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This paper deals with the design of sensor arrays in the context involving the localization
of a few number of acoustic sources. Sparse approximation is known to be e�ective to �nd
the source locations, but it depends on di�erent array characteristics such as the number
of sensors and the array geometry. The present paper tackles this array design problem
under the form of a sequential sensor selection procedure. The proposed method alternates
between two steps. One step involves a source localization estimator, given a current set of
measurement points, to obtain the estimation variance. Then the other step selects the new
point where a future measurement will maximally decrease the variance from previous step.
As such, the procedure can be applied online. Both numerical and experimental studies are
conducted in an indoor near�eld con�guration. Results show that the proposed approach
performs better than o�ine state-of-the art methods, and the presented empirical study
reveals a better robustness to the model mismatches originating from the room re�ections.

[https://doi.org/10.1121/10.0014001]
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I. INTRODUCTION

Source localization from a limited number of point-
wise measurements is a common inverse problem in
acoustic or radar applications. The literature exhibits
a plethora of techniques to solve this problem. To
name a few, it goes from methods of beamforming9,41,
deconvolution5, to estimators relying on the help of a
prior through a Bayesian framework2, or Compressed
Sensing (CS) when there are few sources in the �eld43.

However, irrespective of the chosen technique, the
quality of source localization is impacted by the con�g-
uration of the array. To improve the reconstruction ac-
curacy, the classical antenna theory suggests the trivial
solution of increasing the number of sensors, placed at
randomized positions to avoid a regular geometry struc-
ture. Such an approach remains valid, especially when
the chosen method is sensitive to side and grating lobes �
such as beamforming. However, in this context the ran-
domization of sensor positions does not meet any form
of optimality. Moreover, depending on the context, the
number (resp. positions) of sensors may be constrained
by cost (resp. structural) limitations.

a)This work was also done while the author was a�liated at (a)
SEACom team, LabISEN Yncrea Ouest, 20 Rue Cuirassé Bretagne
CS 42807, 29228, Brest Cedex 2, France (b) ENSTA Bretagne,
Lab-STICC UMR 6285 CNRS, 2 Rue François Verny, 29806 Brest
Cedex 09, France; charles.vanwynsberghe@tii.ae

An extensive literature depicts how to optimize the
array geometry. One well-known approach relies on a re-
�nement of the directivity pattern, such as the reduction
of the side lobe levels3,44. The geometry is obtained as a
solution of a non-convex minimization problem, typically
via a genetic algorithm20,28,30, swarm optimization26 or
simulated annealing31,40. This approach is popular and
remains relevant to improve beamforming e�ciency, since
the latter is inherently related to the beampattern shape.
However, it is not relevant for other methods than beam-
forming. For example in CS, the quality of sparse source
localization depends on the incoherence of the acous-
tic propagation operator. In this case, the geometry
is preferably designed based on a statistical approxima-
tion of the restricted isometry property, or the null space
property14.

Finding an optimal array geometry can be tackled
by ideas stemming from experimental design13,32, and
is known under the name of sensor selection in the lit-
erature. The goal is to minimize the variance of some
estimator for a given number of sensors and a collection
of candidate positions. Although attractive, acoustic ar-
ray design by sensor selection seems less common than
beampattern-based methods. One example, in7, illus-
trates an optimal array deployment for localization by
time of arrival measurements. In18, the number of mea-
surements is sequentially augmented by moving a micro-
phone array to a new optimal position, and the source
reconstruction is re�ned at each iteration. Despite being
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elegant, this approach is speci�c to spread sources due to
the use of Gaussian prior.

The aim of the present work is to introduce a sequen-
tial sensor selection when there are few acoustic sources.
It is derived from the Bayesian framework and relies on
two key points. First it computes a solution of the source
vector by a sparsity-enhancing hierarchical model45. Sec-
ond, it selects the next sensor position which maximally
reduces the variance of the previously computed solution.
With such a sequential procedure, the optimal selection
is informed by the previous measurements24, and suc-
cessful applications were demonstrated such as in MRI36

or temperature monitoring27. The present work investi-
gates the e�ciency of the idea in acoustic source local-
ization, with a validation in an experimental, near�eld
indoor scenario. To the best of authors' knowledge, this
is the �rst paper exhibiting in situ experiments of sensor
selection applied to source localization with real data.

The paper is organized as follows. In sec. II, the the-
ory of the proposed approach is described. The coupled
problems of sensor selection and source localization are
detailed, then the derivations to obtain a low-complexity
greedy algorithm are presented in sec. III. Next, sec. IV
de�nes the case of study: an indoor setup for acoustic
source localization. After a description (in sec. V) of
the chosen criterion and state-the-art methods to assess
and compare the performance of the proposed algorithm,
results from both simulated and experimental results are
analyzed in sec. VI. Also, it includes a parametric study
on the robustness of sensor selection to model mismatch
induced by room re�ections.

