. , Radius evolution in test, predicted with non-confined Rayleigh-Plesset equation and with confined Rayleigh-Plesset with ? calib

. .. , Variation of volume for a quarter of the structural sphere submitted to uniform internal pressure before application of the pressure and after, p.74

. , 74 3.7 Radius evolution in tank test and predicted with the confined Rayleigh-Plesset model in tank with ? plate and ? c

, Drawing of the system considered for the confined bubble dynamics simulations, vol.83

, Drawing of the considered problem in quasi-incompressible simulations, p.86

, Mesh principle for the liquid medium in quasi-incompressible simulations, p.86

. , Bubble radius vs. time results obtained with different mesh refinements in quasiincompressible finite element simulations, vol.87

. , Comparison of bubble radius, liquid kinetic energy and movement of the internal container wall for quasi-incompressible finite element simulations and confined Rayleigh-Plesset equation

. , compressible confined bubble dynamics simulations

. , Mesh principle in compressible confined bubble dynamics simulations.-dynamics simulations

. , Time results obtained with different mesh refinements in compressible finite element simulations, Bubble radius vs

. , Comparison of the bubbles radii, liquid kinetic energy and movement of the internal container wall for compressible finite element simulations and Keller-Miksis and the confined Rayleigh-Plesset analytical models

, Comparison of the pressure applied onto the structure and at the bubble interface for compressible finite element simulations and confined Rayleigh-Plesset equation, p.92

. , Bubble radius predicted using the confined Keller-Miksis equation in a spherical rigid container (-) and predicted with the confined Rayleigh-Plesset equation in a 6 mm thick ( ), 15 mm thick ( ) and 60 mm thick ( ) R s = 1 m steel container

, Bubble radius predicted using the confined Keller-Miksis equation in several spherical rigid containers of internal radius R s. R s = 0, R s = 50 m ( ) and R s = ? ( ). blblablablablabla blablbla blabla, vol.5, p.104

. , 105 5.4 Sketch of the considered problem for simulations of bubble dynamics inside a rigid container, Propagation of the initial liquid velocity potential within the liquid (a) and correspondence with change in the pressure onto the structure (b) for a bubble in a R s = 2 m rigid container

. , Mesh principle for simulations of bubble dynamics inside a rigid container. bbbbbbbbbbbbbbbbbbbbb 5.6 Bubble radius vs time results obtained with different mesh refinements NxM: 10x159 (-), 24x318(, pp.110-1280

. , R s = 1 m (-) and R s = 2 m (·····) rigid containers and obtained by ALE finite element simulations in R s = 0.5 m ( ), R s = 1 m ( ) and R s = 2 m ( ) spherical rigid containers, Bubble radius predicted using the confined Keller-Miksis equation in a R s = 0.5 m

. .. Blablablablablablabla-blablablablablablablabla, 108 5.9 Bubble radius vs. time in a R s = 1 m 6 mm thick steel spherical container predicted with the confined Keller-Miksis equation with c l = 1500 m.s ?1 (-), c l = 2500 m.s ?1 ( ), c l = 10000 m.s ?1 ( ) and the confined Rayleigh-Plesset equation with c l = ? ( ), Pressure at the bubble and structure interfaces predicted using Keller-Miksis equation (-) and, vol.6

, Propagation of the initial liquid velocity potential within the liquid (a) and correspondence with change in the structure internal radius (b) and in the pressure at the structure wall (c) for a R s = 2 m 6 mm thick steel container, p.110

. , Sketch of the considered problem for bubbles dynamics simulations in an elastic containers

, Mesh principle for bubble dynamics simulations in an elastic containers, p.111

. , pressure at structure wall (c) and at the bubble interface (d) predicted using the confined Keller-Miksis equation in R s = 1m steel (-), aluminium (-) and PMMA (·····) containers and obtained by ALE finite element simulations in steel ( ), aluminium ( ) and PMMA ( ) containers, Bubble radius (a), container internal radius variation (b)

