s(n) and
w(n).

Consequently, the CAF of the received signal becomes that of the PU signal.
Ryy(o,m) = Rss(a,m) (2.35)

Applying CAF necessitates the pre-knowledge (or estimation) of the cyclic-frequency.

Due to the limitation in the observation time, then R, (a, m) is estimated by R, (a, m):

J-1
Ryy(a, m) ~ % Z y(n)y*(n —m)exp (—j2man) (2.36)

To examine the channel opportunity, the test statistic Toap is found as the modulus of

Ryy(o,m) [63, 65]
Toar = |Ryy(a,m)[? (2.37)

Toar is compared to a predefined threshold in order to made a decision on the activity
of the PU.
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GLRT-based Cyclo-Stationary Detector
In fact, several algorithms have been proposed to perform the cyclo-stationary detection
[44, 45, 66]. In [44], the authors proposed the well known Generalized Likelihood Ratio
Test (GLRT)-based cyclostationary features detector. The test statistic considered in
GLRT is the following [44].:

Tesp = NiyKiy (2.38)

Where the upper script T' stands for the transpose operation, and 7, is defined as follows:
7y = | Re{Ryy,(c,m1)}, Re{Ryy(a,m2)} ..., Re{ Ry, (c, mar)},
Im{Ryy(c,m1)}, Im{Ry,(a,ma)} ..., Im{ Ry, (c, mM)}] (2.39)

where Re{.} and Im{.} stand for the real and imaginary parts respectively and M is

the number of the time lags used in the detection process. K stands for the covariance

matrix:
-1
R Uul Im{u —
_ L | BelP AU Imill = P (2.40)
2 [Im{P+U} Re{P-U}
Where P = (qu> and U = (qu> are found as follows:
L—1
- A 27l ~ 27l
Ppq = Z f(1) Ry, <O‘ + Namp> Ry, (O‘ + N mq)
l::lfL
L—1
2 . 27l N 2mTm
Upq = Z f(l)Ryy (04 + N mp> Ryy (a TN mq> (2.41)
—

L is the length of the normalized weighting window f(l), so that Zle f() = 1. The
distributions of Togp under both Hy and H; follow the x? law with 2M degrees of
freedom, with the difference that under Hy x? is centred whereas it is non-centred under
H, with a non-centrality parameter of N nyfg .

Hy 2
Tcsp ~ Xam

2.42)
" o (
Tesp ~ X%M <NT;CK7‘£>
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The probabilities of false alarm (py,) and detection (pg) are given based on the distribu-

tions under Hg and H; respectively:
pGSP = T(A/2, M) (2.43)

3%’ =Qu (ﬁ, fong) (2.44)

where I'(a, b) is the upper incomplete gamma function and Qps(a,b) is the generalized

Marcum Q-function, and they are defined as follow respectively [58]:

I'(a,b) = /Ob 7L exp (—t)dt (2.45)

L[y t* + a?
Qunla,b) = aMl/b t™ exp ( - Inr—1(at)dt (2.46)

Where I;(t) is the Bessel function of the first kind of order M.

2.2.4 Other detection techniques

Even though, ED, ACD and CSD are well known in the Spectrum Sensing Context,
other algorithms are used, such as Waveform Detector (WFD), Eigenvalue-based Detec-
tor (EVD), Goodness of Fit Detector (GFD), Kurtosis Detector (KD) etc.

Waveform Detector

WFD is an optimal method [19, 52, 53] in terms of detection performance. WFD keeps
good performance even at a very low SNR. Hence, the SU should know the waveform
of PU signal or pilot [19, 28, 53|, and correlate it with the received signal. The pilot is
a simple signal transmitted by the PU as a signature signal. The optimal performance
of WFD is reached with the perfect synchronization in time and frequency between SU
and PU.

However, the application of WFD in a general or blind CR context is very limited since

CR would deal with a great variety of signals in its radio environment.

Eigenvalue-based Detector

Unlike WFD, Eigenvalue-based Detector (EVD) do not require any prior knowledge
on the PU signal. Contrary to ED, EVD does not need an estimation of the noise
variance. This fact makes EVD non vulnerable to the NU. EVD is based on finding a
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set {Bi}i=1,...m; (m < Ny) of Eigenvalues of the m x m samples Covariance Cy, matrix

of the received signal.

Ely(n)y*(n)] Ely(n)y"(n—=1] ... Ely(n)y*(n—m)]
oo Ely(n—1y*(n)]  Ely(n—-1y*(n—-1)] ... Ely(n—1)y"(n)]
vy . . .
| Ely(n—=m)y*(n)]...  Elyn—)y*(n-1)] ... Ely(n—m)y*(n—m)]
(2.47)

For the case of white noise, Cy, will result in diagonal matrix under Hy. Then, the

eigenvalues Cy, are equal to noise variance [48]

Br=PFr=..=Pm=0, (2.48)

Under Hi, and thanks to the independence between s(n) and w(n), Cy, becomes the

sum of Css and Cly, the covariance matrices of s(n) and w(n) respectively.

B =B + a2
By = B5 + a2,
Bm:@frl'(fgu

(2.49)

where 5§ > f5... > B5,. Using equation (2.49), many EVD algorithms have been pro-

posed. Herein, we present the two well known EVD detectors:

1. Maximum-Minimum Eigenvalue (MME): This algorithm finds the Maximum B4,
and the minimum B, of the Eigenvalues of Cy,, and then compares the ratio

Bmaz/ Bmin to a threshold to made a decision on the PU status.

2. Energy with Minimum Eigenvalue (EME): Here the Spectrum Sensing is performed
by comparing the ratio, Tgp/Bmin, of the energy of the received signal (equation

(2.13)) over the minimum eigenvalue B, to a threshold.
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Note that other Eigenvalues-based Spectrum Sensing algorithms are proposed based on
the distribution of the eigenvalues of Cy,. On the other hand, EVD algorithms can
be applied on a multi-antenna system, where the spatial covariance matrix is evaluated
instead of time covariance matrix. MME and EME can be applied on such scenario if

the noise is spatially white.

Goodness of Fit Detector

The detection can be done based on comparing the Cumulative Density Function (CDF)
of the received signal’s samples to (known or a priori estimated) CDF of the noise [49].
The test statistic of the Goodness of Fit (GoF) detector is the sum of the differences
between the two curves of the two CDFs or the maximum of these differences.

For AWGN complex and circular noise w(n), the modulus ||w(n)||? follows a x? distri-
bution. In [50], a Likelihood Ratio (LLR) GoF test based on x? (LLR x?) is proposed.

The associated Test Statistic to be found Tgor [49] can be derived by.

N
o (s BB

n=1

where Fy is the CDF of the x? distribution. If Tg,r is greater than the predefined
threshold then a non-Gaussian signal is detected.

This algorithm faces a problem when the noise’s CDF and the PU signal’s CDF have
the same nature, or when they are similar. However, this type of detection has gained

a lot of attention due to its blindness since it does not require any prior information on
the PU signal.

Kurtosis Detector

Kurtosis Detector (KD) is sensitive to the Gaussian aspect of the noise. In fact, the
kurtosis of the Gaussian signals is zero [67]. Applying the kurtosis metric on the received
signal will result in non zero value only if a non Gaussian signal such as PU’s signal exists
[51]. Note that if the PU signal is also Gaussian, KD becomes inapplicable. Such scenario
can occur when the PU signal is an OFDM due to the FFT operation that performs the
sum of independent samples which leads to a distribution closed to Gaussian according
to CLT.
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2.3 Performance Evaluation

2.3.1 Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) presents the variation of the probability of
Detection pgq with respect to the probability of False Alarm py,. It is worth mentioning
that pg reaches ’1” as py, increases as well to ’17 [58]. The main challenge of any detection
technique is to reach a high pg by keeping py, low. This can be achieved by setting a
reliable threshold that satisfies the detection requirement (target pq and py,) in terms
of the number of received samples (observation time) and the SNR. ROC curves can
be considered as an essential criterion to evaluate the Spectrum Sensing performance in
detection sense.

A comparison of various algorithms is presented based on the ROC curves. ED, CSD and
ACD will be compared, when they are applied on 16-QAM modulated signal, oversampled
by Ns = 4 samples per symbol (sps). The noise is assumed to be Additive Complex
Circular Symmetric Gaussian Noise (CCSGN). As shown in figure 2.5, ACD presents

SNR=-12 dB, N=1000 samples

0.9 i
0.8
ED
07 —8—CSD ||
) —— ACD

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
pfa

Ficure 2.5: ROC curves for ED, CSD and ACD

the more reliable performance with higher ROC curve comparing to the other detectors.
In figure (2.6), pq is evaluated in terms of SNR for py, = 0.1, Ny = 8 sps and N = 1000
samples. ACD outperforms ED and CSD since it reaches higher value of py for a fixed
value of pr,. Note that the performance of ACD increases with IV, [68]. In addition, the
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performance of ED is presented here for a perfect estimation of the noise variance, so

that Noise Uncertainty is not taken into account (see section (2.3.4)).

P,=0-1; N=1000 samples
1 T

0.9

0.8
ED

—8— CSD

0.7 —#— ACD ||

0.6

0.5

| |
18 -16 -14 -12 -10 -8 -6
SNR (dB)

FIGURE 2.6: Block-Diagram of the Energy Detector

2.3.2 Sensing Time

To reach the detection requirement (i.e. target (pq, psq)), the number of received samples
(Sensing time) is considered as a main challenge. Using a long sensing time affects the
data rate of SU which should stop transmitting during the Spectrum Sensing. On the
other hand, an algorithm with a short sensing time is acceptable only if it is robust
with respect to low SNR. In general, the performance of the detectors is enhanced with
the increasing V. A good detector should present an efficient performance with a short
observation time. For a fixed target (ps, = 0.1,pq = 0.9), figure (2.7) presents the
variation of the SNR in terms of the number of samples. The PU signal is 16-QAM with
Ns = 3 sps. The SNR decreases with the increasing of N for all the tested algorithms.
On the other hand, ED shows the best performance with the lower SNR.
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(Py, s Py = (0.1;0.9); N.=3 sps
0 T T

SNR (dB)

-25 L 3 L 4
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FIGURE 2.7: The minimum SNR required to reach (psq;pq) = (0.1;09) in terms of the
number of samples

2.3.3 Computation Complexity

The computational complexity plays an essential role in the selection of a suitable Spec-
trum Sensing algorithm. High complexity requires high power consumption and com-
plicated hardware circuitry, which makes the Spectrum Sensing process expensive for a
CR.

The computational complexity of ED (Cgp) can be measured according to equation
(2.13): N multiplication operations are required to evaluate |y(n)|?> and N — 1 addi-
tion operations are required to perform the sum of N terms of |y(n)|?. Totally, 2N — 1

computational operations are required to perform the energy detection.

Cep =2N —1 (2.51)

The complexity of CSD is given in [69]:
Cosp = (Ns— 1)N(L+1) +4(Ng — 1) L? +8(Ns — 1)3 + 6(Ns — 1)* +2(Ng — 1)) (2.52)
According to equation (2.28), for a unit weighting function (¢, = 1), ACD performs

for each lag 2N — 1 computational operations similarly to ED. This process is repeated

for each lag before doing the summation operation of 7y, (m). For a linearly modulated
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signal, with an oversampling factor N, the number of the useful lags is Ny — 1 (m =

1,..., N5y — 1), the complexity of ACD becomes as follows:

Cacp = (Ng—1)(2N — 1) + N, — 2
=2(N, —1)N — 1 (2.53)

The number of the required samples is related to the detection requirement as shown
in figure (2.7). This number of samples is changed from one algorithm to another.
Accordingly, the computational complexity of ED, CSD and ACD is measured in terms
of the number of samples required to reach (ps, = 0.1;pq = 0.9). The results shown
in figure (2.8) are found according to the results shown in figure (2.7). ED is still the

simplest algorithm, whereas CSD is the most complicated one.

(pfa ;pd) =(0.1;0.9); NS=3 sps
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FIGURE 2.8: The number of operations required to reach (pfq;pq) = (0.1;09)

2.3.4 Noise Uncertainty Impact

A major problem affecting the Spectrum Sensing algorithms is the Noise Uncertainty.
Because of several limitations (such as thermal noise, ambient interference, receivers non-
linearity, etc), the noise variance cannot be perfectly estimated |70]. This fact leads to
the so-called SNR-wall phenomenon, where an accurate decision on the channel status

cannot be reached even if the observation time becomes very large [70].
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2

+ can be expressed as being bounded as follows:

The estimated noise variance &
1

62 € |:0'12U; /ﬁai} (2.54)
K

02, is the nominal value of the noise variance and « stands for the NU factor with & > 1.

The distribution of 67, f52 (O’?U), is assumed to be uniform in a logarithmic scale [66].

1
YR 5_P§é§5+p

fé(é) —! 2 (2.55)

0, elsewhere

Where ¢ = 10log;(02), é = 10logy(62) and p = 10log; (k).

SNR=-10 dB, N=1200 samples
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F1cUure 2.9: ROC curve for ED, CSD and ACD for various values of the Noise Uncer-
tainty (p)

For the studied detectors in this manuscript, ED is affected by NU since its pf, depends
on the noise variance. It was shown in [70] that the number of samples required to meet
a target (pfq < 0.5;pg > 0.5) approaches infinity as the SNR approaches (k —1/x) which
is called SNR-Wall. According to figure (2.9), the performance of ED is highly degraded
when NU increases, while CSD and ACD keep the same performance for the different
values of NU. In this simulation, PU signal is assumed to be 16-QAM with Ny = 2 sps.
It is worth mentioning that for p = 0 dB, ED outperforms ACD unlike figure (2.5) when
N; was 4 sps. This is because ACD is highly affected by the oversampling rate.
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TABLE 2.1: Comparison of different Spectrum Sensing Algorithms

Algorithm PU signal || Limitations Complexity
requirement
Low (2N — 1)
ED Blind Sensitive to Noise
Uncertainty

Low (2(Ns —1)N)
ACD Blind Poor performance for

low oversampling rate

High | (Ns — 1)N(L + 1) +
CSD Cyclic Long Sensing time A(N, — 1)L2 + 8(N, — 1)3 +

Frequency
6(N. — 1) +2(N, — 1))

Table (2.1) shows a briefed comparison among ED, CSD and ACD. This comparison
is done with respect to the pre-requirement, the limitation and the complexity. ED
suffers from the NU problem, whereas ACD is only applicable on oversampled signal
and requires a white noise in order to distinguish between signal-plus-noise case and
noise-only case. CSD overcomes that two problems (NU and oversampling aspect), but
it needs the knowledge of the cyclic frequency of the PU signal and it suffers from the
computational complexity (for GLRT algorithm [44]).

2.4 Cooperative Spectrum Sensing

Many factors (such as channel fading, shadowing, etc) can lead to the hidden PU phe-
nomenon, which means that the SU becomes incapable to discover the PU activity.
Using Multi-Antenna System (MAS) and spatial diversity, Cooperative Spectrum Sens-
ing (CSS) has been proposed in order to solve this problem [19, 20]. In CSS, a Fusion
Center (FC) combines the data of the cooperating antennas (Which can be SUs). Two

strategies are admitted to make the final decision on the PU status [20].

2.4.1 Hard Combining Scheme

Hard Combining Scheme (HCS) is the strategy of combining the decisions of the coop-

erative SUs. Each SU makes a decision based on comparing its measured Test Statistic
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to a pre-defined threshold. All the decisions of the SUs are sent to the Fusion Center in

order to reach a final decision based on a logic rule (such as Or, And or the majority rule).

1. OR-rule: the fusion center makes the decision by ORing the received decisions, so
that it is enough that one SU decides that the PU is active to made a final decision
that the channel is occupied. This fact leads to increase the detection rate but at

cost of increasing the false alarm rate.

2. AND-rule: FC decides that the channel is occupied if all the received decisions are

"1’. This rule decreases the false alarm rate but by decreasing the detection rate.

3. Majority Rule: This rule is based on a voting process, where FC respects the

decision of the majority of the cooperative SUs.