Notations used in this paper are as follows. Bold-face
letters are reserved for matrices (uppercase) and vectors
(lowercase), and standard font denotes scalar parame-
ters. The symbol .T (resp. .H) de�nes the transpose
(resp. Hermitian transpose) of a matrix, det(A) is the
determinant of A, diag(a) is a diagonal matrix with the
elements of a on the diagonal. IN is the identity matrix
of size N ×N , and 0N is the column vector with N ze-
ros. The variable estimates are written with the .̃ tilde
symbol. Calligraphic letters K (resp. M) denote coordi-
nate sets of cardinality |K| (resp. |M|). Probabilities are
de�ned as P(.) when they are discrete, and as P(.) when
they are density functions. Finally we denote NC(a,A)
the complex multivariate Normal distribution of mean a
and covariance A, and the expectation operator is E{.}.

II. SENSOR SELECTION FOR SOURCE LOCALIZATION

A. Model description

Let the array of M sensors lie in the 3-dimensional
space, with the m-th sensor position denoted pm ∈ R3.
The set M = {p1, . . . ,pm, . . . ,pM} contains the sensor
positions, meaning that |M| = M .

The main goal of our work is to determine a subset
K ⊆ M of K sensor positions leading to good source-
localization performance. We suppose that there are S
sources at frequency f to localize, and we approximate

the continuous source domain by a grid of N points.
Thus, we consider a linear on-grid model with additive
noise to describe each measurement. For the m-th sensor
the model writes:

y(pm) = a(pm)s+ wm, (1)

with s ∈ CN×1 the vector of unknown source amplitudes
to be estimated, a(pm) ∈ C1×N the row vector describing
the propagation of the sources from the grid to the sensor
position pm at frequency f , and wm ∈ NC(0, σ2) is a
random noise.

The acoustic �eld is supposed to contain a few num-
ber of sources, with the condition that S ≪ N . Ac-
cordingly the signal s is S-sparse, i.e. it has S non-zero
elements. Note that there is no particular constraint on
the propagation model, excepted linearity: the row vec-
tor a(pm) may depict conditions of far or near �eld, with
or without speci�c boundary conditions depending on the
�eld of application � e.g. indoor with multipaths or un-
derwater in shallow water23.

Let K ⊆ M to be a subset of sensors from the array,
meaning that |K| ≤ M . De�ning the measurement vector

as yK =
[
y(p1), . . . , y(pm), . . . , y(p|K|)

]T
, the model (1)

in matrix form reads:

yK = AKs+wK, (2)

with AK =
[
a(p1)

T , . . . ,a(pm)T , . . . ,a(p|K|)
T
]T

the
|K| × N forward propagation matrix, and wK =[
w1, . . . , wm, . . . , w|K|)

]T
the |K| × 1 noise vector. We

assume that the elements of wK are independent and
identically distributed: wK ∼ NC(0|K|, σ

2I|K|).
In this paper, we consider a Bayesian framework to

devise our sensor-placement procedure. To this end,
we need to de�ne a prior model P(s) which properly
accounts for the sparse nature of s. A typical choice
for P(s) is the so-called Bernoulli-Gaussian model (see
e.g.21,22,35,38,46). One standard formulation of this model
reads:

P(s) =
N∏

n=1

P(sn), (3)

with

P(sn) =
∑

bn∈{0,1}

P(sn|bn)P(bn). (4)

P(bn) = Ber(p) is a Bernoulli distribution with param-
eter p ∈ [0, 1] and P(sn|bn) = CN (0, σ2

bn
) is a zero-

mean complex Gaussian density with variance σ2
bn
. It

can be easily seen that typical realizations of the model
are (quasi-) sparse vectors when p ∼ 0, σ2

0 ∼ 0 and
σ2
1 ≫ 0. Interestingly, several authors (see21,38) have em-

phasized the connection between a maximum a posteriori
estimation problem involving a Bernoulli-Gaussian prior
and the �ℓ0-penalized� problem, ubiquitous in the �eld
of sparse representations. The Bernoulli-Gaussian model

2 J. Acoust. Soc. Am. / 19 September 2022 Sequential sensor selection for sparse source localization



© 2022 Acoustical Society of America. This article may be downloaded for personal use only.
Any other use requires prior permission of the author and the Acoustical Society of America.

can thus be seen as an ideal probabilistic modelling of
the sparse nature of the source vector s.

In this work, we use the Bernoulli-Gaussian prior as
a starting point to motivate our sensor-selection method-
ology. In the next sections, we will then consider some
simpli�cations to circumvent the computational bottle-
neck induced by this model.

B. The sensor selection problem

In the context of source localization, the sensors must
be positioned in such a way that the uncertainty in the
number, positions and amplitudes of the sources is min-
imized when the measurements are collected. In the
Bayesian framework considered in this paper, the uncer-
tainty in these quantities is directly related to the spread
of the posterior distribution p(s|yK). For instance, if
p(s|yK) reduces to a Dirac's delta, s can be perfectly re-
covered from yK and there is no residual uncertainty on
the source locations upon the observation of yK. Con-
trarily, when the mass of p(s|yK) is spread over the whole
domain CN , the uncertainty about s is high and the error
made by any point-estimate s̃K is likely to be large.