. , container internal radius variation (b) and pressure at structure wall (c) predicted in a R s = 1m 6 mm thick steel container using the confined Keller-Miksis equation (-), the confined Rayleigh-Plesset equation ( ) and obtained by ALE finite element simulations ( ), Bubble radius (a)

A. Deletombe, ONERA ballistic test of 7.62 mm ammunition at 850 m.s ?1 on a generic AIRBUSGroup Innovation tank, 2011.

. , Comparison of the cavity shape between the experimental shape and mass fraction of gas calculated in the simulation

A. , Photograph taken shortly after the cavity pulled away from the surface and the simulation result at the same depth of penetration of the sphere, p.127

. , Cavity evolution in a fluid filled tank penetration simulation (10.6 m.s ?1 ), mass fraction of gas calculated in the simulation

, Sketch of the experimental setup for optic cavitation experiments, p.134

, Sketch of the PMMA sphere used in the optic cavitation experiments, p.134

. , Millimetric grid positioned in the plexiglass spherical container and aquarium before the tests

. , Dynamic of a vapour bubble created by optical cavitation in a large aquarium filled with water obtained with high speed camera

. , Dynamic of a vapour bubble created by optical cavitation in a spherical container of 13.1 mm internal diameter, filled with water obtained with high speed camera

C. , Experimental bubble radius time histories for bubbles created by optical cavitation in a 120x190x380 mm 3 aquarium and in a 13.1 mm internal diameter spherical container

, List of Tables I Valeurs numériques des conditions initiales utilisées pour les simulations des coups de bélier hydrodynamiques avec l'´ equation de Rayleigh-Plesset confinée

. .. Mpa, 17 III Informations sur les modèles et performances des calculs compressibles sur un calculateur Intel Ivy-Bridge E5-2667v2 ayant une fréquence d, p.22

. , 57 2.2 Numerical values of the initial conditions used for confined Rayleigh-Plesset simulations of HRAM events, Numerical values of the initial conditions used for Rayleigh-Plesset simulations of HRAM

. , Numerical values of the initial conditions used for the tank case in confined RayleighPlesset simulations

. , Numerical values used for the calculation of the coefficient ? s for a V =0.3x0.54x0.66 m 3 tank (see Airbus-Group Innovation tank)

. , Variation of volume authorised by the plates with respect to 1 MPa variation of pressure

. , Material numerical values used in the simulations, vol.87

. , Model features and calculation performances on Intel Ivy-Bridge E5-2667v2 processors clocked at 3.3 GHz

. , Model features and calculation performances on Intel Ivy-Bridge E5-2667v2 processors clocked at 3.3 GHz

. , Model features and calculation performances on Intel Ivy-Bridge E5-2667v2 processors clocked at 3.3 GHz

. , Material numerical values used in the simulations

A. , Numerical values used for the water entry simulation

B. , 1 Numerical values of liquids thermal properties at the studied temperature, p.130

B. , 2 Numerical values of liquids thermal properties at the studied temperature, p.130

B. , 3 Numerical values of ?T and ? for the different liquids at the studied temperature, vol.131

. , Summary of the data of interest for optic cavitation tests in the aquarium and spherical container filled with water

, Bibliography Handbook of aviation fuel properties, 1983.

S. Abrate, Hull slamming, Applied Mechanics Reviews, vol.64, issue.6, pp.1003-1037, 2011.

J. Aldred, Manual of Sound Recording, 1972.

C. E. Anderson, T. R. Sharron, J. D. Walker, and C. J. Freitas, Simulation and analysis of a 23-mm hei projectile hydrodynamic ram experiment, International Journal of Impact Engineering, vol.22, pp.981-997, 1999.

J. A. Artero-guerrero, J. Pernas-sánchez, D. Varas, and J. López-puente, Numerical analysis of cfrp fluid-filled tubes subjected to high-velocity impact, Composite Structures, vol.96, pp.286-297, 2013.

H. Ashley and G. Zartarian, Piston-theory-a new aerodynamic tool for the aeroelastician, Journal of the Aeronautical Sciences, vol.23, p.1109, 1956.