2.4.2 Soft Combining Scheme

Instead of sending their decisions on the channel opportunity, each cooperative SU sends
its own measured TS in Soft Combining Scheme (SCS) to FC which performs a linear
combination of all received test statistics and compares the result to a threshold. In SCS,

the cooperative SU needs several bits to transmit their data to FC.

2.4.3 Performance testing of Cooperative Spectrum Sensing

To show the performance of Cooperative Spectrum Sensing, HCS and SCS are tested by
simulation using ED. 16-QAM modulated signal is used, with N = 1000 samples and
N, = 5 antennas. The channel between the PU base-station and the SUs is assumed
to be Rayleigh flat-fading. The majority rule results in "one" if 3 out of 5 decisions are

"ones", else it decides "zero" (PU is absent).
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FI1GURE 2.10: The ROC curve of ED for different CSS strategies

As shown in figure 2.10, CSS using different schemes and rules enhance the Spectrum
Sensing performance. SCS outperforms HCS for its different rules. On the other hand,
OR rule is better than AND and Majority rules.

2.5 Spectrum Sensing based on Distributed Antennas

Some detectors need Multi-Antenna System (MAS) in order to be applied. In [71, 72|, a
Spectrum Sensing technique based on Blind Source Separation has been proposed. The
BSS techniques have been introduced in CR in order to avoid the silence period during
the Spectrum Sensing [71-73] (make the CR Full-Duplex). BSS consists in the separation
of N4 independent sources basing on N, observations (Generally Ny;q < Ng) [74]. Once
the separation is achieved, a test of kurtosis can be carried out on the separated signal

in order to make a decision on the presence of PU [71, 72].

Other algorithm is proposed on the correlation of the received signal on MAS [75]. When
the noise is assumed to be spatially uncorrelated and the antennas of MAS are synchro-
nized, the correlation of the observed signals at the receiving antennas will be zero when
the PU signal is absent. This correlation will be non zero when the PU signal exists.

This fact leads to diagnose the channel status.

In addition, the Canonical Correlation Significance Test (CCST)-based Cyclo-stationary
detector was proposed initially to deal with MAS [66, 76]. This algorithm tests the
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common cyclo-staionarity of the received signals at the receiving antennas. When the
PU signal is absent, there is no common cyclo-stationary features because the channel
is only occupied by noise. On the other hand, common cyclo-stationary features will be
found when PU is active, since on each receiving antenna a faded copy of the PU signal
will be received. Note that we extend CCST to deal with a Single Antenna System, this
study is presented and it was published in [77].

In [78], we proposed a new Spectrum Sensing strategy base on MAS, leading to enhance
the performance. This model proposes the use of the Principal Component Analysis
(PCA) as a pre-processing step of the received signals on MAS. Such strategy leads to
enhance the SNR of the PU signal, and consequently to ameliorate the Spectrum Sensing

performance comparing to SAS.

2.6 Conclusion

In this chapter, we present an overview on the main Spectrum Sensing algorithms used
in the literature. Moreover, a comparison among the most frequently used ones (such
as Energy Detector, Cyclo-stationary Detector and Autocorrelation Detector) is pre-
sented. In addition, we addressed the cooperative Spectrum Sensing with its various
techniques. We can conclude that ED is simple blind detector, but it suffers from the
Noise-Uncertainty problem caused by the dependency of ED to the noise variance. ACD
is independent from the noise variance but it requires a white noise and an oversampled
PU signal. ACD’s performance increases with the sampling rate. Similarly to ACD, CSD
is independent from the noise variance, but can be applied on non-white noise. However,

CSD has a high computational complexity.
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Cyclic Correlation Significance Test

(CCST)

List of Acronyms

AWGN Additive White Gaussian Noise
CAF Cyclic-Autocorrelation Function
CCT Canonical Correlation Theory
CCST Cyclic Correlation Significance Test
CR Cognitive Radio

CSD Cyclo-Stationary Detector

CLT Central Limit Theorem

ED Energy Detector

GLRT Generalized Likelihood Ratio Test
MAS Multi-Antenna System

NU Noise Uncertainty

PU Primary User

ROC Receiving Operating Characteristics

40
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SAS Single-Antenna System
SU Secondary User

TS Test Statistic

Cyclo-Stationarity Detection (CSD) serves as a main research domain in Spectrum Sens-
ing, since this kind of detection shows its robustness against the low SNR and its inde-
pendence to the noise variance, so that no Noise Uncertainty (NU) problem is occurred.
Several CSD algorithms are proposed in the literature. One of them is based on Canoni-
cal Correlation Theory (CCT) [79] and it was called Cyclic Correlation Significance Test
(CCST), where a Multi-Antenna System (MAS) owing N, receiving antennas, is used
to perform the Spectrum Sensing, which shows its efficiency in MAS where the noise is
spatially correlated or spatially colored. In the following, we present a brief review on
the CCT and its application in signal detection, especially the application of CCST in
Spectrum Sensing context, where a Cognitive Radio (CR) system of multi-antenna is
required. The last condition makes the application of CCT in Spectrum Sensing limited
only to CR of MAS. In order to overcome this limitation, we extend this CCST from
MAS to Single-Antenna System (SAS), where the cyclic correlation existing in the PU
signal is exploited. Moreover, our extended algorithm is applied in MAS where both

Spatial and Time diversities are treated to diagnose the channel status.

3.1 System Model

The problem formulation on the presence/absence of the PU signal in CR of MAS is

presented in a classic Bayesian detection problem as follows:
H,, 2 yi(n) = nhis(n) + w;(n) (3.1)

Where n € {0;1}. Hj stands for the case where PU is absent, whereas under H; PU is
transmitting. y;(n) is a 1 x N vector representing the observation at the ith SU receiving
antenna, IV stands for the total number of received samples, s(n) is the PU signal, w;(n)
is the noise at the ith SU receiving antenna and assumed to be stationary zero mean
White Gaussian Noise (AWGN), with a variance o7, and the channel gain, h;, between
the PU base station and the ith SU receiving antenna is assumed to be constant during

the Spectrum Sensing period.
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3.2 Spectrum Sensing based on CCST

The Canonical Correlation Theory (CCT) aims at finding common factors between two
sets of data, y(n) and z(n). The number of these common factors is equal to the rank
of the following matrix [66, 76, 80]:

C = CyyCy,C,,/Cyy (3.2)
Where Cy, = Cov[y(n),z(n)] and can be estimated by Cy,

R 1 Y
Cye = 1 Sy (n) (33)
n=1

Where z'!(n) is the Hermitian transpose of z(n).

In the signal detection context, the number of common factors is, in fact, the number of
the common signals existing in the two data sets y(n) and z(n). In fact, data set are a

vector of observations of the received signals at several receiving antennas [66, 80].

z(n) = [z1(n), 22(n), ..., 2N, (n)]" (3.4)
y(n) = [y1(n),32(n), ..., yn,, ()] (3.5)

where y;(n) (resp. zi(n)) is the signal received at the ith receiving antenna in a set of
Ng, (resp. N,,) antennas.

In [80], CCT is used to determine the number of signals existing in a Band of Interest.
Being using MAS, the proposed algorithm divides the signals received from NV, antennas
into two groups, Ny, and N,,, on which CCT is applied to test the significance correla-

tion between these two groups. This correlation leads to extract the number of signals.

In [66] and [76], CCT is applied on the received signals in MAS in order to extract the
number of signals having common cyclic features. Instead of dividing the observations on
N, antennas into two subsets as in classical CCT, the algorithm proposed in [76] and [66]
aims at identifying the common factors between y(n) and a shifted version of y(n) in time
and frequency z(n, m,a) = y(n —m)exp (j2ran), where « is a known cyclic frequency
of 5(n) and the lag m is chosen off-line in order to maximize Y.~ _| s(n)s*(n —m)e 727"
at a non-zero cyclic frequency «, where s*(n) stands for the conjugate of s(n). This
algorithm was called Cylic Correlation Significance Test (CCST). It is worth mentioning

that the number of common factors in this case is the number of signals having a cyclic
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frequency « [76].

In this case, the cyclic-covariance matrix can be estimated by Ryz as follows:

R
Yz — N ;Y(n)z (na m,a)
1 N
5 oy (n — m) exp (~j2man) (3.6)

n=1

~ ~ H A
For Rgy, it is simple to show that it is equal to Ry,. Regarding Ry, it is independent

of a and it is equal to Eyy for a large N:

N
R,, = % Z y(n —m)exp (j2ran)y™ (n — m) exp (—j2man)
n=1
Ly " 3.7
= 3 Ll my =) (3.7

Consequently, the CCST matrix R is evaluated by:
A P O Y -
R =R, Ry.R,, Ry, (3.8)

Note that when N, = 1, Ry, = + ZnN:1 y1(n)y(n — m)exp (—j2ran) = Ry,

which is the Cyclic-Autocorrelation Function (CAF) of y1(n) (see equation (2.34))
In addition, Ry, = + SN yi(n—m)|? =~ Ry, (0,0) for alarge N, where Ry, (0,0) =
+ 227:1 ly1(n)|? and it stands for the energy of y;(n) (similarly for z;(n) = yi(n —

(a, m),

m) exp (j2wran)). In this case, the CCST is found as follows:

A~

R =R, (0,0)Ry,,, (a,m)R;E (0,0)R:,, (a,m))

T Ty Y1y1 Y1Y1

N

1
= mmym(aa m)|2 (3.9)

Equation (3.9) results in the classical test of cyclo-stationarity (see equation (2.37).

However, for N, > 1, f{yz is expressed by:

Rmyl (o, m) Rylyg (a,m) Rywwa (a,m)
. R , R , R a,m
Ryz . Y2Y1 ( ) y2yQF ) Y2YN, ( ) (310)
_RyNuyl (o, m) Ryzvayz (o, m) RyNayNa (a,m)
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In order to examine the presence of PU, CCST aims at finding the eigenvalues of the

matrix R. The Test Statistic (TS) to be measured is evaluated as follows [66]

Na
Teesr = —Nlog (H(l - 5z’)> (3.11)
i=1
where {3;}, 1 < i < N, are the eigenvalues of R and 1 > B1 > B2 > ..Bn, > 0. The
eigenvalues are normalized (i.e.3; < 1) due to existence of the inverse of the covariance
matrices lf{;; and R;Zl in the expression of R.
Under Hy, where the received signals at the N, antennas are only stationary noise, the
matrix f{yz ~ 0 that result in 81 = Ba2,...,0n, = 0. Consequently Tocsr becomes
zero. In contrast, under Hy, Ryz is not a zero matrix due to the cyclic statistics of s(n)
leading Toost to have a non-zero value. Based on the above discussion, Toogr stands
for a distinguishing criterion to examine the channel availability. After calculating the
eigenvalues of R and evaluating Tocsr, the last one should be compared to a threshold
in order to make a decision on the presence of PU signal.
The analytic study that presented in [66] proves the independence between detection
threshold of CCST and the noise variance, this fact makes CCST non-vulnerable to NU
problem.
However, according to the discussion above, the application of the CCST is limited to
MAS to ensure the vector y(n). This issue makes CR less flexible when CCST is used
for a local Spectrum Sensing, where SU should make its decision on the channel status
individually. In our work, in order to keep CCST applicable even if CR of SAS is used,

we develop it under a situation where only one receiving antenna is used.

3.3 Proposed CCST for Single Antenna System (SAS)

In our Spectrum Sensing context, under Hy the received signal is a stationary noise that
does not exhibit any cyclostationarity; whereas under H;p, we should have only one PU
Cyclo-stationary signal. Our developed algorithm is based on the time cyclic-correlation
of the single received signal, instead of the spatial cyclic-correlation. In other terms, we
apply CCST to discover the cyclo-stationarity based on time diversity instead of spatial
diversity. Later on, MAS is used to exploit both spatial and time diversities. The received

signal in SAS under Hy and H; is presented as follows:

Hy : y1(n) = wi(n) (3.12)

Hy :yi1(n) = his(n) + wi(n)
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Let us define the vector V containing the lag values:

V= [ml,mg,...,mp] (313)

Where P stands for number of used lags, which are chosen off-line in such a way
ZnN:1 s(n —myp)s*(n — my)e 2T £ 0, ¥ my,,my € V.

A vector of shifted signals, ri(n, [m1;myg]), is defined as follows:

r1(n, [mi;my,]) = y1(n —ma), y1(n —ma), ... y1(n —myg,) ' (3.14)

Where 1 < ki < P. The CCST will be estimated based on ri(n,[mi;my,]) and

qy (1, [m1; my,], ) where
a1 (1, [ma; ma, ], @) = r1(n, [ma; my, ) exp (j2man), ¥ ki, ky € [1; P] (3.15)

with [80]:
min (k; ko) > 1 (3.16)

where [ is the number of signals to be detected. In the rest of this chapter, we assume
that k1 > ko > 1.

The new proposed contribution serves at detecting the common factors (signals) having
the common cyclic features between ry(n, [m1; my,]) and q; (n, [m1; myg,], @) using CCST.
When y;(n) not exhibit any cyclo-stationary features, then its shifted versions do not
have any common cyclic factors. In contrast, when y(n) is cyclo-stationary, CCST should

confirm the presence of the existing common factors by means of the matrix Rgas:

~ R TN A1 A
RSAS =R Rr1q1 ququqlm

riry

(3.17)

where erqlv quru Ry r, and qum are estimated as presented in (3.6). anl and

Rq,r, represents the matrices that show the cyclostationarity based on time diversity

since they evaluate the cyclostationarity between the received signal and its shifted ver-

sions.
Under Hy, the cyclic autocorrelation matrix, Rflql, of the shifted versions of the noise
is obtained as follows:
[ wa(a, [m1;ma]) wa(a, [mi;me]) ... wa(a, [m1; my,]) |
Rglql _ Ruw(a,ma;mi])  Ruyw(a,[ma;ma]) ... Ruw(a, ma;mya)) 3.18)
| R (v, [y, ma]) . Ruw(a [mggimal) o Ruw(or, [mag s miy]) |
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where Ry (a, [mi;m;]) is defined by:

N
1 4
Ryw(a, [mizm;]) = N E wi(n — mg)wi(n —mj)e I2mon (3.19)
n=1

Since wi(n) is purely stationary and does not exhibit any cyclic correlation for all
~ 0
a # 0, then R

r1q;

tween ry(n, [m1;mg,]) and qq(n, [m1; my,], ).

~ 0. Therefore, CCST test results in zero common factors be-

~

Under Hy, the cyclic autocorrelation matrix, R is presented as follows:

riq;’

~ 1 ~ ~ A

R, o, (@) = Res(a) + Rew(a) + Rys(a) + R, (a) (3.20)

where Rws(a) and st(a) are the cyclic autocorrelation matrices between the noise and

the PU signal, and they should be equal to zero, and Rss(a) is defined as follows:

Rys(a,[myizmi])  Res(a,[,[miima]) ... Res(or, [mi;ma,])
R(a) = P Res(a,[ma;mi])  Res(a,[masmal) ... Res(, [ma;maa))
_Rss(a7 [mkl,ml]) ... Rss(a, [mkl;mg}) ... Rss(a, [mkl; ka])_
(3.21)

Where R, (a, [m;; m;]) is the estimated cyclic autocorrelation of s(n) at two lags m; and
m; and it can be found similarly to equation (3.19). Rss(a) is a non-zero matrix thanks
to the cyclic autocorrelation of s(n) at the cyclic frequency a.

The channel status can be examined using (3.17) by estimating the number of the signals
having a cyclic frequency «. Since one PU signal can be existing in the channel, the
challenge becomes to differentiate between two cases: noise-only case or signal-plus-
noise case.

The test statistic, Tsag, that leads to determine the vacancy of the channel is defined as

follows [80]:
k1

Toas = —Nlog [J(1 - 8) (3.22)
=1

Where {§;}, i = 1,2,.., N, and 1 > B > B3 > ... > B} . According to [80], it is
enough to put only the [ greatest eigenvalues in equation (3.22), where [ is the number of

signals to be detected. In Spectrum Sensing context, if only one PU signal exists, then
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the channel is considered as occupied, so that there no need to capture the total number
of the PU signals. Therefore | = 1 is enough in equation (3.22). Subsequently, Tsas

becomes as follows:

Tsas = —Nlog(1 — B7) (3.23)

Tsag will be compared to a certain threshold, A, in order to examine an existing vacancy

of the bandwidth.
H,

Tsas = A (3.24)
Hy

The following algorithm summarizes the steps followed to calculate T4 and to make a

decision on the channel status.