Since working with the full distribution p(s|yK) is an
intractable task, it is common to map the latter to some
scalar-valued cost function, see4,32. In this paper, we use
the following function:

f(K) = log det(ΣK), (5)

where

ΣK ≜ Es|yK{(s− Es|yK{s})(s− Es|yK{s})
H} (6)

is the covariance matrix of s|yK. This �gure of merit is
used in the so-called �D-optimal design� procedures and
is widely known in the literature32. There are two moti-
vations for using this function. First the covariance ma-
trix fully describes the estimator variance, so a selection
based on this matrix will naturally control the estimator
uncertainty. Second, the covariance matrix describes the
shape of the con�dence ellipse in the N-dimensional space
that contains the error estimation25. The goal of the
function is to capture the ellipse shape with one scalar.
In D-optimality, the function f(K) provides the log vol-
ume of this ellipse.

Note that relying on the covariance only has a limi-
tation: it does not take the estimator bias into account.
If the mean square error expression of the considered es-
timator exists, the optimal selection can be based on it so
that both bias and variance are reduced � e.g. see33. This
direction is out of scope in this paper, because the mean
square error is unknown. Thus, there is no guarantee of
controlling the estimator bias via D-optimal design.

The main question addressed in the paper is as fol-
lows: which sensors in M should we select in order to
minimize f(K) when |K| = K? This question formally
write as follows:

Problem 1 Given a set of potential sensor positions M
and a number of sensors K ≤ M , �nd the subset of sen-

sor positions K such that

K̃ = arg min
K⊆M

f(K) subject to |K| = K. (7)

Unfortunately, solving this problem is an intractable
task. Bottlenecks are located at two levels. First, (7) is a
discrete-valued optimization problem and, in the current
state of knowledge, there is no polynomial-time procedure
able to solve it. Second, the evaluation of the cost func-
tion f(K) is intractable because the Bernoulli-Gaussian
prior induces a summation over the 2N possible con�gu-
rations of the Bernoulli variable when p(s|yK) has to be
evaluated.

In the rest of this paper, we propose a methodology
for sensor selection which circumvents these two bottle-
necks by resorting to some approximations. In the next
two subsections, we show that the posterior covariance
matrix ΣK (and thus the cost function f(K)) can be ef-
�ciently evaluated when the prior model P(s) is relaxed
to some hierarchical Gamma-Gaussian model. In section
III, we consider a greedy procedure to compute an ap-
proximate solution of (7).

Our approach can thus be seen as a tractable pro-
cedure to compute an approximation of the solution of
(7).

C. Posterior covariance with Gaussian prior model

As a starting point, let us focus on the structure
of the posterior covariance matrix when considering a
Gaussian prior model:

P(s|α) = CN (0,diag(α)−1), (8)

where α ∈ RN
+ denotes the inverse-variance of each ele-

ment of s.? In this case, it is well known that the poste-
rior covariance ΣK takes the form2:

ΣK =
(
σ−2AH

KAK + diag(α)−1
)−1

. (9)

We note that ΣK is well-de�ned even when the problem
is underdetermined (M < S) or ill-posed. Moreover, it
has a nice closed-form solution which makes it attractive
for our sensor-placement problem (7).

Unfortunately, it is well-known that Gaussian model
(8) does not promote sparse realizations. It is therefore a
poor prior to account for the sparse nature of the source
vector s. In fact, the only way to enforce the n-th element
of the source vector s to be close to zero with high proba-
bility is to set α−1

n ≃ 0. If α is user-provided, this means
that the source locations should be known in advance to
obtain a proper prior model on s.

In the next section, we investigate a solution to ben-
e�t from the closed-form expression of the Gaussian pos-
terior covariance matrix while accounting for the prior
lack of knowledge of α.

D. Hierarchical Gamma-Gaussian prior model

In the previous section we emphasized that Gaussian
prior models lead to desirable closed-form expressions of
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the posterior covariance matrix. Unfortunately, this prior
is only of practical relevance when the parameter vector
α is properly tuned to account for the sought source po-
sitions s. In this section, we circumvent this issue by:
i) considering a Gaussian prior model on s as in (8); ii)
including α as an unknown quantity in our estimation
problem. The rationale for this strategy is as follows:
even if a proper choice for α is not known in advance,
a relevant value for this parameter may be learned from
the received observations.

More precisely, we consider the following steps. First,
since we assume that α is an unknown quantity and we
operate in a Bayesian context, we must de�ne a prior
model on α. In this work, we rely on the well-known
hierarchical model of Sparse Bayesian Learning to enforce
sparsity39, and de�ne the following prior:

P(α|ρ) =
N∏

n=1

Γ(αn|1, ρ), (10)

where Γ(αn|1, ρ) denotes a Gamma distribution with
shape parameters 1 and ρ. We set ρ ≫ 1 which leads to
a ��at� distribution, making all the values of α a priori
roughly equally probable � see for example45. We note
that combining (8) and (10) is tantamount to de�ning
a �Gaussian-Gamma� hierarchical prior model on (s,α).
Here, the bene�t from such a prior is that it is non-
informative.