R. E. Ball, Aircraft fuel tank vulnerability to hydraulic ram: modification of the Northrup finite element computer code BR-1 to include fluid-structure interaction. Theory and user manual for BR-1, 1974.

R. E. Ball, Structural response of fluid containing tank to penetrating projectiles (hydraulic ram)-a comparison of experimental and analytical results, 1976.

R. E. Ball, The fundamental of aircraft combat survability analysis and design, 1985.

G. Barras, M. Souli, N. Aquelet, and N. Couty, Numerical simulation of underwater explosions using an ale method. the pulsating bubble phenomena, Ocean Engineering, vol.41, pp.53-66, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00663470

S. J. Bless, Fuel tank survivabilty for hydrodynamic ram induced by high-velocity fragments. part i experimental result and desigh summary, 1979.

S. J. Bless, J. P. Barber, P. F. Fry, and R. K. Newman, Studies of hydraudynamic ram induced by high velocity spherical fragment simulator, 1976.

C. E. Brennen, Cavitation and bubble dynamics, 1995.

A. Caleyron, A. Combescure, V. Faucher, and S. Potapov, Sph modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells, Journal of Fluids ans Structures, vol.39, pp.126-153, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00819622

G. L. Chahine and R. Duraiswami, Boundary element method for calculating 2-d and 3-d underwater explosion bubble behaviour in free water and near structures, 1994.

R. B. Chapman and M. S. Plesset, Thermal effects in the free oscillation of gas bubbles, ASME J. Basic Eng, vol.93, pp.373-376, 1971.

A. Charles, E. Deletombe, and J. Dupas, A numerical study on cavity expansion in water : Hydraulic ram under ballistic impacts, International Conference on Structures Under Shock and Impact, 2012.

R. H. Cole, Underwater Explosions, 1945.

V. Coralic and T. Colonius, Shock-induced collapse of a bubble inside a deformable vessel, European Journal of Mechanics-B\Fluids, vol.40, pp.64-74, 2013.

E. Deletombe and B. Malherbe, Fluid-structure simulation of hydraulic ram pressure in fuel tanks, Advances in computational Structural Mechanics, pp.271-281, 1998.

E. Deletombe, D. Delsart, J. Dupas, J. L. Charles, and J. F. Sobry, Methodology for f.e. resolution of coupled fluid/structure problems, International Crashworthiness and Design Symposium, 2003.

E. Deletombe, J. Fabis, and J. Dupas, Vulnerability of a/c fuel tanks with respect to hydrodynamic ram pressure. interpretation of 7.62 mm experiments, Colloque National en Calcul des Structures (CSMA), 2011.

E. Deletombe, J. Dupas, and T. Fourest, Numerical optimisation of composite fuel tanks subject to a 7.62 mm bullet hydraulic ram event using a loose fluid/structure coupling scheme, ECCOMAS, 2012.

E. Deletombe, J. Fabis, J. Dupas, and J. M. Mortier, Experimental analysis of 7.62 mm hydrodynamic ram in containers, Journal of Fluids and Structures, vol.37, pp.1-21, 2013.

P. J. Disimile, L. A. Swanson, and N. Toy, The hydrodynamic ram pressure generated by spherical projectiles, International Journal of Impact Engineering, vol.36, issue.6, pp.821-829, 2009.

T. Fourest, J. Dupas, E. Deletombe, J. Laurens, and M. Arrigoni, Study of the capabilities of an ale bi-material fluid simulation for solving cavity expansion and collapse during an hydrodynamic ram event, 13ème13ème Colloque national en calcul des strutures, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00869445

T. Fourest, J. Laurens, E. Deletombe, J. Dupas, and M. Arrigoni, Analysis of bubbles dynamics created by hydrodynamic ram in confined geometries using the rayleigh-plesset equation, International Journal of Impact Engineering, vol.73, pp.66-74, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076071

T. Fourest, J. Laurens, E. Deletombe, M. Arrigoni, and J. Dupas, Cross validation of analytical and finite element models of hydrodynamic ram loads prediction in liquid filled thin-walled containers, Journal of Fluids and Structures, vol.59, pp.285-296, 2015.