Algorithm 1 Spectrum Sensing using CCST

1. Estimate the matrix Rgag using (3.17)

2. Calculate the greatest eigenvalue of Rgas

3. Evaluate the test statistic Tsag according to (3.23).

4. Make a decision on the channel opportunity by comparing Tsag to a threshold A

3.4 Proposed CCST on Multi-Antenna System (MAS)

In this section, we develop the detector CCST-S in order to be applied in the Multi-
Antenna System (MAS). Let us denote by X(n,m) and Y(n,p,«) the two following

vectors respectively:

X(n, [ml;m/ﬂ]) = [rl(nv [ml; mk1])7r2(n7 [ml; mkl])’ "'7rNa(nv [ml; ka)]T (325)

Y(Tl, [ml; mkz]v a) = [ql (n7 [ml; ka]? a)a q2(n7 [ml; mk2]7 a)? - AN, (n7 [ml; mkz]a a)]T
(3.26)

Where r;(n, [m1;mg,]), 1 < i < N,, is the vector containing the shifted versions of the
signal received at the ith antenna, and is defined according to (3.14), and q;(n, [m1; mg,], @) =
ri(n, [m1;mg,])e’? ™ 1 <i < N,.

In order to find the number of cyclostationary signals with a cyclic frequency « in the

two data sets X(n, [m1; mg,]) and Y (n, [m1;myg,], @), the CCST is applied:

~ ~—1 .~ ~—1 A
Ryas = RxxRxyRyyRyx (3.27)
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The test statistic evaluated to examine the channel is presented as follows:
Tyas = —Nlog(1 - B1") (3.28)

Where 7" is the greatest eigenvalue of Risas.
The advantage of this proposed detector with respect to the original one proposed in [66]
is exploitation of both spatial and temporal diversities, while the detector of [66] is only

based on the spatial diversity as the CCST is done over X(n, [0;0]) and Y (n, [m1; m1], a).

3.5 Performance Evaluation

In this section, we examine the performance of our proposed detectors. The performance
of CCST-S is compared to the GLRT cyclostationary detector of [44]. To show the
robustness of CCST-S to the Noise Uncertainty (NU), simulations for several NU values
are presented. The performance of CCST-M is compared with the CCST detector of [66]
that we refer to it by CCST-D. Throughout the simulations, the PU signal is assumed
to be down-converted 16-QAM modulated signal. The symbol duration is 1us and the
sampling frequency, Fy, is 8 MHz (i.e. Fs = 8B where B is the bandwidth of the PU
signal). A square-root raised cosine shape is used with a roll-off factor of 0.5. the channel
between the PU base station and the ¢th SU receiver is modeled as flat-fading Rayleigh.
The lag vector used in this simulation is Vi, = [0,Ts, 2T, 3Ts, 4T, 5T, 6T, 715 is
assigned, where Ty = F%

The presented curves in the following simulations are obtained using intensive Monte-

Carlo simulations with few thousands of iterations.

3.5.1 Single-Antenna System

In figure (3.1), the number of samples is 2000 and the lag vector length of ri(n, [mi;my, )
is k1 = 8, whereas various values are assigned for the lag vector length, ks, of q; (n, [m1; mg,], o).
It is worth mentioning that GLRT algorithm exploits all the shifted versions of the re-
ceived signal, i.e. its lag vector is the same as V. This figure shows the ROC curve
which is the variation of the probability of detection (py) with respect to the probability
of false alarm (pys,). Our proposed algorithm outperforms the GLRT algorithm of [44],

and its performance is enhanced by increasing the number of lags ko.

In order to illustrate the performance of CCST-S with respect to the NU, figure (3.2)
shows the ROC curves of the proposed algorithm and the Energy Detector (ED). As
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SNR=- -8 dB, N=2000 samples
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FI1GURE 3.1: ROC curves of GLRT and CCST-S for various values of the length of the
lag vector

shown in this figure, CCST-M is not affected by the NU for all the considered values,
whereas ED exhibits an enormous performance loss with the increasing of NU. Note
that for NU=0 dB ED outperforms CCST-T, this case refers to the ideal noise variance
estimation. With NU=0.5 dB, CCST-M outperforms ED for low py, values, which
are more interesting in real application At NU=1.5, the performance of ED is greatly

deteriorated while CCST-M performance is not affected.

To show the time diversity effect on the performance of CCST-S, we examine this algo-
rithm performance for various values of Vg, ’s length of the two vectors ri(n, [m1; mg,])
and q; (n, [m1; mg,], o) which are assumed to have the same length (i.e. k1 = k2 = p).
Our simulations are done under various SNR and a constant py, = 0.1. Figure (3.3)
shows the interdependence between CCST-S and the time diversity, where p; increases

progressively when the length of the lag vector increases.

3.5.2 MAS

In this section we evaluate CCST-M for different types of noise: the spatially uncorrelated
noise, the spatially correlated noise and the spatially colored but uncorrelated noise.
Through the following simulations, X(n, [m1;my,]) and Y (n, [m1; mg,], @) are assumed

to have the same lag vector which is the same as Vgjp,.
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FicUure 3.2: ROC curves of CCST-S for various values NU with a comparison with
Energy Detector

pfa=0.1, N=1000 samples
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FIGURE 3.3: Time Diversity effect on the performance of CCST-S for ps, = 0.1
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pfa=0.1; N=2000 samples, SNR=-10 dB

10 1 1 1 1
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Number of SU receiving antennas: M

FIGURE 3.4: The probability of missed detection, p,,q = 1 — pg, for various number of
receiving antennas (M) under ps, = 0.1

3.5.2.1 Spatially Uncorrelated Noise

Figure (3.4) shows the probability of missed detection (p,,q) for different number of
receiving antennas, N,. The number of received samples at each antenna is considered
to be N = 1000 samples, the SNR is fixed to —10 dB and (pf, = 0.1). For different
different values of N, our algorithm achieves a lower p,,4 than the one of CCST-D. When
N, increases the gap between CCST-M and CCST-D becomes larger. For example, at
N, = b antennas, pp,q =~ 0.2 for CCST-D and p,,q ~ 0.06 for CCST-M. When N, = 7,
Pma becomes 0.1 approximatly for CCST-D while CCST-M reaches p,,q = 0.004.

3.5.2.2 Spatially correlated Noise

Figure (3.5) shows the simulation results of CCST-M under spatially correlated noise.

The correlation among the noise components at the SU receiving antennas is defined as

follows:
. Ta i= o
Elw;(n)w;(n)] = o 11 <id,j < M; (3.29)
o2yl i

Where + is the correlation factor and 0 <y < 1.



Cyclic Correlation Significance Test 52

pfa=0.05; M=5; N=1000 samples
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FIGURE 3.5: The probability of missed detection, p,,q = 1 — pg, for various SNR under
Dra = 0.05

In this simulation the number of SU receiving antennas is N, = 5, the number of received
samples at each antenna is N = 1000. According to figure (3.5), our algorithm consid-
erably outperforms CCST-D by more than 2 dB. For example, our algorithm reaches
Pmd = 0.5 at SNR = —14dB, whereas CCST-D reaches this probability at SNR = —12dB.

3.5.2.3 Spatially Uncorrelated but colored Noise

In this simulation, we assume that the noise components on the N, receiving antennas are
spatially uncorrelated but colored. The average SNR is fixed to —12 dB, N, = 6 antennas
and N = 2000 samples. As shown in figure (3.6), CCST-M has a lower Complementary
ROC curve than CCST-D. CCST-M achieve p,,q = 0.1 for a py, = 0.03, whereas CCST-
D achieve the same p,,q for ps, = 0.5.

3.6 conclusion

In this chapter, we presented a new algorithm based on the Cyclic Correlation Sig-
nificance Test (CCST). The main objective of this work was to apply CCST for Single-
Antenna System (SAS), instead of Multi-Antenna System (MAS) as previously proposed

in the literature. To test the existence of the cyclostationarity, the time diversity of the
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SNR=-12 dB, M=6; N=2000 samples

107° 107 10 10°

FI1GURE 3.6: The probability of missed detection, p,,q = 1 — pg, for various SNR under
Pfa = 0.05

received signal on a receiving antenna is manipulated. For Multi-Antenna System, both
spatial and time diversities are exploited to detect the PU signal, this fact helped the
Cognitive Radio to enhance the detection performance, which becomes more efficient
than the case when only spatial or time diversity is manipulated. On the other hand,
our simulations corroborate the effectiveness of our proposed algorithms which outper-

form other existing ones for various noise models under both SAS and MAS.
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Cumulative Power Spectral Density
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GLRT Generalized Likelihood Ratio Test
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SU Secondary User

TS Test Statistic

In this chapter, new Spectrum Sensing algorithms based on the Cumulative Power Spec-
tral Density (CPSD) is presented. The main idea is to diagnose the curved shape of the
cumulative sum of the Power Spectral Density (PSD) of the received signal.

In fact, it is known that the PSD of a white noise is flat. However, PSD loses this property
with an oversampled baseband PU signal (i.e. number of samples per symbol: Ng > 2
). If the PU is absent, the cumulative sum of the received signal PSD should be close
to a straight line. Whereas a curved shape is obtained when PU exists. Consequently,
diagnosing the linearity of the Cumulative PSD (CPSD) leads to examine the channel
status.

We propose here hard and soft cooperative schemes, where the spectrum is divided into
two parts: At first, the negative frequency points are considered while the second part
deals with the positive frequency points. Hence, two test statistics based on the Cumula-
tive PSD of each part are calculated and combined according to the considered scheme.
The False Alarm and Detection probabilities are evaluated analytically under Gaus-
sian and Rayleigh fading channels. Our detectors are compared to the Energy Detector
(ED) [55], Cyclostationary Detector (CSD) [47] and Autocorrellation Detector (ACD)
[47]. Unlike ACD and CSD (especially Generalized Likelihood Ratio Test (GLRT)-based
CSD based on the cyclostationarity that is being introduced by the oversampling [44]),
our detectors present a better performance than ED, even with N, = 2 samples per
symbol (sps). We should notice that with Ny = 2 sps, ACD and CSD detectors provide
a poor performance relatively to ED. Furthermore, our detectors are less sensitive than
ED to the Noise Uncertainty. In particular, we demonstrate that our detectors can be
independent from the noise variance. This case represents an important advantage in

real applications.

This chapter is organized as follows. In section (4.1), the system model and the spectrum
sensing hypothesis are presented. In section (4.2), PSD and its properties are given. Our
proposed detectors based on the Cumulative sum of the PSD are discussed in section
(4.3). Section (4.4) provides an analytic study on the statistical distributions of the
test statistics as well as the calculus of the False Alarm and Detection probabilities. In
section (4.5), the probability of detection over Rayleigh flat fading channel is provided.
The numerical results of our detectors are presented in section (4.6). The effects of the

noise uncertainty problem on our detectors are shown in section (4.7). To overcome the
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Noise Uncertainty problem, this section presents modified versions of our detectors which
are independent of the noise variance. At the end, a conclusion and perspective section

of our work is provided!?.

4.1 System Model and Background

The base-band Primary User (PU) signal, s(n) is assumed to be narrowband signal with
a bandwidth B and a real even autocorrelation function. The considered model is a
common as the one used in [45] and [46], where s(n), is assumed to be complex-valued
zero mean unknown deterministic signal. s,(n) and s4(n) are assumed to be independent

with same autocorrelation function. In mathematical model, s(n) is given by:

s(n) = Zbkg(n —k+ N,) = sp(n) + jsq(n) (4.1)
k

by are the transmitted symbols, g(n) is the shaping window, N satisfies the Nyquist
criterion ( Ny = % > 2 Samples per Symbol (sps), where Fj is the sampling frequency),

and sp(n) and s,(n) are respectively the real and imaginary parts of s(n).

As presented in Chapter 3, the presence/absence of PU can be presented as a binary

hypothesis: Under Hy, the PU is absent; Whereas under H;, PU exists.

(4.2)

Where h is the complex channel gain. w(n) is Gaussian with a mean 0 and a variance
02: N(0,02). Further, w(n) = wy(n) + jwy(n), is an i.i.d complex circular symmetric
random variable, i.e. E[w?(n)] = 0 and the real part, w,(n), and the imaginary part,

wq(n), of w(n) are independent Gaussian processes with equal variance.
o2
BluE(n)] = Elu(n)] = % (4.

Where o2 = E[Jw(n)|?] and E[.] stands for the mathematical expectation. Without any
loss of generality, we can assume that s(n) is a unit power signal. In this case, the Signal
to Noise Ratio (SNR), 7, is defined as follows:

_ |2

)
Ow

(4.4)

'Part of this chapter was published in [81]
>The presented work of this chapter is under review [82]
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4.2 Power Spectral density

The power spectral density (PSD) is the distribution of the signal on the frequency axis.
The PSD P, (k), of a signal z(n) is the Fourier Transform of its autocorrelation function

Tz (m): [83]:
rze(m) = E[z(n)z*(n — m)] (4.5)

PSD can be estimated using the Discrete Fourier Transform (DFT) of the discrete time

autocorrelation function:

N
2
. o, m
P.(k) = N1—1>I—Ii-1c>o EN 1 T3z () €Xp (7]271’]{3N) (4.6)

2

For the white noise w(n), the autocorrelation function of w(n) becomes:

Fauw(m) = Elw(n)w®(n —m)] = 626(m) (4.7)

w

Where 6(m) is the Dirac Delta function. Based on equation (4.7), the PSD of the white
noise, P, (k), becomes a real and constant (= 02 ). Therefore the cumulative sum of this
PSD becomes a straight line, with a slope ¢2. In contrast, the over-sampling aspect of
s(n) produces correlated samples and a non constant PSD P(k).

According to model (4.2), PSD of the received signal, (y(n)), becomes not constant when
the PU signals exists. This fact leads us to distinguish the two channel status presented

in equation (4.2).

4.2.1 Estimation of the Power Spectral Density

The PSD of a random signal x(n) can be estimated as follows [83]:
Pu(h) = X (R)P (15)
xT - N .

Where X (k) is the Discrete Fourier Transform (DFT) of the signal z(n) with N samples:

X(k) = i z(n) exp (—j2wk%> (4.9)

Therefore, the estimated PSD of a random signal is related to the modulus of its DFT.
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Lemma 1: The DFT, X (k), of a zero mean circular symmetric process z(n) = xp(n) +

jxq(n), becomes a zero mean circular symmetric process.

Proof. By definition, X (k) is a circular symmetric if and only if (iff) E[X?(k)] = 0 [84].
As X (k) is the DFT of z(n) and according to equation (4.9), we can derive the following

equation:

E[X2(k)] = E XN: x(n) exp (—j27rk:%)x(m) exp <—j2wk%)

__ N
mn=—%45—

- m:n:f:zgl E[z*(n)] exp (— j27rl<:?\7;>

=0; using the circularity property of z(n)

I g: E [z(n)xz(m)] exp (‘jzﬂkn ;r\fm>

m#n

= 0 as z(n) is i.i.d. and zero mean

=0 (4.10)

Based on Lemma 1, the DET W (k), of w(n), becomes a circular symmetric process.

4.3 Cumulative Power Spectral Density-based Detector

Let us define the Cumulative Power Spectral Density (CPSD), CP,(k), of the received

signal y(n), over a frequency interval as follows,

k
CPy(k) =Y _Py(u), ,Vk e v;l], (4.11)

u=v

Where P,(u) is the estimated PSD of y(n) using Equation (4.8). Let us define the
Normalized CPSD, ¥(k), of y(n) by:

P, (k)

W=

(4.12)
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The term (I — v + 1)02, corresponds to the mean value of C P,(1), which is the last term
of the CPSD of w(n).