Second, we compute a maximum a posteriori esti-
mate of α, i.e,

α̃K = arg max
α∈R+

P(α|yK). (11)

We note that problem (11) with a �Gaussian-Gamma�
prior model has already been considered in the
context of sparse representations (see39) and source
localization17,45. In particular, it was emphasized that
the solutions of (11) typically contain a few large com-
ponents and many close-to-zero elements. This is in
good agreement with our target problem where one
searches to turn on only the elements of α correspond-
ing to emitting sources. A numerical procedure, dubbed
�Sparse Bayesian Learning� (SBL), instantiating the re-
cursion of an �expectation-maximization� algorithm to
problem (11) was also proposed in39. We will consider
this algorithm to compute α̃K and refer the reader to45

for implementation details.
Third, we approximate the posterior covariance ma-

trix by conditioning on α = α̃K:

ΣK ≃ Es|yK,α̃K{(s− Es|yK,α̃K{s})(s− Es|yK,α̃K{s})
H}.

Interestingly, if the value of α is given, the prior model
becomes Gaussian and one recovers the expression of the
posterior covariance matrix given in (9), that is

ΣK ≃
(
σ−2AH

KAK + diag(α̃K)
−1

)−1
. (12)

We note that the only di�erence between (9) and (12)
is that the unknown parameter α has been replaced by

the posterior estimate α̃K. We therefore recover the nice
analytical expression of the covariance matrix obtained
in the case of a Gaussian prior model but with a value of
the parameter α estimated from yK.

Towards a data-informed sensor selection

We remark that SBL is particularly attractive be-
cause the computed covariance is learned posterior to
the sensor readings. Indeed, SBL helps to go towards a
sensor selection strategy that is driven by both the model
and the measured data, because α̃K is computed poste-
rior to yK.

From this key point, the next section proposes a
data-informed sensor selection method, based on an iter-
ative procedure.

III. DATA-INFORMED SENSOR SELECTION: A GREEDY IT-

ERATIVE ALGORITHM

Problem 1 is combinatorial and is therefore not
tractable with a high-dimensional sensor set M. For ap-
plicability to large-scale arrays, we choose to follow a
greedy heuristic approximating the solution. There are
two motivations:

1. taken together the steps of selection have a low
complexity in O(KMN2) � justi�ed below,

2. the framework is naturally online and data-
informed, since each iteration allows to take the
measurement from the new selected sensor into ac-
count.

Accordingly, the algorithm achieves a sequential design,
and increments the size of K until |K| = K.

A. The �one-sensor� problem

Assume one wishes to add one extra sensor to a sub-
set K ⊆ M. In the spirit of (7), it seems reasonable to
select the sensor leading to the maximum decrease of cost
function f , that is

p̃ = arg max
p∈M\K

f(K)− f(K ∪ p). (13)

In this section, we show that using covariance-matrix sur-
rogate (12) with an additional approximation leads to a
tractable analytical solution to this problem.

Let the function f(K) be

f(K) = log det(ΣK) with (14)

ΣK =
(
σ−2AH

KAK + diag(α̃K)
−1

)−1
, (15)

where α̃K is the solution of (11). With these de�nitions,
a brute-force evaluation of (13) turns out to be compu-
tationally intensive since it requires to evaluate α̃K∪p for
any p ∈ M\K. To improve the computational e�ciency
of our proposed method, we consider hereafter the fol-
lowing additional approximation:

∀p ∈ M\K : α̃K∪p ≈ α̃K. (16)
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The key point of this approximation is to access a
tractable computation of the new covariance ΣK∪p with
an hypothetical additional sensor, without the explicit
need of the new measurement y(p) inside the expression.
As a result, this leads to

Σ−1
K∪p = σ2AH

K∪pAK∪p + diag(α̃K∪p)
−1

≈ σ2AH
K∪pAK∪p + diag(α̃K)

−1

= σ2AH
KAK + diag(α̃K)

−1 + σ̃−2
K a(p)Ha(p)

= Σ−1
K + σ2a(p)Ha(p).

(17)
Using the �matrix determinant� lemma12, we obtain

det(ΣK) ≈ det(ΣK∪p)(1 + σ2a(p)ΣKa(pl)
H). (18)

Finally, plugging this expression into (13), we end up
with the following simpli�ed optimization problem:

p̃ = arg max
p∈M\K

log
(
1 + σ2

a(p)ΣKa(p)
H
)
. (19)

Note that this sequential form of D-optimal design was
derived by Wynn et al in42 in the case of linear models.
Through this form, computing the log volume reduction
is e�cient as it requires O(N2) operations to score the
function for each candidate (once ΣK has been evalu-
ated).