T. Fourest, J. Laurens, E. Deletombe, M. Arrigoni, and J. Dupas, Développement et validation de modêles de dynamique de bulles confinées pour la simulation du coup de bélier hydrodynamique dans les réservoirs de carburants, Comptes Rendus Mecanique, 2015.

T. Fourest, J. Laurens, E. Deletombe, J. Dupas, and M. Arrigoni, Confined rayleigh-plesset equation for hydrodynamic ram analysis in thin-walled containers under ballistic impacts, Thin?Walled Structures, vol.86, pp.67-72, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01126634

T. Fourest, J. Laurens, V. Faucher, E. Deletombe, M. Arrigoni et al., Development and validation of a confined keller-miksis model for hydrodynamic ram loads prediction in liquid-filled containers, Journal of Fluid Mechanics, 2015.

J. P. Franc, The rayleigh-plesset equation: a simple and powerfull tool to understand various aspects of cavitation. Fluid dynamics of cavitation and cavitating turbopumps, CISM Courses and lectures, vol.496, pp.1-41, 2007.

J. P. Franc, F. Avellan, B. Belahadji, J. Y. Billard, L. Brian¸onbrian¸on et al., , 1995.

D. Frost and B. Sturtevant, Effects of ambient pressure on the instability of a liquid boiling explosively at the superheat limit, ASME Journal of Heat Transfer, vol.108, pp.418-424, 1986.

J. Fujikawa, T. Akamatsu, J. Yahara, and H. Fujioka, Studies of liquid-vapour phase change by a shock tube, Applied Scientific Research, vol.38, pp.363-372, 1982.

S. Fujikawa and T. Akamatsu, Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in liquid, Journal of Fluid Mechanics, vol.97, issue.03, pp.481-512, 1980.

D. Fuster, G. Hauke, and C. Dopazo, Parametric analysis for a single collapsing bubble, Flow Turbulence Combus, vol.82, pp.25-46, 2009.

D. Fuster, C. Dopazo, and G. Hauke, Liquid compressibility effects during the collapse of a single cavitation bubble, J. Acoust. Soc. Am, vol.129, issue.1, 2011.

F. R. Gilmore, The growth or collapse of a spherical bubble in viscous compressible liquid, 1952.

R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Monthly notices of the royal astronomical society, vol.181, pp.375-389, 1977.

D. E. Grady, Fragmentation of Rings and Shells, 2006.

G. De-giorgi, D. Bello, and A. Ficarella, Analysis of thermal effects in a cavitating orifice using rayleigh equation and experiments, Journal of Engineering for Gas Turbines and Power, vol.132, issue.9, 2010.

G. Hauke, D. Fuster, and C. Dopazo, Dynamics of a single cavitating and reacting bubble. Physical review, 2007.

N. W. Jang, S. M. Gracewski, B. Abrahamsen, T. Buttaccio, R. Halm et al., Natural frequency of a gas bubble in a tube: Experimental and simulation results, Journal of the Acoustical Society of America, vol.126, issue.1, pp.34-40, 2009.

J. E. Jensen, W. A. Tuttle, R. B. Stewart, H. Brechna, and A. G. Prodell, Brookhaven national laboratory selected cryogenic data notebook, volume i, section i-ix, vol.I, 1980.

E. Johnsen and T. Colonius, Numerical simulations of non-spherical bubble collapse, Journal of Fluid Mechanics, vol.629, pp.231-262, 2009.

J. B. Keller and I. I. Kolodner, Damping of underwater explosion bubble oscillations, Journal of Applied Physics, vol.27, issue.10, 1956.

J. B. Keller and M. Miksis, Bubble oscillations of large amplitude, J. Acoust. Soc. Am, vol.68, pp.628-633, 1980.

K. D. Kimsey, Numerical simulation of hydrodynamic ram, 1980.

A. Korobkin, Blunt-body penetration into a slightly compressible liquid, Proceedings of 20th Symposium on Naval Hydrodynamics, vol.3, pp.179-186, 1994.

W. Lauterborn and H. Bolle, Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary, Journal of Fluid Mechanics, vol.72, 1975.