1 l 1 l N
EW%W=NZMWWW:NZ}:EMWMMM%ﬂ%mﬂm)]

L N ) » i
+ N;} %E w(n)w (m)] exp (—]QW(n—m)N>

= 0 since w(n) and w(m) are independent and E[w(n)]=0

= vt NG = (10 4+ 1) (4.13)

Under Hy and thanks to the flat PSD of w(n), the shape of ¥(k) becomes close to a
straight line D(v,l; k).

k—v+1

D(v.lik) = 57— =7

(4.14)
Due to the presence of an oversampled signal s(n) under Hy, the PSD of y(n) becomes
a non constant, and ¥ (k) has higher values than the one obtained under Hy because of
the additional power of s(n).

Figure (4.1) shows W(k) under Hy and Hj, for various values of N, and different SNR.
The signal modulation is 16-QAM and the number of used samples is N = 10*. As
shown in figure (4.1), the gap between the Normalized CPSD shape under H; and that
under Hj increases with the SNR. In addition, the non-linearity of the CPSD shapes
grows with Ng. Therefore, we define a test statistic 7" as the difference between W(k)

and the reference straight line D(v,[; k). Accordingly, we introduce two detectors:

1. Tp: This detector is based on the CPSD, ¥,(k), of Py(k‘) for positive frequency
points (i.e. 1 <k < ).

2
Tw u=1
2 2
- YY) (115)
W oy=1

T, detector aims at finding the difference between W,(k) and the corresponding

reference shape D(1, %; k):
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N
el N
T, = <\pr(k:) - D (1, 2k:>>
k=1
3
2k
T, = - =
=3 (w0 - %)
k=1
7
N +2
=Y U, (k) - T+ (4.16)
k=1

2. T,: This detector is based on the CPSD of all frequencies of y(n) (i.e. =5 +1 <

k< %), similarly to T

k=—N 41
%
N+1
3 - e
k=—4+1
Where ¥, (k) can be found as follows:
1 k
— 2
Va(k) = N2 Z; Y (u)| (4.18)
u=—45+1

4.3.1 Proposed cooperative detectors

In order to enhance the detection performance, two cooperative detectors are proposed.
The cooperation is done between negative frequencies PSD (P, (k) s.t. § +1 < k < 0)
part and the positive frequency part (Py(k) s.t. 1 < k < %) The first proposed de-
tector, Ty, aims to exploit all the frequency points of the signal y(n), by applying two
test statistics: 1) the first one tests the shape of the CPSD for positive frequency points
(which is T}). 2) T, tests the CPSD shape of the CPSD of the symmetric of the nega-
tive frequencies PSD part. The detector, T,,, makes a decision by ORing the decisions
of T}, and T,.

The second proposed cooperative detector, Ty, performs the average, Py, between the

positive frequencies PSD and the symmetric of the negative frequency PSD. CPSD is
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then performed on P,,. The averaging process smooth the PSD, since Ps(k) is symmetric,

and the components of Pw(k‘) are independent as shown in section (4.4).

4.3.1.1 OR Detector

Let T, be the detector over negative frequencies. Similarly to T}, T;, makes a decision

by comparing its corresponding normalized CPSD shape to the reference straight line

D(1, %; k).
N
2 N
=3 (3 0 (1.2:0))
k=1
i
N +2
S w2 (19
k=1
Where ¥,,(u) in this case is given by:
L
U, (k) > Y(—u+1)f (4.20)

- N252
W u=1

Due to the fact that Ps(k) is symmetric and deterministic since s(n) is deterministic and
W (k) is i.i.d. (as it is shown in section 4.4.1.1), T}, and T;, become independent and have
same mean and variance.

Once T}, and T;, make their own decisions, T, acting as a hard cooperative detector of

the two decisions using an OR-rule.

T, = OR(dr,, dr,) (4.21)

Where dr, and dr, are the detection results of T}, and T}, respectively.

That cooperation between the positive and negative frequencies parts of the PSD leads
to enhance the detection performance due to the fact that the noise is 7.7.d. In this case,
T, exploits the diversity of the parts of PSD using the decision of the two independent
test statistics 1}, and T,.

4.3.1.2 Averaging Detector

The property of symmetry of Py (k) is exploited in this section by averaging P, (k) and
Py(—k+1),1 < k < &, to obtain P2(k).
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~

Py(k)+ Py(—k+1) Lep <

5 ; < (4.22)

Py (k) =

N
2

T4y can be considered as a soft combining detectors of T, and 7T}, to exploit the diversity

of the two parts of PSD based on the i.i.d. property of the noise.

N +2
=3 Wk - = (4.23)
k=1
Where
9 k
\I"av — Pav 4.24
() = gz 2 Punlt (424)

Averaging
(Eq. 4.22)
Find T, asin Find T, as in

Eq. 4.19 ; ; Eq. 4.16
Find Ty, asin

Eq. 4.23
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FIGURE 4.2: The overall diagram of the CPSD-based detectors

Figure 4.2 shows the diagram of the proposed detectors. The relation between T}, and T;,

from one hand, and T, and T, on the other hand is clear. Concerning Ty, the relation



Cumulative Power Spectral Density 64

of cooperation is at the decision level, whereas this relation is at the test statistic level
regarding Ty,. Hereinafter, we present an analytic study for the proposed detectors,
where the False Alarm, py,, and Detection, pg, probabilities are derived under both

Gaussian and Rayleigh channels.

4.4 Statistical Analysis

Deriving the analytic py, and pq is essential for any detector in order to meet the detec-
tion requirement of the Spectrum Sensing. For a target py,, a threshold should be set
by the help of the expression of py, by taking into account other parameters in some cir-
cumstances such as the number of the received samples and the noise variance. However,
the distributions of test statistics are essential in order to find pys, and p, analytically.

Regarding the proposed detectors in this chapter, 7T}, and 7|, share the same statistical
distribution since W (k) is i.i.d. and S(k) is deterministic as s(n) is assumed to be de-
terministic. In the following, we develop the distribution of T, under Hy and H; over a
Gaussian channel, where the channel effect h is assumed to be constant. Similarly, the
distribution of T, can be found. T, makes a decision by applying the logical OR on the

decisions of T, and T,.

4.4.1 False Alarm and Detection Probabilities of 7,

N

The distribution of T, depends on ) > | ¥, (k) as presented in equation (4.16). A sim-
N

plification of the term )2 , ¥, (k) can be obtained as follows:

N N
2 9 2 k )
\ij<k) - N2g2 |Y(u)‘
k=1 W p=1u=1
2
= Yoozl P (k=1)
2
+ aoz (VP + 1Y Q)P (k=2)

= o (2 —k+ 1) Y (k)|? (4.25)
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Equation (4.25) shows the main difference between the proposed detection algorithm
and the Energy Detector (ED), where <1;/ —k+1 | acts as a weighting function on the

samples in frequency domain.

4.4.1.1 False Alarm Probability of T,

Under Hy, the test statistic 7}, depends only on the noise w(n). Using equation (4.25),

T, can be written as follows:

2 (N N
T, 1 _NQU%U<2—1§+1) |W(k)2—D<1,2;k>]
W, (k) — D (1, g; k)] (4.26)

Being the Discrete Fourier transform of a white noise w(n), W (k) asymptotically follows

Il
M‘Z

e
vz |

k=1 1L

a normal distribution since it is the sum of independent terms. It is known that two
Gaussian variables are independent iff they are uncorrelated [58]. Let us consider the

autocorrelation function of W(k), ryw (m) for m # 0.

TWw (m) =F

W (k)yW* (k — m)]

N
2

:ZE

qvn:7%+1

Since w(n) is zero mean i.i.d., ryw(m) becomes:
N
2
rw(m) = 3 Bluw(n) PN
5
Since m € 7Z*, we obtain:
N
2
rww (m) = o2 Z exp (—j2mnm/N) =0 (4.27)
N
-2

Then, E[W (k)W*(k—m)] = E[W (k)|E[W*(k—m)] = 0. Therefore W (k) becomes i.i.d.
Being the sum of independent terms and according to the Central Limit Theorem (CLT),
the distribution of T}, tends towards N (o, Vp) under Hy. In this case, the probability of
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False Alarm pz} “ of T, can be found as follows:

vho= () (4.28)

Where Q(.) is the Q-function ®, and X is the threshold of comparison. As E [|W (k)|?]

= No2 and based on equation (4.26), pg can be evaluated as follows:

Ho = E[Tp}
z
2 N N 42
= N252 <2 —k+ 1) E [‘W(k)ﬂ T
W =1
-0 (4.29)

In this case, the variance, Vp, of T}, becomes (see appendix (A)):

Vo = E[T;] — pup =
(N +2)(N +1)

= Bl = 6N

2 (4.30)

4.4.1.2 Probability of Detection of T,

Under Hy, Y (k) = hS(k)+W (k), where hS(k) = DFT{hs(n)} and Y (k) = DFT{y(n)},

then equation (4.25) becomes as follows:

2

vl

k) = <12v . 1)

2
g,
W k=1

hS (k) + W (k) (4.31)

Since S(k) is deterministic and the terms of W (k) are independent, the distribution of
T, under H; tends also towards N (1, Vi). In this case, the probability of detection ps,

of T}, can be found as follows:

=0 </\\;‘7/1“> (4.32)

p1 and Vi should be evaluated in order to find pf. Under Hy, |Y (k)|* becomes:

Y (K)? = Y (k)Y (k)
= |hS(K)|? + |W (k)|* + 2Re{hS(k)W*(k)} (4.33)

Q) = A= [ e d [59)
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where Re{X} is the real part of X. The mean value of 7}, under H; can be found by

equation (4.16) as follows:

_ N 2 N

=po0=0, according to equation (4.29)

2 N )
——F — —k+1]|nS(k
+ ooz H(Q +)\ (0

S(k) is deterministic
N

+ %E > 2Re{hS(k)W*(k)}
k=1

w

=0, as S(k) is deterministic and W (k) is zero mean

N

2§ <N . 1> S (k)P

- N2 2
k=1

= by (4.34)

N
Where b = % 213:1(% —k+1)|S(k)|?, and ~ is the SNR as defined by equation (4.4).
Under Hi, the variance Vj is given by the following equation (see Appendix B):

S

8y N 2 )
= _ —_ 1
Vi V0+N3k_1<2 k+ ) 1S (k)|

=W+cey (4.35)

N
Where ¢ = % S —k+ 1Sk

T, is based on a similar idea to T},, but it covers the N frequency points instead of
just positive ones (% points). Since W(k) is i.i.d. and S(k) is deterministic, then by
following similar steps of calculus for p? ., and pz, the probability of False Alarm pjﬁa and
the Probability of detection p§ of the detector T, can be found as follows:

A — 8
p?cazQ(\/%f) (4.36)

p3=Q<A_“%> (4.37)

/‘/1@
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N
Where pj = 0; Vo' = - + + 6N, ui = bay, where by = 5 S0, (N — k + 1)|S(k)[2,

and Vi = V& + ¢q7, Where Ca = 725 Sy (N — k+ 1)2[S(k)[2.

4.4.2 Probabilities of T,

1., applies the OR-rule between the decisions of T, and 7},, then 7T, can be considered
as a hard cooperative detector of these two detectors. Since T, and T;, are independent
and have the same statistics as defined previously, the probability of false alarm P> and

the probability of detection pg", of T, can be found as follows [20]:

2
i =1-(1-1,) (4.38)

—1-(1-p)° (4.39)

4.4.3 Probabilities of T,

T, can be developed following similar steps to equation (4.26).

2 . 2
T, = —2 (N—k:+1> V(&) +!52/( E+ 1)l NI2 (4.40)

Under Hy, Y (k) = W(k), then T,, becomes the sum of independent terms. Based on
CLT, T,y asymptotically follows N (8", Vi) under H.

Under Hy, Y (k) = hS(k) + W(k) and S(k) is deterministic, so Ty, is still following
under H; a normal distribution: N (u$?, V). The probability of false alarm, Pfas and

detection, p3", of Ty, are expressed as follows:

\ — pyav
pi=Q ( WZ‘J ) (4.41)

av __ A— :uiw
pg =@ ( N > (4.42)

Since W (k) is i.i.d. and Pg(k) is even, pi®, Vi, ,ui”’, Vi* can be found by following

similar steps to o, Vo, p1 and Vi: pg® = po; Vo' = 35 p$¥ = pp and V¥ = %
The theoretical and the simulated ROC curves of proposed detectors are with good
agreement as shown in figure (4.3). Simulations were done under following conditions:

16-QAM modulation, v = —12 dB, N = 1000 samples and Ny = 4 sps. As shown in
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SNR -12 dB, N=1000 samples
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FIGURE 4.3: Analytic results Vs Simulation results under Gaussian channel

figure (4.3), T4y is the most efficient detector. For the simulations of section 4.6 under

Gaussian channel, only T}, and T}, are compared to other well known detectors.

4.5 Probability of detection over Rayleigh Fading Channel

In this section, we derive the detection probability over the Rayleigh flat fading channel.
The effect of the Rayleigh channel appears as fluctuation in the SNR, since the channel
becomes a time variant. The false alarm probability remains the same since it is inde-
pendent of the channel gain h. The distribution of the SNR, ~, in a Rayleigh channel is
given by [58]:

fy(v) = iyexp ( - ;) (4.43)

Where # is the average SNR.
Over a Rayleigh channel, the probability of detection, pg., can be found as the average

of the probability of detection, pgy, under Gaussian channel with respect to f, (7).

+oo
Pdr = /0 Pagfr(7)dy (4.44)
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Concerning the proposed detectors, T),, T, and T, detection probabilities over Rayleigh
fading channel can be derived similarly, since the three detectors have a similar proba-
bility of detection: p = Q(ﬁ), where 0, V, and [ are constants.

Hereinafter, we only derive pgr, the detection probability of T}, over a Rayleigh channel.
Once er is derived, p9,. and p§’, the probability of detection of Tj, and Ty, can be easily
expressed.

Using equations (4.32), (4.43) and (4.44), p¥) can be expressed as follows:

1 +o0 )\_Ml v
po__ - - 7 .
p“‘*vA Q( ¢w>ep< 7>&y (4.45)

The above integral doesn’t have an analytic solution. Therefore, the first order Taylor

A—p1 ) _ A—by
A% VVo+ey

series, g1 (), is used as an approximation of g(v) = @ ( ,around vo = A/b

as follows (see Appendix (C)):

91(7) = 9(v0) + 9 (70) (v — 70)
=4 (70)(v — ) (4.46)

The approximation of p% , pf, is given by :

Py = i/om Q(G(’y - 'm)) exp <—z>d’y (4.47)

With 6 = ¢'(v) = —\/Vo%c/\/b. According to [85], we can find:

1
[ ex0 (@@)Qpays =

exp (qz)Q(pz) — exp (;;) Q (px - Z) ] (4.48)

Using equation (4.48), and the fact that Q(—z) = 1 — Q(z), the integral of equation
(4.47) becomes:

1

ﬁgr = Q(_HVO) +exp (20;:)/2 o Z;)Q <070 o 9F>/> (449)

For the approximation pg ., of pj., it can be found by replacing the number of samples
N/2 used in T}, by N used in Tg. Similarly to ﬁzr,the approximation pg’ of p%” can be

derived as follows:

~QU 1 Yo 1
Par = Q (*eav’YO) + €xp <293w:)/2 - '_)’)Q (0111170 - 'Y> (450)
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FIGURE 4.4: Simulations result Vs. Analysis result over Rayleigh fading channel,
Ng = 3 sps

Where 6, = ———2

\/ VOLI’U"F%

70 is not modified in the expression of pJ’, since T}, and T}, have the same mean under
H,.

The detection probability of T,,. under Gaussian channel is a non-linear combination of
the probability of detection of T}, and T},. Over a Rayleigh channel, the fading coefficient,

h, is the same for T, and T;,, p9. of T, becomes:

7 7
2 [ A=b
2 (2 Ve (-2
¥ Jo Vo +cy ¥
1 /°° o A—=by ~y
- = Q ( exp | — = |dy (4.51)
7 Jo VVo + ey ¥
As there is no analytic solution of equation (4.51), we solve it in a numerical way.
In figure (4.4), analysis results are very closed to simulation results. Since Ty, and T,,

have the best performance, they are compared to ED, ACD and CSD under Rayleigh

channel.
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4.6 Performance Evaluation

In this section, we compare the performance of our detectors to that of the Energy
Detector (ED) [55], the Cyclostationary Detector (CSD) [44] and the Autocorrelation
Detector (ACD) [47], under Gaussian and Rayleigh channels. The comparison will be
done based on three criteria: the ROC curves, the required number of samples to reach
(pfa = 0.1;p4 = 0.9) and the computational complexity. Throughout the upcoming
simulations, A 16-QAM baseband modulated PU signal is considered.