B. Remarks and connections with related literature

Remark 1 The eq. (19) was also derived by
information-theoretical tools37. It helps to understand
its optimality as a choice of the most informative sen-
sor. The di�erential entropy, by de�nition, describes the
entropy of a random variable admitting a distribution
with respect to the Lebesgue measure. In the considered
hierarchical model for SBL with measurements from K,
the conditional probability density function P(s|yK, α̃K)
is a multivariate complex Gaussian distribution. In this
case, the di�erential entropy writes: Applied to the mul-
tivariate normal posterior distribution of s in SBL with
measurements in K, it writes:

hK = −
∫
CN

f(s) log f(s)ds,

with f(s) =
e(s−s̃K)HΣ−1

K (s−s̃K)

π det(ΣK)
.

(20)

In this case, it is well known that8 (Ch. 8):

hK ≡ log det(ΣK), (21)

where ≡ means equality up to a constant. According to
the same guideline, the di�erential entropy with one extra
sensor amounts to hK∪p ≡ log det(ΣK∪p). As a result,
the score in eq. (13) also amounts to the reduction of
entropy hK − hK∪p, i.e. the information gained thanks
to a sensor reading at p. With the help of approximation
in eq. (16), the information gain nearly equals the eq.
(19).

Remark 2 One geometric interpretation of the con-
strained log volume reduction is the following. Supposing
that the row norm ∥a(p)∥ is invariant, we search the di-
rection in CN colinear to the major radius of ΣK, under
the constraint that a(p) belongs to the manifold struc-
tured by the physical model. Note that, according to24,
if a lies in C1×N without any physical constraint, (i) it is
not function of p, and (ii) it maximizes the log volume
reduction when it is equal to the eigenvector paired with
the largest eigenvalue of ΣK.

C. Final algorithm

As a whole, the proposed method is an online greedy
sensor selection. Based on the covariance a posteriori
from SBL, it is naturally data-informed. Note that it
inherently calls SBL, so the selection jointly performs an
online source localization. Indeed, the source vector s̃K
can be estimated based as a function of ΣK as:

s̃K = ΣKA
H
KyK. (22)

The method is summarized in the algorithm 1.

Input : K = ∅, K,M, yM
Output: K with |K| = K
Initialize : take pk, pl ∈M randomly, and initialize
K = {pk,pl} ;
while |K| < K do

Estimate ΣK via eqs (11) and (12) ;

Find p̃ = arg max
p∈M\K

1 + σ−2
a(p)ΣKa(p)

H ;

K ← K ∪ p̃;

end
Algorithm 1: Greedy algorithm for data-informed and on-
line sensor selection.

Note that an initialization step is necessary: K can-
not be empty in the present case, since SBL needs data,
including at the �rst iteration. One initial sensor is
enough in theory, but not enough to extract a spatial
information on the source �eld with SBL. Thus, two ini-
tial sensors are picked at random and included in K.

The selection step requires an extensive search on
M−|K| candidates: the computation cost slightly reduces
as K is growing in size. An upper bound in complexity
of this step is O(MN2), and O(KMN2) for the selection
of K sensors accordingly.

IV. CASE OF STUDY: INDOOR SOURCE LOCALIZATION

This paper illustrates the method of sensor selection
with an application to the near-�eld acoustic source lo-
calization indoor. Experiments in situ are performed in a
room equipped with a very large array. All the numerical
and experimental results below follow the same common
con�guration, described in the next section.
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A. Experimental scenario: a 1020-microphone array mounted

on walls

The room and the antenna hardware are fully de-
scribed in10,11. The picture in �g. 1 shows the global
setup during an acquisition. The array is made up of
M = 1020 digital MEMS microphones, and is supported
by the walls of the room of shape 8.01m×3.75m×2.94m.
The sensor positions pm on these walls are random, as
illustrated in �g. 2(a). To ensure a tractable source local-
ization, the source �eld domain is restricted to the hor-
izontal plane highlighted by the red laser in �g. 1. The
height of this plane is 1.35 m, and the acoustic sources
(cf. the blue speaker, upper right) are positioned in the
plane thanks to the laser level.

An acquisition set is created at a sampling frequency
of 25 kHz, for 25 source positions plotted with red points
in �g. 2(b). Each acquisition contains one single source
in emission. In this way, it is easy to create �exible source
�eld con�gurations by summing each of these acquisitions
at will. The underlying motivation is to enable to do
Monte Carlo simulations on real data.

The source is assumed to be omni-directional and
pointwise. At each acquisition, the speaker emits a sinu-
soidal component at the frequency f = 500 Hz. The x-
and y-axis true source positions are measured in refer-
ence to two vertical walls with as laser tape. To turn the
source localization in the harmonic form, discrete Fourier
transforms are made on frames of 6250 time samples (i.e.
0.25 s), to extract the chosen frequency from them.