W. Lauterborn and A. Vogel, Shockwave emission by laser generated bubbles, SHOCKWAVES, vol.8, pp.67-103, 2013.

S. M. Lawrence and K. Kyekyoon, Motion of a gas bubble inside a spherical liquid container with a vertical temperature gradient, Journal of fluid Mechanics, vol.176, pp.521-531, 1986.

N. Lecysyn, A. Bony-dandrieux, L. Aprin, F. Heymes, P. Slangen et al., Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile, Journal of hazardous materials, vol.178, issue.1, pp.635-643, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02012164

N. Lecysyn, A. Dandrieux, F. Heymes, L. Aprin, P. Slangen et al., Ballistic impact on an industrial tank: Study and modeling of consequences, Journal of hazardous materials, vol.172, issue.2, pp.587-594, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02012169

M. Lee, R. G. Longoria, and D. E. Wilson, Cavity dynamics in high-speed water entry, Physics of FLuids, vol.9, issue.3, pp.540-550, 1997.

M. Lee, R. G. Longoria, and D. E. Wilson, Ballistic waves in high-speed water entry, Journal of Fluids and Structures, vol.11, pp.819-844, 1997.

T. G. Leighton, The inertia terms in equations of motion for bubbles in tubular vessels or between plates, Journal of the Acoustical Society of America, vol.130, issue.50, pp.3333-3338, 2011.

E. A. Lundstrom, Fluid dynamic analysis of hydrolic ram, Naval Weapons Center, 1971.

E. A. Lundstrom, Fluid/structure interaction in hydrolic ram, Proceedings of the Hydrodynamic Ram seminar, pp.223-230, 1977.

A. May, Vertical entry of missiles into water, Journal of applied physics, vol.23, issue.12, p.1952

J. H. Mcmillen, Shock wave pressure in water produced by impact of small sphere, Physical review, vol.46, issue.9, p.1945

J. H. Mcmillen and E. Harvey, A spark shadowgraphic study of body waves in water, Journal of Applied Physics, vol.17, issue.7, 1946.

J. J. Monaghan and R. A. Gingold, Shock simulation by the particle method {SPH}, Journal of Computational Physics, vol.52, issue.2, pp.374-389, 1983.

C. R. Morse and F. S. Stepka, Effect of projectile size and material on impact fracture of walls of liquid-filled tanks, 1966.

N. F. Mott, Fragmentation of shell cases, Proceedings of the Royal Society, vol.189, p.1947

J. Noack and A. Vogel, Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorbtion coefficients, and energy density, Journal of quantum electronics, vol.35, issue.8, pp.1156-1167, 1999.

D. Obreschkow, P. Kobel, N. Dorsaz, A. Bosset, C. Nicollier et al., Cavitation bubble dynamics inside liquid drops in microgravity, Physical Revue Letter, vol.97, 2006.

H. N. Oguz and A. Prosperetti, The natural frequency of oscillation of gas bubbles in tubes, Journal of the Acoustical Society of America, 1998.

A. Philipp and W. Lauterborn, Cavitation erosion by single laser-produced bubbles, Journal of Fluid Mechanics, vol.361, pp.75-116, 1998.

M. S. Plesset, The dynamics of cavitation bubbles, Journal of applied mechanics, vol.16, pp.277-282, 1949.

M. Plesset and R. B. Chapman, Collapse of an initially spherical vapor cavity in the neighbourhood of a solid boundary, Journal of Fluid Mechanics, vol.47, pp.283-290, 1971.

S. Popinet and S. Zaleski, Bubble collapse near a solid boundary: a numerical study of the influence of viscosity, Journal of Fluid Mechanics, vol.464, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01445438

A. Prosperetti and A. Lezzi, Bubble dynamics in a compressible liquid. part 1. first order theory, Journal of Fluid Mechanics, vol.168, pp.457-478, 1986.

L. Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, Philosophical Magazine Series, vol.6, pp.94-98, 1917.