4.6.1 Performance analysis over Gaussian Channel

Figure (4.5) presents the ROC curves under a Gaussian channel of various numbers of
samples per symbol N,. Simulations are done using N = 1500 samples and v = —12 dB.
According to that figure, the performance increases with Ng. For the limiting case, i.e.
when N; = 2 sps, ACD and CSD show a poor performance relatively to Ty, T, and
ED, while T,, outperforms all other detectors. However, T,, and T, outperform ED
and CSD for different values of Ny. For Ng; = 8 sps, ACD outperforms slightly T, and

it is closed to T,

Figure (4.6) shows the variation of the probability of detection with respect to SNR
for a constant pr, = 0.1. The number of samples is fixed N = 1000 samples and
various values are assigned for N;. T,, and T, reach higher probabilities of detection
than ED, CSD and ACD for similar SNR and different values of N; for Ny = 2 and
Ng = 4 sps. For Ny = 8 sps, ACD outperforms slightly T, for the SNR < —12 dB. In
addition, increasing N, leads to enhancing the performance of T, Ty, CSD and ACD.
For examples, Ty, reaches py; = 0.9 at SNR ~ —7 dB for Ny, = 2 sps, while the same
probability of detection is reached for SNR ~ —9 dB and SNR ~ —10 dB at Ns; = 4 sps
and Ng = 8 sps respectively.

4.6.2 Performance analysis over Rayleigh Channel

Figure (4.7) shows the ROC curves under Raleigh Fading channel for Ny = 4 and 8 sps,
with N = 1000 samples and an average SNR of —5 dB.

Over Rayleigh fading channel, T,, and T, are still outperforming ED and CSD. The
same fading suffered by the negative and the positive frequency parts of PSD affects
the performance of our detectors. As shown in figure (4.7), the gap of performance

among our detectors, ED and CSD becomes smaller comparing to a Gaussian channel.
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FiGUure 4.5: ROC curves of our proposed detectors comparing to ED and CSD for
various Ny, SNR of —12dB and N = 1500 samples.
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FIGURE 4.6: Variation of the probability of detection in terms of SNR for N = 1000
samples, a constant ps, = 0.1 and various values of V.
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FI1GURE 4.7: ROC curves over Rayleigh fading channel for N, = 4 and 8 sps for N=1000
samples and average SNR = —5 dB.

Besides that, our proposed detectors outperform ACD for Ny = 4 sps, while ACD has

approximately the same performance as Ty, for Ny = 8 sps.

4.6.3 Complexity Analysis

According to equation (4.25), T, needs & operations to obtain |V (k)|?, and & multipli-

cation operations to evaluate the product (% —k+1)|Y (k)[2. Moreover, T, performs N

addition operations: % operations to calculate (% —k+1), % — 1 operations to compute
the overall sum and, at the end, one addition operation is required to subtract %.
Furthermore, the evaluation of Y (k) needs Nlogs(N) operations using the Fast Fourier

Transform (FFT) algorithm. The overall number of operations needed by Tj, is C(7T}):

C(T,) = O(N(2 + loga(N)) (4.52)
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To obtain the decision of T,,., we have to previously find T}, and 7},. Since those two test
statistics have the same complexity, therefore, the complexity of T, becomes the double
of that of T}, except for the calculus of the FFT which should be evaluated once. Then
the complexity of Ty, C(Ty,), becomes:

C(T,r) = O(N(4+loga(N)) (4.53)
The complexity of T, is similar to T,

C(Taw) = O(N(3 + log2(N))) (4.54)

According to equations (4.53) and (4.54), the complexity of Ty, and T, are independent
of the number of samples per symbol Ny, contrary to CSD and ACD where their com-
plexities depend on N, (as shown in equations (2.52) and (2.53)). As shown previously,
increasing the oversampling rate leads to obtain a robust performance for Ty, T,,, CSD

and ACD, while the performance of ED is not affected by the oversampling rate.

Figure (4.8) shows the number of samples and the complexity of the various detectors
in terms SNR for a target (pfq;pa) = (0.1;0.9) under a Gaussian channel. As shown in
figure (4.8(a)), Tor and Tg, need a number of samples less than that of ED and CSD,
in order to reach the target probabilities. In contrast, for Ny = 8 sps, ACD needs less
observed samples than 7, when the SNR < —12 dB. However, for all the examined
detector (except ED), the required number of samples decreases with an increasing Nj.
Figure (4.8(b)) shows the number of performed operations corresponding to the number
of required samples given in figure (4.8(a)). The complexity of T,, and Ty, decreases
inversely to Ny due to the fact that the number of required samples decreases with an
increasing Ng. Contrariwise, the complexities of CSD and ACD grow with N even if
the total number of samples decreases, this is because the complexities of CSD and ACD
depend on Ng. On the other side, our proposed detectors are slightly more complicated
than ED, and they have similar complexity to ACD. Consequently, our proposed detec-
tors need a shorter observation window, while they are of moderate complexity relative
to ED, CSD and ACD.
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FIGURE 4.8: (a): The number of samples needed by the detectors in order to reach
(Pfa;pa) = (0.1;0.9) for various SNR and (b): the number of required operations
performed by each detectors corresponding to the number of samples given in (a)
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4.7 Robustness of our proposed detectors under Noise Un-

certainty

This section deals with the Noise Uncertainty (NU) problem related to the estimation
error of the noise variance. In fact, due to many factors (such as thermal noise, ambi-
ent interference, receiver non-linearity, etc.), the noise variance may be not estimated
accurately. NU may prevent the detector from reaching a target (pfq,pq) even with a
large observation time. According to equation (4.12), the noise variance should be pre-
estimated in order to perform the normalization. That means our proposed detectors
are sensitive to the estimation of the noise variance. In this section, the impact of the

NU on the robustness of our proposed detectors is evaluated.

2

The estimated noise variance &7 can be bounded as follows:

w
2 Lo
G € | OwiToy (4.55)
02 is the nominal value of the noise variance and r > 1 stands for the NU factor. The

distribution of 62, f;2 (02), is assumed to be uniform in a logarithmic scale.
w

1
) 5 STPSSSs+p
fs(8) =4 #P (4.56)

0, elsewhere

Where s = 10log;((02), § = 10log;((62) and p = 101og;(r).

To show the effect of the noise uncertainty on the proposed detectors, we evaluate
numerically the performance loss Apg = py(0) — pa(p) where py(0) stands for the case
where there is no NU, and pg4(p) stands for probability of detection for the case where
NU is equal to p dB. Figure (4.9) presents Apy of our detectors and ED for ps, = 0.1,
N=1000 samples, SNR of -10 dB and N; = 3 sps. As shown in this figure, our detectors
are less sensitive to the noise uncertainty than the energy detector for ps, = 0.1. Ty, is
most affected detector by NU while T}, is the least one. However, T;, and Tg, have a

similar performance loss.

Spectrum Sensing based on Self Normalized CPSD

As discussed previously, the normalization by the noise variance (equation (4.12)) leads to
a possible noise uncertainty problem. In order to avoid this problem, a slightly modified

model of the proposed detectors is introduced. Instead of normalizing the CPSD by the
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FIGURE 4.9: Performance loss of pgq in terms of noise uncertainty for py, = 0.1

mean value of the last term of C'P,,(k), the CPSD is normalized using the last term. The

self normalized CPSD of the received signal, y(n), is defined as follows:

CPy(k)
k)= -2 <k <l 4.
77y( ) C.Py(l)’ v > = ( 57)
For [v;1] = [-§ + 1; 5], CP, (%) is the estimated energy of the received signal. Using

Parseval’s theorem, C'P, (%) becomes:

or(3) = ¥ X W
v 2
N (058

This normalization is equivalent to a scaling and does not change the shape form of the
CPSD.

Without taking into account the relative position of 7, (k) with respect to the reference
straight line, the decision about the presence of the PU signal is made by comparing the

ny(k) shape to the reference line shape. Figure (4.10) shows n, (k) under Hy and H; and
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a SNR = 0 dB for various values of N;. We have under Hy a shape looks like a straight
line, but a curved shape under Hy. As shown in this figure, the difference between 7, (k)
and the straight line increases as Ny increases, which means the detection becomes more
reliable with the increasing of N;.

Similarly to the detectors T}, Ty, To, and Ty, we define the Self-Normalization detectors:

T3, 13, T, and Tg, as follows respectively:

N
S g N
I, = ny(k) — D <17 o k) ‘ (4.59)
k=1
7
N N
T° = — - — —; )
> (k) D( 2—|—1,2,k>‘ (4.60)
k=—4+1
T(fr == OR(dTE, dTﬁ) (461)
N
2 N
Tav = ; Ny (k) - D(L ?; k> (462)

Where ;% (v) is given by:

k
o) = et (163
=1 Py (u)
Figure (4.11) shows the performance of proposed detectors under a NU of 0, 0.75, and
1.5 dB with Ny = 4 sps, SNR of -10 dB and N = 1000 samples under a Gaussian
channel. For a NU = 0 dB, Ty, T, outperform 77, and T} respectively. Beside that,
when the NU grows, the performance of T}, T} is not affected, whereas the detectors
Tov, Tor and ED suffer a performance degradation and become less robust than the self
normalization detectors, as shown in figures (4.11(b)) and (4.11(c)). However, T, and

T, have a superior performance relative to ED for different values of p.

4.8 Conclusion

In this chapter, we proposed Spectrum Sensing detectors based on the Cumulative Power
Spectral Density (CPSD). The proposed detectors are based on the shape of the received
signal CPSD.

The negative and the positive frequencies PSD one are exploited to perform Hard and
soft schemes. These two schemes lead to enhance the detection performance. False alarm

and detection probabilities are derived analytically under both Gaussian and Rayleigh
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FIGURE 4.10: Self normalized CPSD under Hy and Hy

flat fading channels. Our simulation results corroborate the performance superiority of

our detectors comparing to classic detectors such as the energy, the cyclostationary and

the autocorrelation detectors.

In addition, simulation results show that the proposed detectors are less affected by the

noise uncertainty than the energy detector. However, to avoid the impact of the noise

uncertainty, the measured CPSD is normalized by the estimated energy of the received

signal. By doing this, we make our detectors independent from the noise variance.

In a future work, the windowing effect of the PSD will be tested in the Spectrum Sensing

context. Further, enhancing the PSD estimator performance and extending our algo-

rithms to deal with Multiple Antennas Spectrum Sensing are the perspectives of this

work continuity.
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FIGURE 4.11: ROC curves of the proposed schemes under various values of NU,
N=1000 samples and SNR=-10 dB



Chapter 5

Full-Duplex Cognitive Radio

List of Acronyms

AC Auxiliary Chain

ADC Analogue to Digital Converter
CR Cognitive Radio

DFT Discrete Fourier Transform

ED Energy Detector

FD Full-Duplex

FD-CR Full-Duplex Cognitive Radio
FFT Fast Fourier Transform

GN Gaussian Noise

HD Half-Duplex

HD-CR Half-Duplex Cognitive Radio
HD-CR Half-Duplex Cognitive Radio
HIM Hardware Imperfections Mitigation
LNA Low-Noise Amplifier

LSE Least-Square Error
83
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MAS Multi-Antenna System

NLD Non-Linear Distortion

OFDM Orthogonal Frequency Division Multiplex
PDR, Probability of Detection Ratio

PN Phase Noise

PSD Power Spectral Density

PU Primary User

ROC Receiving Operating Characteristics

RSI Residual Self Interference

SI Self Interference

SIC Self Interference Cancellation

SNIR Signal to Noise and Interference Ratio
SNR Signal-to-Noise Ratio

SOAQO Shared Oscillator between Auxiliary and Ordinary Chains
Sol Signal of Interest

SU Secondary User

TS Test Statistic

This chapter deals with Full-Duplex Cognitive Radio (FD-CR). FD-CR can eliminate the
silence period of the Secondary User (SU) during the Spectrum Sensing. Thus, SU should

be able to diagnose the channel status while it is transmitting. Consequently the channel

throughput is enhanced. This throughput gain comes at the cost of a perfect cancelling

of Self Interference (ST), which is the image of the SU signal at the receiving antenna.

To achieve a robust SI Cancellation (SIC), many challenges should be addressed.

Similarly to the Full-Duplex transceiver, which is proposed to double the channel effi-

ciency by simultaneously transmitting and receiving at the same band, the main challenge

in FD functioning consists in minimizing the Residual Self Interference (RSI) which rep-

resents the SIC error and the receiver impairments (such as the oscillator Phase Noise
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(PN), the Non-Linear Distortion (NLD) of the receiver Low-Noise Amplifier (LNA), the
Analog to Digital Converter (ADC) noise etc).

This chapter addresses the above mentioned problems by analytically evaluating the
impact of the additive RSI on the Spectrum Sensing performance. A model of the
receiver of the FD system is also proposed, to mitigate both the PN and the NLD of
LNA. Our new receiver model can totally omit PN. For the NLD, a new wire channel
is added to connect the transmitting to the receiving chains. This channel is used only
off-line to estimate the NLD coefficients without affecting greatly the throughput of
the transceiver according to the fact that the NLD coefficients vary slowly with time.
Therefore the time between two estimation operations can be relatively long. In order
to test the overall efficiency of the proposed techniques, a performance analysis on the
Full-Duplex Cognitive Radio (FD-CR) with all FD receiver impairments is presented. In
Cognitive Network, SU should be aware of the Primary User (PU) activity. In FD-CR
the RSI represents an important challenge for the SU to make a decision on the presence
of PU. Minimizing RSI impacts positively both the detection performance and the CR
throughput. Various simulations are carried out to illustrate the performance and the
efficiency of our proposed FD receiver model. Our simulations show the superiority of

the proposed FD model compared to recently proposed and classical models. ', 2.

5.1 Introduction

Full-Duplex (FD) communication has recently gained a lot of attention due to its capa-
bility to double the channel efficiency. FD is not a new concept in the telecommunication
field, but several problems such as receiver imperfections and channel estimation have
limited the application of FD. The recent advances in both the Self-Interference Can-
cellation (SIC) and the Hardware Imperfections Mitigation (HIM) techniques make the
FD applicable. Reducing the residual Self-Interference to the Noise Floor is the main
challenge of any SIC and HIM techniques, in a classical FD transceiver.

To achieve an efficient SIC, passive suppression and active cancellation are both con-
sidered. The passive suppression can be related to many factors that can reduce the
Self Interference (SI) in Radio-Frequency domain, such as the transmission direction,
the absorption of the metals and the distance between the transmitting antenna, T,
and the receiving antenna, Rx. On the other hand, the active cancellation reduces the

Self-Interference (SI) by using a known copy of the transmitted signal. In general, the

'Part of this chapter was published in CrownCom 2016 [27] and as chapter in Springer Book [81]
2Part of this work was submitted to EURASIP Journal on Wireless Communication and Networking
(EUARSIP JWCN) [82]
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received signal at Rx contains the SI and the Signal of Interest (Sol). The main aim of
the FD system is to eliminate completely SI in order to get purely Sol. Here, the problem
is the very low power of Sol relative to SI due to the short distance between T'x and Rx
and, generally, the long distance between the Sol transmitter and Ry. The estimation
of channel coeflicients between T'x and Rx becomes, in this case, an essential factor in
the active cancellation process. Any error in the channel estimation can decrease the
SIC gain.

Besides that, experimental results show that hardware imperfections such as the non-
linearity of amplifiers and the oscillator Phase Noise (PN) are the main limiting per-
formance factors [22, 86-88| since they affect the channel estimation process and add
residuals to the received signal. These residuals are of considerable power relative to Sol
since they are related to the SI power which is highly greater than the power of Sol.

Therefore, the SIC should also consider the receiver imperfections.