B. Propagation model indoor and model mismatch

As a starting point, let us recall how to write the
propagation model in a near and free �elds:

[a(pm)]n =
1

||pm − rn||2
e−ı 2πf

c0
||pm−rn||2 , (23)

where f is the frequency in Hz, c0 the sound speed in
m/s, and rn the position of the n-th source on the grid.
Obviously, such a model is mismatched indoor. It can be
re�ned, by taking the presence of walls into account.

Re�ections from the 6 surfaces (i.e. the 4 walls, ceil-
ing and ground) are integrated to the model with the
method of image sources1. To do so, each point of the
original source grid is duplicated with respect to the sur-
face positions, as depicted in �g. 3. The number of mir-
rored points depend on the chosen order of re�ection. For
instance, a model with re�ections:

� of the �rst order needs the purple duplicates in
�g. 3(b);

� of the second order needs both purple and red du-
plicates.

The image source method is convenient, because it is
linear and its analytical expression is easily calculable.
Indeed, the general form of its related propagation model

can be written as1,34:

[a(pm)]n =
1

||pm − rn||2
e−ı 2πf

c0
||pm−rn||2

+
J∑

j=1

βj
1

||pm − rjn||2
e−ı 2πf

c0
||pm−rjn||2 ,

(24)

with J the total number of e�ective re�ections, rjn the
position of the j-th image source corresponding to the
original source point rn, and βj each e�ective attenuation
coe�cient.

We assume that the absorption by the walls does not
induce any phase shift, and does not depend on the wave
incidence angle. So βj are real constant numbers for each
index j. The re�ection coe�cients are roughly estimated
by �nding a high correlation between the measurements
and synthesized data. We �x βj = 0.75 for the ceiling
and walls, and βj = 0.5 for the ground as coe�cients of
the �rst order. Other coe�cients of the z-th order are de-
rived accordingly, by taking into account the appropriate
re�ections occurring in the acoustic path. By awareness,
we veri�ed that small variations of βj lead in marginal
impacts on the provided results in sec. VI.

The addressed model (24) will be used to approx-
imate the indoor propagation but obviously the level
of approximation will introduce model mismatches, the
free-�eld model (23) being the coarsest choice. Never-
theless, promising works show that SBL is robust to mis-
matches because of its adaptive nature that results from
the underlying probabilistic model15,16. To follow up on
this work, the experiments in sec. VI will analyze if the
data-informed sensor selection leverages this adaptive na-
ture to enhance the localization accuracy.

V. EVALUATION SETUP OF THE PERFORMANCE

In this section we brie�y introduce the state-of-the-
art methods used as references to evaluate the perfor-
mances of the proposed approach. Before that, we de�ne
the criterion used for the comparison.

A. Evaluation criterion

To compare the performances of the proposed
method against the state-of-the art ones (described be-
low), we propose to use the following criterion: once the
antenna array has been selected for a given number of
sensors, the SBL is used to provide the complex source
vector s̃K (22) on the grid. Note that our approach in-
herently involves the SBL computation online.

Starting from the prior knowledge that we have S
sources, we select the S highest peaks from the absolute
value of s̃K elements (the SBL doesn't necessarily gives
spikes, that is why we look for the positions of the local
maxima). Then, we compute the euclidean distance be-
tween the true source positions and these positions. If
this distance is lower than some given radius threshold,
then we consider that the estimated source location is a
true positive. Let Ntp be the number of true positives.
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FIG. 1. Experimental setup indoor: 1020 microphones mounted on walls. (color online)

(a)
(b)

FIG. 2. (a) Sensor positions on the walls. For a better visibility only 256 of the 1020 sensors are shown, �lled points for front

walls and hollow points for back walls, and di�erent colors for each wall are used. (b) Positions of the 25 sources (red dots) in

the room measured with a laser. The height of the sources is 1.35 meters. The grid, represented in blue, does not cover the

space up to the walls. A gap of 50cm between the grid and these walls was preserved in order to avoid areas with possibly

strong re�ections. (color online)

Moreover, since we are going to achieve Monte Carlo
simulations with Nr realizations, the result will be dis-
played as empirical mean of true positives in percent:

True positive =
100

Nr

Nr∑
i=1

Ntp,i

S
[%], (25)

where i stands for the index of the Monte Carlo real-
ization. In addition, the Jaccard index will be plotted
because it also takes False positives and False negatives

into account. We recall, from its expression

Jaccard index

=
True positive

True positive + False positive + False negative
,

(26)

that it takes values from 0 (poor performance) to 1 (best
performance).
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Wall

Source Image-source at the
first order of reflection

Image-source at the
second order of reflection

(a)

(b)

FIG. 3. (a) Schema of the image-source model used to take into account the re�ections. The blue dot corresponds to the

source position, the magenta dots are the �rst-order positions, and the red dot is the second-order position. (b) The di�erent

discretized spaces in 2 dimension created up to the second order of re�ections. The blue space is the initial room, the magenta

space is the �rst order and red the second order. A 50cm gap was preserved between walls and the source grid. (color online)

B. State-of-the-art approaches

We propose to compare our sensor selection strategy
with three common approaches: (a) random selection,
(b) array synthesis based on beampattern optimization
by a genetic algorithm, and (c) a method based on con-
vex relaxation and the Fisher information matrix. We
describe below these methods, and the required adjust-
ments to perform the comparison properly.