E. Reissner, On the theory of bending of elastic plates, Journal of Mathematics and Physics, vol.23, issue.184, 1944.

A. K. Sareen and M. R. Smith, Evaluation of an analytical tool for ballistic dynamics simulation, MSC User's Conference, 1996.

M. Sauer, Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics, International Journal of Impact Engineering, vol.38, pp.511-520, 2010.

Y. Scolan and A. Korobkin, Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid, Journal of Fluids and Structures, vol.17, issue.2, pp.275-286, 2003.

J. E. Shepherd, J. C. Krok, and L. J. , Jet a explosion experiements: Laboratory testing, 1997.

J. E. Shepherd, C. D. Nuyt, and L. J. , Flash point and chemical composition of aviation kerosene (jet a), 2000.

H. H. Shi and M. Itoh, High-speed photography of supercavitation and multiphase flows in water entry, Proceedings of the 7th International Symposium on Cavitation, 2009.

H. H. Shi and M. Kume, An experimental research on the flow field of water entry by pressure measurements, Physics of fluid, vol.13, issue.1, 2001.

H. H. Shi and M. Kume, Underwater acoustics and cavitating flow of water entry, ACTA MECHANICA SINICA, vol.20, 2004.

H. H. Shi and T. Takami, Hydrodynamic behavior of underwater moving body after water entry, ACTA MECHANICA SINICA, vol.17, pp.35-44, 2001.

H. H. Shi, M. Itoh, and T. Takami, Optical observation of the supercavitation induced by highspeed water entry, In ASME Journal of Fluids Engineering, vol.122, pp.806-810, 2000.

M. Souli, A. Ouahsine, and L. Lewin, Ale formulation for fluid?structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.5-7, pp.659-675, 2000.

F. S. Stepka, Projectile-impact-induced fracture of liquid-filled, filament-reinforced plastic or aluminium tanks, 1966.

F. S. Stepka and C. R. Morse, Preliminary investigation of catastrophic fracture of liquid-filled tanks impacted by high velocity particles, 1963.

F. S. Stepka, R. P. Dengler, and C. R. Morse, Investigation of catastrophic fracturing and chemical reactivity of liquid-filled tanks when impacted by projectiles of high velocity, 1964.

F. S. Stepka, C. R. Morse, and R. P. Dengzey, Investigation of the characteristics of pressure waves generated in water filled tanks impactes by high-velocity projectiles, 1965.

P. Thevenet, Impact balistique d'une balle otan 7.62 sur réservoir : expérimentation et simulation du coup de bélier, 19ème19ème Congrès Français de Mécanique, 2009.

A. Tilhac, E. Deletombe, and J. Dupas, Aircraft fuel tank design against hydrolic raman optimisation exercise, 22 th Military aspects of Blast and Shock Conference, 2012.

S. Timoshenko and S. Woinowsky-krieger, Theory of plates and shells, 1959.

D. Varas, Estudio experimental y numerico del comportamiento de tanques integrados de combustible frente a impacto de alta velocidad, 2009.

D. Varas, R. Zaera, and J. López-puente, Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact, International Journal of Impact Engineering, vol.36, pp.81-91, 2009.

D. Varas, R. Zaera, and J. López-puente, Numerical modelling of the hydrodynamic ram phenomenon, International Journal of Impact Engineering, vol.36, pp.363-374, 2009.

D. Varas, J. López-puente, and R. Zaera, Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks, AIAA JOURNAL, vol.50, issue.7, pp.1621-1630, 2012.

D. Varas, R. Zaera, and J. López-puente, Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram, Aerospace Science and Technology, vol.16, pp.19-28, 2012.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation, vol.88, 2002.

A. Vogel, Nonlinear absorption: intraocular microsurgery and laser lithotripsy, Physics in Medicine and Biology, vol.42, pp.895-912, 1997.

Q. X. Wang and J. R. Blake, Non-spherical bubble dynamics in a compressible liquid part 1. travelling acoustic wave, Journal of Fluid Mechanics, vol.659, pp.191-224, 2010.

J. E. Woodrow and S. J. , The laboratory characterisation of fuel vapor under simulated flight conditions, 1997.