To eliminate the PN effects, many works have been proposed [86, 89]. In [89], FD
transceiver architecture is proposed to reduce the PN effects. The transmitting and re-
ceiving chains of the transceiver share the same oscillator to alleviate the PN. Sharing
the same oscillator is feasible in such a situation since the two chains are collocated.
In [86], a receiver Auxiliary Chain (AC) is introduced in the transceiver architecture.
AC becomes a reference for Ordinary Chain (OC), which helps eliminating the hardware
imperfections. However, in the proposed transceiver architecture, AC and OC share the
same oscillator. Such an architecture leads to eliminate the principal frequency compo-
nent of the PN. The work of [90] handles PN problem with separate oscillators and a

negligible gain was obtained.

To estimate the channel and the NLD of LNA, an algorithm is proposed in [91] and
developed in [86]. This algorithm requires two training symbol periods. During the
first period, the channel coefficients are estimated in the presence of the NLD. The non-
linearity of the amplifier can be found in the second period using the previously estimated
channel coefficients. Of course, the estimated NLD parameters in the second phase de-
pend on the estimated channel coefficients of the first phase. However, the estimation of
the channel coefficients in the first phase depends on the unknown NLD parameters. To
solve the previous dilemma, we propose hereinafter an estimation method which reduces

the effect of LND on the channel estimation.

In FD-CR, SU is assumed to have two antennas Ty and Rx, the first one is for transmit-

ting data whereas the second one stands for receiving data (see figure (5.1)). SU aims
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FIGURE 5.1: The model of SU in FD-CR

at eliminating the ST coming from T'x to Rx in order to perform an accurate Spectrum
Sensing. This is similar to a classical SIC problem, where in the case of FD-CR, the RSI
affects the Spectrum Sensing robustness.

To show the effect of RSI on the Spectrum Sensing in the context of FD-CR, analytic
relationship between the detection, py, and the false alarm, p,, probabilities under HD
and FD are derived. [23-26, 43, 56] deal with the application of FD in CR. In [23-25, 43],
the RSI is modelled as a linear combination of the SU signal without considering hard-
ware imperfections. In [24, 56| the Energy Detection (ED) is studied in FD mode and
the probability of detection, (pq), and false alarm, pg,, are found analytically. However,
these works did not develop any analytic relationship between the RSI, pg and py, for
both HD and FD mode.

Using the works of [86] a new FD transceiver architecture is proposed, where OC and AC
are sharing the same oscillator to suppress completely the receiver PN. Notice that in
[86] only the principal component of PN in frequency-domain is eliminated. Numerical
results show the reliability of our proposed architecture in eliminating the PN effect. This
fact ensures a reliable channel estimation, then an accurate SIC process is performed.
Another hardware imperfection, the NLD of the LNA, is also considered. To well esti-
mate the NLD coefficients, we propose a new circuit architecture that can work off-line.
In this case, the data rate of the FD transceiver is not affected since the period between
two successive operations of NLD coefficients estimations is relatively long thanks to the

fact that these coefficients slowly change with time.

This chapter is organized as follows, in section (5.2), an overview on the OFDM receiver
is presented by focusing on the circuit imperfections. In section (5.3), the effect of the

additive distortion due to the SIC operation is analysed. A new architecture of the FD
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FIGURE 5.2: Classical FD OFDM receiver

transceiver is presented in section (5.4). This architecture aims at eliminating the PN
effect of the oscillator in the receiver chain. Section (5.5) deals with NLD of the LNA by
presenting a proposed architecture to reduce the distortion power. The efficiency of the
proposed architecture is tested and examined by intensive simulations. In section (5.6),
the proposed Full-Duplex Cognitive Radio architecture is presented to show its efficiency

where the SIC is of high level. At the end, section (5.7) concludes the chapter.

5.2 System model and Receiver chain Imperfection Analy-
sis

By assuming perfect filters, figure (5.2) presents the Ordinary Chain (OC) of an OFDM

Receiver block diagram system. The received signal by the OC is a mixture of the Self-

Interference (SI) signal and the Signal of Interest (Sol) (if it exists). The signal received

at Rx is modelled as:

y(t)

() @ (t) + ns(t)

h
h(t) * [x4(t) exp (52 fet)] + ns(t) (5.1)

where h(t) is the channel effect between Tx and Rx, f. is the carrier frequency, z(t) is
the transmitted SI signal, z4(¢) is the base-band SI, s(t) is the Sol, involving the channel
effects, n is the channel indicator (n = 0 if the Sol is absent, otherwise n = 1), and

otimes stands for the convolution product.
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In the following, Sol is assumed to be absent during the estimation period. As LNA intro-
duces a NLD, the output y,(t) of LNA can be modelled in general form as a polynomial
of odd degrees [92]:

valt) = 3 azipry® (1) (5.2)
1=0

The first coefficient a1, stand for the linear output component of LNA. The other coef-
ficients (a2i+1, ¢ > 1) stand for the non-linear components contributing in NLD. Since
the higher components are of negligible power, the LNA output is limited to the third
order polynomial output [86, 91]. In this case, y,(¢) can be simplified as:

ya(t) = ary(t) + asy®(t)

= a <h(t) ® x(t)) +as (h(t) ® m(t)) 3 (5.3)

After the amplification process, the received signal is down-converted to the base-band

form using the oscillator. This oscillator introduces a Phase Noise (PN) ¢(t):

Yos(t) = Ya(t)exp(—g2m fct)p(t) (5.4)

where p(t) = exp(j¢(t)) is the multiplicative PN.
In the base-band, the Analog-to-Digital Converter (ADC) digitizes the received signal by
introducing a uniform noise, wy(n) with a power inversely proportional to the number

of used bits. Consequently, the received time-domain base-band signals at the output of
OC becomes:

y(n) = (alh(n) ® z(n) + agd(n)>p(n) + wg(n) + w(n) (5.5)

where:
2

d(n) = <h(n) ® 1:(n)> ‘h(n) ® z(n) (5.6)

and w(n) is the Gaussian Noise (GN) in the OC, and it is related to the input signal

power and to the Noise Figures of the blocks in the receiver chain.

After the CP removal and FFT operations, the frequency domain signal, Y (m), of y(n)
is presented by:

Y (m) = (a1 H(m) X (m) + agD(m)) & P(m) + Wa(m) + W (m) (5.7)
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Where P(m), D(m), Wg(m) and W (m) are the Discrete Fourier Transforms (DFTs) of
p(n), d(n), wg(n) and w(n) respectively.

Since a copy of the ST signal, X (m) = DFT{x(n)}, is known for the receiver, the channel
effect H(m) can be estimated by H.(m) as follows:

Y (m) ) <a1H(m)X(m) + ay,D(m)) ® P(m) + Wy(m) + W (m) 59

He(m) = <00 X (m)

For an ideal receiver (i.e. P(m) = 6(m) (¢(n) = 0), a3 = 0 and Wy(m) = 0), W(m)
becomes the only limiting performance factor and its effect can be reduced using the

averaging estimator of the channel:

k m
Hom) = 3 2 tm) (5.10)

Where N, is the number of training symbols used to estimate the channel and Y*(m)
(resp. X¥(m)) represents the kth symbol of Y (m) (resp. X (m)).
However, once the channel estimation is done, the Self-Interference is regenerated in

order to cancel its effect from the received signal and obtain the resulting signal Yy;.(m):
Ysie(m) =Y (m) — He(m)X (m) (5.11)

The main challenge of a FD system is to evaluate accurately H.(m) in order to cancel
the Self-Interference effect. As shown in Equation (5.10), this can be done by eliminating
the receiver imperfections, where the NLD of LNA and the oscillator PN play the main
role in such a limitation.

In order to help the OC in eliminating these imperfections, an Auxiliary Chain (AC)
is associated to OC. Acting as reference for OC, AC is connected via a wire to the

transmitted chain, so that the channel effect is omitted.

5.3 The RSI effect on the Spectrum Sensing

By only focusing on the additive receiver distortion (i.e. the NLD of LNA, GN and ADC

noise), the received signal after the SIC in frequency-domain can be given by:

Yaie(m) = R(m) + W (m) + 5.5 (m) (5.12)
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where R(m) represents the total RSI due to the channel estimation error and the NLD
of LNA. In order to decide the existence of the PU, the Energy Detector (ED) compares
the received signal energy, Tpp, to a predefined threshold, A.

1 Y H
Tpp = — Y [Yae(m)]> Z A (5.13)
N m=1 Hy

By assuming the i.i.d property of R(m), W (m) and X (m), the distribution of 7" should
asymptotically follow a normal distribution for a large number of samples, IV, according
to the Central Limit Theorem. Consequently, the probabilities of False Alarm, p? o and
the Detection, p&, under the FD mode can be obtained as follows (See Appendix (D)):

Fo_ A—po\ A — (o2, +03)
Pfa = Q(m ) =0 (1(012” +03)> (5.14)

N
oA A=) A= (0% + 0% +02)
- )‘Q<1N<az,+oz+az> o

Where p; and V; are the mean and the variance of Tgp under H; respectively, ¢ € {0;1},
02 = E[|R(m)|?] represents the RSI power, 02, = E[|W(m)|*] and 02 = E[|S(m)|?]. The
SNR, 7s, is defined as:

7, = (5.16)

ng ‘ qum

If the SIC is perfectly achieved, i.e. 03 =0, p? ., and de take their expressions under the
HD mode. Therefore, ROC curves represent under HD mode the asymptotes of ROC
curves under FD mode.

Figure (5.3) shows the required number of samples to reach p; = 0.9 and ps, = 0.1
under the HD and FD modes for different values of SNR. In FD mode, we set 02 = o2,
as the target values of 02 in digital communication. Figure (5.3) shows that the number
of required samples slightly increases under the FD modes. For example, when v, = —5
dB, then 85 samples are enough to reach the target (p4;pf,) under the HD mode but
under FD mode, around 300 samples are needed.

Let us define the Probability of Detection Ratio (PDR), 4, for the same probability of

false alarm under FD and HD modes, as follows:

F
p .
0= % with pfa = pﬁl =« (5.17)
Dq
Where pé{ and pf{la are the probabilities of detection and false alarm under HD respec-
tively, 0 <a < land 0 <§ < 1. With an excellent SIC, the ROC can mostly reach in

FD the same performance as HD. In order to show the effect of RSI on §, let us define
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FIGURE 5.3: The number of samples required to reach p; = 0.9 and py, = 0.1 with
respect to SNR (dB)

the RSI to noise ratio 4 as follows:

va=24 (5.18)

Using (5.14) and (5.17), the threshold, A, can be expressed as follows:

-
A= (\/NQ Ya) + 1) (02 +02) (5.19)

By replacing (5.19) in (5.15), 74 can be expressed as follows:

(1+79)Q ' (dpf) — Q@) + VN,
Q' (a) — Q=1 (opk)

Ng = (5.20)

If § =1, then =4 becomes zero which means that the SIC is perfectly achieved. Figure
(5.4) shows the curves of 74 for various values of PDR, 4, with respect to the SNR, ~s, for
Pf = 0.9 and « = 0.1. This figure shows that as § increases -4 decreases. To enhance
the PDR, the selected SIC technique should mitigate at most the SI. In fact, for v, = —5
and a permitted loss of 1% (i.e. § = 0.99), 74 is about —15 dB

5.4 Phase Noise Analysis

In this section, a new receiver architecture to mitigate the PN effect is presented. Our
proposed architecture is inspired from the one proposed in [86], SOAO (Shared Oscillator
between AC and OC), where the same oscillator is shared between AC and OC (figure

(5.5)).
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In the following, a brief analysis of the SOAQO architecture is given. Thanks to the same
oscillator between OC and AC, the output y4°(t) of the oscillator at AC has the same
PN as that of OC oscillator output, yos(t). ¥4 (¢), can be modelled by:

yal (t) = z,(t)p(t) (5.21)

x4(t) is the time base-band model of x(t). After converting the signal to the base-band,
y2iC(t) is digitized using an ADC, then the CP removal and FFT operations are applied
in order to obtain the frequency-domain signal Yy, (m) used in the channel estimation
process. Following the same process at OC, assuming the absence of Sol, and neglecting
all the imperfections and noises other the PN at both AC and OC, Y. (m) and Y (m)

becomes:

Youz(m) = X(m) @ P(m) (5.22)
Y(m)=[H(m)X(m)] ® P(m) (5.23)

The channel can be estimated by the following simple ratio:

Y(m H(m)X(m)| ® P(m
B = = Ry B
_ i HR)X (k) P(m — k)
lefvzl X(k)P(m — k)
L S (H (k) = H(m)) X (k) P(m — k)

Shiy X (k) P(m — k)

= H(m) (5.24)

It is clear from equation (5.24) that the channel estimation depends on the PN bandwidth
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TABLE 5.1: Simulations Parameters

Signal Bandwidth 20 MHz
Number FFT-points 64
QAM-Mapping 64
CP length 16
Number of Guard-Band point 11
Channel order 10
Power of the Non-LoS channel components | -20 dBc
Number of OFDM Symbols (N;) 25
Number of training symbols, N,

for channel estimation 4
Received SI power -10 dBm

and power, in addition to the non-LoS components of the channel. H(m) corresponds to
the Line-of-Site (LoS) components of the channel, whereas the other components H (k)
(k # m) represent the Non-LoS ones. In fact, due to the convolution operation between
PN and the SI signal in frequency-domain, the non-LoS components of the channel af-
fect greatly the channel estimation of the LoS components. Note that the error in the
channel estimation affects the SIC process since the SI has a very high power compared
to Sol, and it can dominate the circuit impairments. Accordingly, reducing PN before
estimating the channel is of high importance for the SI canceller. This was our first

motivation to introduce a new receiver chain in the FD transceiver.

5.4.1 Proposed Architecture for PN suppressing

Figure (5.6) presents our proposed architecture to suppress the PN, OC and AC share
the same oscillator as SOAQ, so that PNs in OC and AC are the same. Since x;(t) is
known to the receiver, the conjugate, p*(t), of p(t) can be found as follows:
vy Yos (1)

pi(t) = o) (5.25)
Due to the fact that the receiver’s and the transmitter’s circuits are collocated, x(t)
can be easily linked to the phase noise estimation block. In addition, the two inputs
(i.e. yAC(t) and x4(t)) can be synchronized using a tapped delay line. In our analysis,
we assume that the synchronization is perfectly done.
Back to equation (5.25), once p*(t) is evaluated, then it is multiplied by y,s(t) to eliminate
the PN effect as shown in figure (5.6).
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FIGURE 5.5: Receiver architecture for a FD OFDM to reduce Phase Noise [86]

Unlike the architectures presented in [89] and [86], the proposed solution is not affected
by the PN noise power neither its bandwidth. Consequently, the channel estimation is
done without any residual caused by the Non-LoS components of the channel due to the

convolution with the PN as in equation (5.24).

5.4.2 Numerical Analysis

Figure (5.7) shows the Monte-Carlo simulations on the effect of the Non-LoS channel
component power to the RSI power. It compares the RSI power resulted after using our
PN suppressor to that of the classical SIC and SOAO [86]. These results are obtained by
simulating an OFDM signal with 64 sub-carriers, a cyclic prefix length of 16 points and a
64-QAM mapping with a 53 useful OFDM points in each OFDM symbol, (as considered

in the 802.11g standard [93]). The remaining simulation parameters are presented in
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FIGURE 5.6: Proposed FD OFDM receiver architecture to suppress the Phase Noise
effect, the conjugate of PN is estimated at AC, then it is multiplied by the output of
the OC oscillator in order to suppress its effect.

table (5.1). The power and the frequency bandwidth of PN are set to —91 dBc/Hz and
20 KHz respectively, as the typical values of the transceiver NI 5644R [94].

Figure (5.7) shows the Non-LoS channel components effect on the RSI power when PN
is the only considered imperfection. The classical SIC architecture (SIC is performed
without PN Suppression (PNS)), SOAO and the proposed architecture. As shown in
this figure, the proposed PN suppressor is not affected by the Non-LoS components
power, while the classical SI canceller is slightly affected, and SOAO canceller exhibits a
performance degradation with the increasing of the power of the Non-LoS components
(about a 10 dB loss was observed for an increase of 10 dB in the Non-LoS channel
components power.