1. Random selection (SelRand)

Since our approach is based on the sparsity prior, it
seems appropriate to consider solutions from the CS lit-
erature. In this framework, making random linear mea-
surements of sparse vectors is known to be e�ective to
obtain good reconstruction guarantees. However, in the
present acoustic problem, the matrix AK is deterministic
and its elements can not deliberately randomized. But
studies show that the requirements from the CS frame-
work can be approximated by selecting the sensor posi-
tions at random6,43.

To compare this strategy with the proposed ap-
proach, we simply replace in Algorithm 1 the optimal se-
lection p̃ by a uniform random selection in the set M\K.
We still compute SBL at each iteration though, in order
evaluate the approach according to the (increasing) num-
ber of selected sensors.

2. Beampattern optimization with genetic algorithm
(SelGen)

Array design can be achieved by an optimization
problem seeking to reduce � most of the time � the
Maximum Sidelobe Level (MSL) of the beampatterns20.
Shortly, the goal is to maximize the di�erence between
the main lobe and the sidelobe levels. This kind of ap-
proach is especially relevant for source localization using
beamforming. The optimization problem, which is non-

convex, can be solved using several approaches. In this
paper, we use the MSL-based beampattern optimization
based on a genetic algorithm proposed in28. Once the ar-
ray is designed for a given number of sensors, we perform
SBL and get the evaluation criterion (25).

Note that this method is o�ine, and not inherently
iterative. So, to compare with the online sequential selec-
tions, the arrays are independently designed for di�erent
values of K. Finally, because the present experimental
setup is di�erent from the one in28, some adjustments
should be done regarding the initial choice of three pa-
rameters: the number of generations, of individuals, and
the mutation coe�cient � numerical values are given in
section VI.

3. Convex relaxation with the Fisher information ma-
trix (SelRelax)

The last method considered in this paper is the one
proposed in7. The goal of this method is to select the
positions of a given number of sensors by maximizing
the smallest eigenvalue of the Fisher Information Matrix
(FIM) via convex relaxation. Note that maximizing the
smallest FIM eigenvalue is known as E-optimal design.
In the article, Chepuri et al illustrate their studies with
a source localization scenario based on time of arrival
measurements. Since we use a di�erent model, two key
adjustments should be emphasized for a proper imple-
mentation.

First, the problem must be overdetermined: the
number of unknowns must be smaller than the number
of sensors K. As such the linearized model (2) is not
convenient when the source grid size N is large. As ex-
plained in7, it is tackled by staying with the continuous
nonlinear form of the propagation model, and calculating
the analytic FIM with 5 scalar parameters: the x- and y-
coordinates of the source position, the source amplitude
and phase, and σ2. It leads to a FIM of size 5× 5. This
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choice of variables inherently describes the presence of
only one source in the �eld.

Therefore, as the second key point, Chepuri et al
develop an idea to discretize the domain of values po-
tentially taken by the 5 parameters, while preserving
the same overdetermined form. To do so, the relaxation
problem replaces the use of a FIM by the use of a block
diagonal matrix; each block is one FIM computed with
a set of parameter values7 (Sec. III.a). We use CVX
toolbox19 to solve the relaxed problem. To keep the com-
putation tractable, the parameter domain discretization
should be coarse because the size of the block diagonal
matrix quickly grows. Among the 5 scalar parameters,
we only discretize the x- and y-coordinate parameters at
the 25 true source positions. It leads to a block diagonal
matrix with 5× 25 = 125 rows and columns.

This method is model-informed only and, more im-
portantly, is not sequential de facto � like the method in
sec. VB2. Thus, we proceed in the same way by de-
signing the arrays independently for di�erent values of
K.

VI. RESULTS

In this section we present results exploiting both sim-
ulated and experimental data, in the scenario of source
localization indoor in near �eld, thoroughly described in
sec.IV. Two main analyses are conducted: the e�ect of
model mismatch and the performance evaluation of the
proposed procedure against state-of-the-art approaches
(c.f. section VB).

For the e�ect of model mismatch, we focus on how
the steering matrix AK is de�ned regarding the rever-
beration. Based on the de�ned model in sec. IVB, we
evaluate the di�erence of performances of source local-
ization indoor, when the model either is free �eld (as eq.
(23)), or takes re�ections into account (as eq. (24)).

Concerning the implementation of the o�ine algo-
rithms SelGen and SelRelax, described in sections VB2
and VB3, arrays are designed for K starting from 50
with a step of 50, and stopping at 1000 and 650, respec-
tively. Note that the latter is stopped early because the
convex optimisation by CVX fails beyond. Finally, some
parameters of the genetic algorithm (SelGen) from28 are
adjusted: the number of generations and individuals are
higher (250 against 100) and the mutation coe�cient is
lower (0.0001 against 0.01).