In addition to the PN bandwidth, the PN power is considered as a performance limiting
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factor. In figure (5.8), RSI power is obtained in terms of the PN power for a fixed PN
bandwidth (BW) to 10 KHz. Our algorithm keeps an almost zero RSI power. On the
other hand, the RSI power corresponding to classical and SOAO cancellers increases with

the PN power.

To show the effect of the PN frequency offset on the SIC performance, figure (5.9)
presents the variation of RSI power for a PN power of —90 dBc/Hz and various values of
PN frequency offsets. As shown in this figure, SIC residual increases with the frequency
offset for the classical and SOAQ SIC cancellers, while the proposed PN suppressor
cancels almost totally the SI for all the considered values of the PN offsets.

Figures (5.7), (5.8) and (5.9) show that the performance of our proposed PN suppressor
is not affected by the PN specifications neither by the Non-LoS of the channel since the
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PN is totally suppressed before estimating the channel, unlike the classical ST and SOAO
SUppressors.

In the following, we discuss the performance of the proposed PN suppressor (figure (5.6))
when the Gaussian Noise (GN) is present. N; =4, Ny = 25 are assigned in addition to
a PN power of -91 dBc/Hz and PN BW of 20 KHz. The RSI power corresponding to
our proposed architecture increases with the GN power as shown in figure (5.10), unlike
the classical and SOAO ones. The latter two suppressors keep a constant RSI while
the noise power is lower than a certain value. This is because the PN power (which is
constant in this simulation) dominates the GN power before this values. After that, the
RSI increases linearly (in dB scale) with the GN power. This limitation is caused by the
channel estimation affected by GN, in other terms, if the channel is estimated perfectly,

then RSI approaches zero for the proposed PN suppressor.

Figure (5.11) tests the capability of the classical, SOAO and the proposed suppressors
to reach the GN level power in terms of the number of training symbols. Thus, this is
the capability of how much the algorithm can cancel the SI in order to obtain the GN,
this case refers to the perfect SIC. The GN power is fixed to —105 dB as a typical value
in NI 5644R [94], and the other parameters are the same as in the previous simulations.
As shown in figure (5.11), the total power of Yy;.(m) decreases with the increase of Ny,
and reaches 6 dB (resp. 4 dB) for N; = 4 (resp. N; = 10) comparing to the noise floor
respectively. As also shown in this figure, our proposed receiver model reduces the RSI
by 18 dB than SOAO and 40 dB than the classical models.
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5.5 The Non-Linear Distortion of the Low Noise Amplifier

The NLD of LNA is an important SIC performance limiting factor [22, 86-88, 91] in
real world applications. According to equation (5.6), the distortion D(m) contains the
SI signal, the channel effect H(m) and the non-linearity coefficient as. In this case, ag
becomes hard to estimate even if the SI signal is known because the channel effect is
unknown. This problem becomes more complicated in the presence of PN. On the other
hand, NLD is considered as a limiting performance factor since it prevents a robust chan-
nel estimation process. In addition, even with a perfect channel estimation, NLD can
dominate the Sol when the latter reaches Rx with a low power. Based on the above

discussion, the suppression of NLD becomes a main aim for the FD system.
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In [27], we introduced a Least Square Error (LSE) estimator to estimate the NLD coef-
ficient. Even though this algorithm shows a good performance, the estimation process
needs the estimation of high order cumulants of the received signal (order 2, 4 and 6)
in RF domain (2.4 GHz for a WiFi signal). This fact may introduce a non-linearity in
the electronic components used in the estimation process, which causes corruption to the
estimation results.

A new receiver architecture is proposed here, associated with a Least Square (LS) algo-
rithm that can be used to estimate the NLD of the LNA in digital frequency domain.
The new receiver architecture introduces a new wire channel between the transmitter
and the receiver. This wire channel may only be used when the NLD coefficients are
needed. Figure (5.12) shows the block-diagram presented to overcome the channel effect.
Since the LNA characteristics are changing slowly, because they are related to the circuit
age and the temperature [86], then the estimation process will be repeated once every
several transmitted frames. As shown in figure (5.12), when the switch is on (1), this
means that the channel is working on ordinary conditions, where the channel between
Tx and Ry is wireless. In such a situation, the NLD is hard to be identified due to the
channel effect on the SI signal. To avoid such effect, the transmitter and the receiver may
communicate a training sequence using a wire. In this case, the power splitter should

control the power transmitted to the OC in order to avoid any saturation in the circuit.

LSE estimation
Since the PN is totally suppressed using the architecture of (5.6), the received signal

after the CP removal and the FFT operations is presented in frequency domain by:

Y (m) = a1 X (m) + agDay(m) + W(m) (5.26)

where Dy(m) = DFT{z(n)|z(n)|?}. The quantization noise is neglected, since it is
dominated by the GN. By applying the LS estimator on Y (m), the following cost function
L should be minimized with respect to u; and ug, which are the estimations of a; and

as respectively.

(Y(m) — (X (m) + U3D2(m))> ] (5.27)
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FIGURE 5.12: FD architecture capable to eliminate the receiver PN and to reduce
the NLD of the receiver LNA. When the switches are on (2), the NLD coefficients
are estimated by avoiding the wireless channel. When the switches are on (1), the
transceiver works in ordinary conditions, and the circuit associated to LNA alleviates

the NLD at the output of LNA

According to equation (5.27), GN is a performance limiting factor. Accordingly, the

minimization of £ leads to the following:

where:

U1

=U'v (5.28)

us
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E

IX(m)|2] E

Re{X (m)DE(m)}]
U= ; (5.29)

\Dz(m)\2]

Re{X(m)Dg(m)}] E

E|Re{X¢(m)Y (m)}
V= (5.30)
E | Re{D3(m)Y*“(m)}

Where Re{.} stand for the real part. By solving the above system, the NLD coefficient
is estimated, then the NLD is regenerated and subtracted from y,(t) at the output of
the LNA as shown in the figure (5.12).

To show the efficiency of the proposed NLD suppressor, figure (5.13) shows the reduction
of the NLD power after applying our proposed suppressor. The SI power at Ry is fixed
to -40 dB and the NLD is 45 dB under the linear amplified component. The GN power is
fixed to -105 dB. As shown, the NLD reduction increases with the increase of the number
of training symbols, N of NLD used in the NLD coefficient estimation phase. For
NP4 = 2 the NLD power is reduced by 38 dB, making the NLD power at -123 dB, which
means that it becomes under the GN floor by 18 dB. Such a value of NLD is enough to

avoid any influence on the channel estimation process neither on the power of Ygsc.
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The effect of the GN power on the NLD coefficient estimation is shown in figure (5.14).
The NLD power and N/*? are fixed to -45 dBc and 4 respectively. NLD coefficient is
very sensitive to the GN power, where the results in figure (5.14) show that the residual
of the NLD has the same power as NLD when the noise power become -65 dB. However,
in real applications, when the NLD is lower than the noise floor, we can neglect it as its
effect on the channel estimation becomes negligible. In NI 5664R, at a received power of
-30 dB, the noise power is about -105 dB, the NLD power is about -56 dBc, ¢.e. -86 dB
under the linear amplified component if the amplification gain is 0 dB. This means that
the NLD power is 20 dB over the noise floor. In this case, the NLD has to be eliminated
in order to omit its effects on the SIC process.

Figure (5.15) presents the RSI power of Yy;.(m) after applying our proposed suppressor
(figure (5.12)) as well as the results of the classical SIC one. The parameters of the table
(5.1) are respected in addition to the setting of the NLD of LNA, where N/¥¢ and the
NLD power are fixed to 4 and -45 dBc respectively. As shown in figure (5.15), for all the
considered values of the NLD power, the RSI is reduced to -100 dB, which is the same
value as that presented in figure (5.11) for N; = 4, where the NLD is not considered.
This fact means that our proposed suppressor almost eliminates the NLD power. On the
other hand, the RSI corresponding to the classical SIC is increased with the NLD power.
For a NLD power greater than -40 dBc, the RSI exhibits an important increasing, this

is because the NLD power dominates other imperfections such as PN and GN.
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FIGURE 5.16: Activity period of SU under HD functioning is divide into Sensing sub-
period (Ts) and Transmission sub-period (7).

5.6 Full-Duplex Cognitive Radio

In this section, the efficiency of the proposed receiver model (figure (5.12)) is tested in
the Cognitive Radio (CR) context by focusing on the Spectrum Sensing performance
and the throughput of the Secondary User (SU). In classical CR systems, the activity
period, T, of SU is divided into two sub-periods: the sensing sub-period, T, and the
transmission one, Ty, with Ts + Ty = T (figure (5.16)).

As long as Ty decreases, the detection reliability decreases but the SU throughput in-
creases. Increasing the SU throughput is obtained at the cost of non-reliable detection
process which leads to cause a harmful interference to PU when the SU misses the detec-
tion of the active PU. However, in FD-CR the problem of Ty is solved by a simultaneous
transmission and sensing. Note that the throughput of the SU in HD-CR can be given
by [95]

R(Ts, \) = %Co (1 —pfa(Ts,)\))P(HO)

+ %Cl (1 — pa(Ts, /\)>P(H1) (5.31)
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TABLE 5.2: SNR and SNIR definitions

v SNR of the Secondary transmitted
signal at the Secondary receiver
P SNR of the Primary transmitted
signal at the Secondary receiver
Ys SNR. of the Primary transmitted
signal at the Secondary transmitter (as defined in equation (5.16))
¢ SNIR of the Secondary transmitted
signal at the Secondary receiver

Co (resp. C1) is the throughput of SU when it operates under Hy (resp. (Hi)). Co and

C are given by 3:

Co = loga(1 + ) (5.32)
Cr = loga(1+ ) (5.33)

with 77 and ¢ are defined as given in table (5.2) (In this case, PU signal is considered
as interference).

Regarding FD-CR, there is no sub-period allocated for the spectrum sensing (i.e. Ts = 0).
Note that Cy and C] as they are related to Secondary receiver, which is assumed to use

Half-Duplex communication.

For the forthcoming simulations, the channel between the PU base station and the SU
antennas is modelled as Rayleigh, the PN power is set to -91 dBc/Hz, the NLD power is
-55 dBc, N = 4,

Figure 5.17 shows the ROC curves of ED under HD, FD with classical architecture, and
FD with our proposed one. The SNR of PU at the SU, ~, is set to -5 dB, N; = 30
and the other modulation parameters are given in table (5.1). The ROC curves exhibit
a performance loss with the going from HD to FD. However, our proposed architecture
compensates greatly this loss. For example, at a py, = 0.1, the classical architecture
results in pg = 0.23, whereas our proposed one leads to pg = 0.86. Therefore an important

gain in the detection rate is obtained relative to the classical SIC.

To show the effect of the SNR of PU at the sensing robustness, figure (5.18) presents
pq in terms of v, for py, = 0.1, Ny = 40 and N; = 10 are considered. Due to the high

number of symbols in the detection, spectrum sensing under HD is almost one for the

3The expressions of Cp and C; are given by assuming that SU and PU signals are statistically
independent, white and Gaussian. The last assumption can be considered for OFDM signals due to the
IFFT process which performs the sum of independent QAM symbols, then OFDM signal approaches
Gaussian signal according to Limit Central Theorem
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FIGURE 5.18: Model of a Network where Secondary Transmitter and Secondary Re-
ceiver co-exists with a PU

tested SNR. Regarding FD mode, the performance is enhanced as the SNR increases. At
vs = —2 dB, pg corresponding to our architecture is very close to one, whereas the a py
of 0.6 corresponds to the classical SIC. The main limiting performance factor here is the
RSI which is inversely proportional to the number of training symbols. In figure (5.19),
the results show the effect of N; on the detection process. v, = —5 dB, Ny, = 25 and
Pra = 0.1 are considered. pg corresponding to our proposed SIC architecture increases
clearly with N;. This fact can be explained by the reduction of RSI for the accurately

estimated channel.

The throughput benefits from using FD is discussed in figure (5.20). In order to make
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a fair comparison among HD, classical FD and the proposed FD CR, we assume that
pa = 0.9 under the three modes (HD, FD with classical SIC model, FD with proposed SIC
model (figure (5.12))) %. This is because pq is the corresponding parameter responsible for
the interference from SU to PU. The Signal to Noise and Interference Ratio (SNIR) of PU
at the secondary receiver is fixed to 0 dB under all the modes, Ny = 12 and N, = 25 are
assigned. We assume that P(Hp) = 0.25, consequently P(H;) = 0.75 and the ratio 2t =
% for HD activity. Figure (5.20) shows the throughput of the considered CR functioning,
where the proposed SIC for FD-CR enhances importantly the CR throughput. On the
other hand, the throughput corresponding to the classical SIC is slightly under the HD
throughput, therefore no benefits is obtained by using it for FD-CR.

4ptq is practically zero for the HD mode, and it is 0.335 for the classical SIC and 0.12 for the proposed
SIC (results obtained by simulations)
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5.7 Conclusion

In this chapter, Full-Duplex Cognitive Radio (FD-CR) is addressed. Main receiver im-
perfections, acting as limiting performance factors such as the Phase Noise and the
Non-Linear Distortion, have been analysed. A new transceiver architecture for a Full-
Duplex (FD) system is proposed in order to suppress the hardware imperfections of the
receiver in a FD system. A total phase noise suppression is achieved by the proposed
architecture, in addition to a high reduction of the Non-Linear Distortion of the Low-
Noise Amplifier. Such an elimination of the hardware imperfections leads to enhance the
channel estimation performance, and to reduce the Residual Self Interference. This fact

shows an enhancement in the detection rate and the throughput for the FD-CR.



Chapter 6

General Conclusion and Future
Works

This manuscript deals with the Spectrum Sensing challenge in Interweave Cognitive
Radio System. The aim of the Spectrum Sensing is to detect the Primary User (PU)
signal at low SNR within a short sensing period. Reliable detection leads to protect PU
from possible interference which could be generated by the Secondary User (SU), and
can provide SU with the spectrum opportunity. The sensing duration, even short, affects
the SU throughput. For that reason, this type of CR is called Half-Duplex (HD-CR).
Full-Duplex Cognitive Radio has been recently proposed in order to cancel this silence
period, by allowing SU to be active during the Spectrum Sensing period. This can be
done by performing the Self-Interference Cancellation (SIC). In our work, both systems,
HD-CR and FD-CR have been considered.

6.1 Contributions

In this thesis, we developed new Spectrum Sensing algorithms dealing with HD-CR based
on the Cyclostationary features Detection (CSD) and the Power Spectral Density (PSD)
of the PU signal. Besides that, a new receiver architecture is proposed to overcome some
SIC limiting performance factors affecting the reliability of FD-CR. The new contribu-

tions can be summarized as follows:

[0 New CSD Spectrum Sensing algorithm based on the Canonical Correlation theory
is proposed for HD-CR. The Test Statistic (T'S) is found in this algorithm using the
Cyclic Correlation Significance Test (CCST). This algorithm detects the common

cyclic features among the delayed versions of the received signal. When the channel
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is only occupied by the stationary noise, then there is no common cyclic features.
Our simulation results show the robustness of this detector with respect to the Noise
Uncertainty (NU). Further, our algorithm outperforms classical CSD algorithms
with Single-Antenna System (SAS) or Multi-Antenna System (MAS).

O A second proposed algorithm is based on the Cumulative Power Spectral Density
(CPSD) of the received signal. This algorithm can detect the presence of a non
white signal in the channel based on the fact that its PSD is not flat contrary to the
white noise. Non flat PSD results in a curved CPSD, whereas the flat PSD results
in a linear shape. By distinguishing between linear (noise only) and curved (signal
plus noise) CPSD leads to examine the channel status. Analytical study is provided
by deriving the False Alarm (py,) and Detection (pg) probabilities of the proposed
detectors under Gaussian and Rayleigh channels. Numerical results corroborate
the superiority of the performance of the proposed detectors comparing to classical
ones such as Energy Detector, CSD or Autocorrelation detector. In addition, the

proposed detectors can overcome the Noise Uncertainty limitation.

[0 In FD-CR, we derive the relation of the impact of the Residual Self-Interference
(RSI) on pg and py, in FD functioning relative to HD. Using an analytic study, we

can evaluate the required RSI level in FD to achieve a target (pyq, pq) with respect
to HD.

O One of the main limiting performance factors in FD is the Phase Noise (PN),
which is a main contributor of the RSI. We proposed a new receiver model to
eliminate PN. Our numerical results show that PN was totally suppressed and RSI

was minimized significantly.

O Another limiting performance factor is the Non-Linear Distortion (NLD) of the
Low-Noise Amplifier (LNA). In order to reduce its effect, we also proposed a new
FD receiver architecture model. A new wire channel is added between the trans-
mitting chain and the receiving one in order to estimate the NLD coefficients. This
operation is done off-line in order to avoid the effect of the wireless channel. As the
NLD coefficients are varying slowly, then the time between two successive estima-
tions can be relatively long, therefore the FD transceiver throughput is not greatly
affected. We carried out intensive simulations to prove the efficiency of this new

architecture..

[0 Our new architecture model combining the proposed PN and NLD suppressors
for FD receiver chain is examined in the FD-CR. We analysed and discussed the
influence of the RSI on the Spectrum Sensing performance and consequently on
the throughput of SU. We found that FD leads to enhance the SU throughput only
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where the SIC is efficient, otherwise, it can affect the throughput. Our proposed
architecture enhances the throughput of the SU contrary to the classical FD one,

which has a negative impact on the SU throughput.

6.2 Future Works

Cognitive Radio is still an attractive research domain, and it gains more and more the
attention of the communication community. Many perspectives can be addressed as

continuity of our work.

B An analytic study of our proposed cyclostationary algorithm based on the Canoni-
cal Correlation Theory will be the next step of the work presented in this manuscript.

Such a study helps the Secondary User to fulfil the detection requirement.

B Regarding our proposed detector based on CPSD, windowing methods can signifi-
cantly enhance the estimation of PSD. In the next phase of this work, a study on
the effect of the windowing method on the Spectrum Sensing performance will be

considered.

B The new model of the FD receiver considers only the receiver impairments. As
a short term perspective, the performance of the new proposed model will be
discussed in the presence of both transmitter and receiver imperfections in order

to show the overall SIC level.

B For FD-CR, in order to overcome the RSI problem that is caused by the short
distance between the transmitting and the receiving antennas and a non perfect
SIC, a system of distributed antennas can be used to perform the Spectrum Sensing.
In this case, the problem of the high power of SU signal power relative to PU
signal can be solved due to the spatial diversity of the receiving antennas. Here,
the number of detected signals will play the main role in order to examine the
availability of the channel instead of cancelling the SU copy received in the mixture
in establish the Spectrum Sensing. Blind Source Separation techniques can be good
candidates as they do not require pre-information about the SU signal neither the
PU signal. Even these techniques have been proposed in the context of Spectrum
Sensing for Cognitive Radio, their related contributions in such context are very

limited, hence, new horizons can be opened.

B Spatial False Alarm (SFA) is a detection problem that has been recently addressed.
It happens when a PU which is outside of the SU operating cell is detected. Here,
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distinguishing between PUs inside and outside SU operating cell becomes manda-
tory in order to do not loss the available channel opportunity. Here, the Spectrum
Sensing and source localization can be jointly performed in order to diagnose the

channel status.

B For Underlay CR, SU can occupy sub-carriers not used by an OFDM PU signal.
Using OFDM by SU can affect the Quality of Service of PU signal due to the inter-
ference caused by the side lobes. To solve this problem, Filter-Bank Multicarrier
(FBMC) modulation can be considered to be used by SU, due to its capability to
reduce considerably the power of the side lobes, which alleviates its impact on the
primary transmission. Many challenges face FBMC, such as its complexity and low
flexibility for the Multi-Input Multi-Ouput (MIMO) CR systems. Such a problem

is an actual research field.

B With the going to 5G where CR will be a emerging module, MIMO systems will
be more and more used. In such a context, the study of FD-CR for MIMO sys-
tem becomes of high importance in order to show its applicability under the RSI

problems circumstances.

B The transmitting antennas designed for 5G are not omnidirectional, and their trans-
mission are of tight beam-width. This fact makes the Spatial Diversity Multiple
Access (SDMA) communication possible. Here, instead of sensing the PU signal
presence, the angle of arrival of this signal should be sensed. Such a sensing will

open new research horizons and offers new dimensions to the spectrum opportunity.
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Variance of Ty, under H)

As po = E[T)]) = 0, using equation (4.26), the variance V{ can be written as follows:
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The term N%“UALE [(Z;l (1;; —k+ 1) ]W(k)|2> ] can be simplified as follows:
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Since W (k) is Gaussian and i.i.d. then:
1) The kurtosis of W (k) is zero:
kurt(W (k) = E[[W (k)[*] — EIW? (k)] = 2E*[|W (k)[*] = 0
Since E[W?2(k)] = 0 because W (k) is circular symmetric Gaussian, then
B(|W (k)] = 2B[|W (k)]"]* = 2N?a,, (A.3)
2) For ki # ko:
E(|W (k1) P|W (k2)[*) = E[[W (ky) PIE[[W (k2)|?] = N?o,, (A4)
Using equations (A.3) and (A.4), the equation (A.2) becomes:
N 2
4 . N 9 N? 5N 3 1
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Back to equation (A.1), Vy becomes:
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Variance of T;, under H,

The calculation of equation (B.1) in the next page stands for finding the variance, Vj, of

T, under Hy. In equation (B.1), the part Ay = 0 because:
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Since W, (k) and W, (k) are independent and
E[Wp(k1)W(k2)] = EWZ2(k1)Wy(k2)] = 0 Vki and kg, since Wy(k) and Wy (k) are

Gaussian, then equation (B.2) becomes zeros.

Using the i.i.d. and the circular properties of W (k) and the fact that s(n) is deterministic,

equation (B.1) becomes:
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Appendix C

Approximation of the Detection
Probability

The approximation of the @Q-function using a first-order Taylor series was proposed in [47]
without justification. Here we show by simulation the effectiveness of this approximation.
The Taylor series of a function f(¢) around ¢y can be developped as follows:

oo

(t—to)"
ft) = Zf(n)(to)T (C.1)

n=0
Where (") (tg) is the nth order derivative of f(t) at to.
According to Equation (4.45), we aim at simplifying p) = Q( \/)%) in order to ﬁr;dbthe

. . : : by

analytic probability of detection under Rayleigh channel. Let us define g(vy) = AT
The first g1 () and the second order, g(y), Taylor series approximations of g() around

7o can be found as follows:

91(7) = 9(v0) + 9 (70) (v — ) (C.2)

)(7_70)2 (C3)

92(7) = 9(20) + ¢'(70) (v = 70) + 9" (0)

Let vo0 = A/b as g(7) = 0, and then Q(g(70)) = 0.5, which is the middle point of the
Q-function. Accordingly, ¢'(70) and ¢”(y0) can derived as follows:

o b
g (v) = NV (C.4)

c(c)\(l +3/b) + 4bVo>

9" () = Y DEE (C.5)
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Figures (C.1(a)) and (C.1(b)) present a comparison between p!, = Q(g(v)) and its ap-
proximations Q(g1(7y)) and Q(g2(7y)) under different conditions. Figure (C.1(a)) shows
the variation of pZ and its approximations in terms of SNR for different ps,. The number
of samples is fixed to 1500 and Ns; = 4 sps, while figure (C.1(b)) shows under SNR of
10 dB and Ng = 4 sps, the variation of pfl and its approximations in terms of N for
different prq. As shown in figures (C.1(a)) and (C.1(b)), the analytic and the approxi-
mated curves are closed to each others under the various conditions. As expected, g2(7)
leads to a more robust approximation, since Q(g2(7y)) is almost colinear with Q(g(7)).
Even though, gi(v) results are very closed to exact ones. Therefore gi(v) is used to
approximate the detection probability under Rayleigh fading channel.
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FIGURE C.1: (a): The probability of detection p% and its approximation in terms of

SNR for different pr,, N = 1500 samples and N, = 4 sps, (b): The probability of

detection p!) and its approximation in terms of the number of samples N, for different
Pfa, SNR=—10 dB samples and Ny = 4 sps



Appendix D

Probability of Detection and
Probability of False Alarm under
Full-Duplex mode

As by our assumption D(m), W(m) and X(m), are Gaussian ¢.i.d., then Yg;.(m) is
also Gaussian and i.i.d.. Therefore the Test Statistic, Tgp, of equation (5.13) follows a
normal distribution according to the Central Limit Theorem (CLT) for a large N. Under
Hy (i.e. PU’s sugnal S(m) does not exist), the mean, po, and the variance, Vj of T can

be obtained as follows:

N
po=FIT] = B| + 3 |D<m>+w<m>|2] — o3+ 02 (D.1)
m=1
1 al i
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Since Ysic(m) is Gaussian, then its kurtosis, kurt(Ysic(m)), is zero.

kurt(Ysie(m)) = El[Ysic(m)['] = B[Yac(m)] — 2B°(|Yiie(m)|*] = 0 (D.3)
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Assuming that the real and the imaginary parts of Yj;.(m) are independent and of the

same variance then F[Y2_(m)] becomes zero. Therefore:

sic
E[[Ysic(m)["] = 2B*[|Ysic(m)[* = 2(07, + 03)? (D.4)
Back to equation (D.2), the variance, Vj becomes:

1
Vo= (0% + 03’ (D.5)

By following the same procedure, 1 and V; can be obtained as follows under Hy (X (m)

exists):
p =0y +0g+ 0 (D.6)
1
Vi = (o0 + 04+ 03)* (D7)

Once the mean and the variance of TS, which has normal distribution under both Hj
and Hi, are found, the expressions of False Alarm and Detection Probabilities can be

derived using the @Q— function.
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« Détection de Spectre pour les systemes Half et Full-Duplex Radio Intelligente Entrelacée

Résumé : En raison de la demande croissante de services de communication sans fil et de la limitation des ressources de spectre, la radio
cognitive (CR) a été initialement proposée pour résoudre la pénurie de spectre. CR divise les systémes transmetteurs-récepteurs de
communication en deux catégories : les Utilisateurs Principaux (PU) et les Utilisateurs Secondaires (SU). PU a le droit légal d'utiliser la
bande spectrale, tandis que SU est un utilisateur opportuniste qui peut transmettre sur cette bande chaque fois qu'elle est vacante afin
d'éviter toute interférence avec le signal de PU. De ce fait, la détection des activités de PU devient une priorité principale pour toute CR.
Le Spectrum Sensing devient ainsi une partie importante d’un systéme CR, qui surveille les transmissions de PU. En effet, le Spectrum
Sensing joue un role essentiel dans le mécanisme du fonctionnement du CR en localisant les canaux disponibles et, d'autre part, en
protégeant les canaux occupés des interférences de la transmission SU. En fait, Spectrum Sensing a gagné beaucoup d'attention au cours
de la derniére décennie, et de nombreux algorithmes sont proposés. Concernant la fiabilité de la performance, plusieurs défis comme le
faible rapport signal sur bruit, I'incertitude de bruit (NU), la durée de détection du spectre, etc.

Cette thése aborde les défis de la détection du spectre et apporte quelques solutions. De nouveaux détecteurs basés sur la détection des
caractéristiques cyclo-stationnaires et la densité spectrale de puissance (PSD) du signal de PU sont présentés. Un algorithme de test de
signification de corrélation canonique (CCST) est proposé pour effectuer une détection cyclo-stationnaire. CCST peut détecter la
présence des caractéristiques cycliques communes parmi les versions retardées du signal regu. Ce test peut révéler la présence d'un signal
cyclo-stationnaire dans le signal de mélange recu. Une autre méthode de détection basée sur la PSD cumulative est proposée. En
supposant que le bruit est blanc (sa PSD est plate), la PSD cumulative s'approche d'une droite. Cette forme devient non linéaire pour les
signaux de télécommunication. Distinguer la forme cumulative PSD peut donc conduire a diagnostiquer I'état du canal.

La radio cognitive Full-Duplex (FD-CR) a également été étudiée dans ce manuscrit, ou plusieurs défis sont analysés en proposant de
nouvelles contributions. Le fonctionnement FD permet au CR d'éviter la période de silence pendant la détection du spectre. Dans le
systeme CR classique, le SU cesse de transmettre pendant la détection du spectre afin de ne pas affecter la fiabilité de détection. Dans
FD-CR, SU peut éliminer la réflexion de son signal transmis et en méme temps réaliser le Spectrum Sensing. En raison de certaines
limitations, le résidu de l'auto-interférence ne peut pas étre complétement annulé, alors la crédibilité de la détection du spectre est
fortement affectée. Afin de réduire la puissance résiduelle, une nouvelle architecture de récepteur SU est élaborée pour atténuer les
imperfections du circuit (comme le bruit de phase et la distorsion non linéaire de I'amplificateur a faible bruit du récepteur). La nouvelle
architecture montre sa robustesse en assurant une détection fiable et en améliorant le débit de SU.

Mots Clés : Radio Intelligente Entrelacée, Détection de Spectre, Half-Duplex, Full-Duplex, Corrélation Cyclique, Densité
Spectrale de Puissance Cumulée, Annulation de I’Auto-Interférence, Atténuation des Imperfection de Hardware

«Spectrum Sensing for Half and Full-Duplex Interweave Cognitive Radio Systems»

Abstract: Due to the increasing demand of wireless communication services and the limitation in the spectrum resources, Cognitive
Radio (CR) has been initially proposed in order to solve the spectrum scarcity. CR divides the communication transceiver into two
categories: the Primary (PU) or the Secondary (SU) Users. PU has the legal right to use the spectrum bandwidth, while SU is an
opportunistic user that can transmit on that bandwidth whenever it is vacant in order to avoid any interference to the signal of PU. Hence
the detection of PU becomes a main priority for CR systems. The Spectrum Sensing is the part of the CR system, which monitors the PU
activities. Spectrum Sensing plays an essential role in the mechanism of the CR functioning. It provides CR with the available channel in
order to access them, and on the other hand, it protects occupied channels from the interference of the SU transmission. In fact, Spectrum
Sensing has gained a lot of attention in the last decade, and numerous algorithms are proposed to perform it. Concerning the reliability of
the performance, several challenges have been addressed, such as the low Signal to Noise Ratio (SNR), the Noise Uncertainty (NU), the
Spectrum Sensing duration, etc. This dissertation addresses the Spectrum Sensing challenges and some solutions are proposed. New
detectors based on Cyclo-Stationary Features detection and the Power Spectral Density (PSD) of the PU are presented. Canonical
Correlation Significance Test (CCST) algorithm is proposed to perform cyclo-stationary detection. CCST can detect the presence of the
common cyclic features among the delayed versions of the received signal. This test can reveal the presence of a cyclo-stationary signal
in the received mixture signal. Another detection method based on the cumulative PSD is proposed. By assuming the whiteness of the
noise (its PSD is at), the cumulative PSD approaches a straight line. This shape becomes non-linear when a telecommunication signal is
present in the received mixture. Distinguishing the Cumulative PSD shape may lead to diagnose the channel status.

Full-Duplex Cognitive Radio (FD-CR) has been also studied in this manuscript, where several challenges are analyzed by proposing a
new contribution. FD functioning permits CR to avoid the silence period during the Spectrum Sensing. In classical CR system, SU stops
transmitting during the Spectrum Sensing in order to do not affect the detection reliability. In FD-CR, SU can eliminate the reflection of
its transmitted signal and at the same time achieving the Spectrum Sensing. Due to some limitations, the residual of the Self Interference
cannot be completely cancelled, then the Spectrum Sensing credibility

is highly affected. In order to reduce the residual power, a new SU receiver architecture is worked out to mitigate the hardware
imperfections (such as the Phase Noise and the Non-Linear Distortion of the receiver Low-Noise Amplifier). The new architecture shows
its robustness by ensuring a reliable detection and enhancing the throughput of SU.

Keywords : Interweave Cognitive Radio, Spectrum Sensing, Half-Duplex, Full-Duplex, Canonical Correlation Significance Test,
Cumulative Power Spectral Density, Self-Interference Cancellation, Hardware Imperfection Mitigation
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