A. Results from numerical studies

We generate a set of Nr = 300 realizations by ran-
domly selecting S = 4 source positions of the 25 plot-
ted in �g.2(b). The plane containing the sources is dis-
cretized to create a grid of 29 × 12 points separated by
25 cm along x and y axes, leading to N = 348. Con-
sequently, to compute the performance metric (25) the
radius threshold deciding whether the localization is a
true positive or not is �xed to 25 cm.

To simulate a scenario indoor, the data is synthesized
with the mirror source model, and a re�ection of the 3-
rd order. Then, to evaluate the e�ect of the model mis-
match, AK is build by still considering a source-mirror
model, with re�ections ranging from the 3-rd to the 0-th
order.

The �g. 4(a) plots results without model mismatch,
i.e. with the 3-rd order of re�ection. All methods quickly
reach 100% of true positives when the number of sensors
increases. One can note that our approach is slightly
better than the others, and SelRelax is the least good.

When the re�ection order decreases (�g. 4(b), 4(c)
and 4(d)), the model mismatch increases naturally, the
performances degrade accordingly. One can note that
our approach appears to be the less impacted, whereas
SelGen and SelRelax seem to be the most sensitive to
the mismatch. Also note that if the model error is too
important (0-th re�ection order, i.e. free �eld model), all
methods performance are heavily impacted.

To complete the analysis via the True positive rate,
the �g. 5 plots the Jaccard index. It focuses on the pro-
posed method and the random selection, as these are the
two top performing methods according to �g. 4. Both in-
dicators have relatively similar trends, although the Jac-
card index is slightly lower than the True positive with
0-th and 1-st re�ection orders in the model. In these two
cases the di�erence reveals the presence of False negatives
and False positives.

From these studies, we may stipulate that our ap-
proach is more robust to model errors because it is the
only data-informed method.

B. Results from experiments

For sake of comparison, we proceed with the same
performance analysis as in previous simulations: methods
are compared as a function of the number of sensors K,
and the order of re�ections. The Nr = 300 realizations
for the Monte Carlo study are obtained based on the
experimental setup described previously in sec. IVA.

The main di�erence with sec.VIA is that we do not
know how many re�ections are relevant to accurately
model the received signal. One way to evaluate the order
of re�ections is to compute the correlation coe�cient be-
tween the experimental and the synthesized data, based
on the same con�guration. The table I provides the av-
erage of theses coe�cients over the 25 available positions
of the source, as a function of the re�ection order.

re�ection order 0 1 2 3 4

correlation coe�cient 0.43 0.58 0.69 0.68 0.61

TABLE I. Correlation coe�cient between the experimental

and the synthesized data, averaged on the 25 available source

positions.

As expected, increasing the order in the synthesized
data leads to a higher correlation coe�cient, meaning
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(a) (b)

(c) (d)

FIG. 4. Average percentage of true positives according to the number of sensors for our approach (blue line), SelRand (red

line), SelGen (magenta plus) and SelRelax (black crosses). The data is synthetized with a 3-rd re�ection order and AK is

de�ned for re�ection of the (a) 3-rd, (b) 2-nd, (c) 1-st and (d) 0-th order. (color online)

FIG. 5. Jaccard index according to the number of sensors for our approach (blue line) and SelRand (red line). AK is de�ned

for re�ection of the (a) 3-rd, (b) 2-nd, (c) 1-st and (d) 0-th order. (color online)
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(a) (b)

(c) (d)

FIG. 6. Average percentage of true positive over Nr = 300 realizations with 4 sources, according to the number of sensors

selected for our approach (blue line), SelRand (red line), SelGen (magenta plus) and SelRelax (black crosses). AK is de�ned

for re�ection of the (a) 3-rd, (b) 2-nd, (c) 1-st and (d) 0-th order. (color online)

FIG. 7. Jaccard index over Nr = 300 realizations with 4 sources, according to the number of sensors selected for our approach

(blue line) and SelRand (red line). AK is de�ned for re�ection of the (a) 3-rd, (b) 2-nd, (c) 1-st and (d) 0-th order. (color

online)
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that the mirror-source model is more accurate. This cor-
relation seems to be maximized at the 2-nd order, and
slightly decays back beyond.

1. Performance analysis

Based on the results in table I and to �t with the
graphs of sec. VIA, we display in the following the results
with AK built for orders from 3 to 0. The plots are given
in �g. 6.

One can note that the results considering 3 or 2 re-
�ections are similar, which is in line with the correlation
coe�cient table I. We suggest that this similarity could
occur because the mirrored sources beyond the 2-nd order
do not contribute to improve the source localization as
we could expect. It can also be thought that other model
mismatches (such as wall positions and orientations, ex-
act source positions, etc.) a�ect the source-mirror model
beyond a given order. Surprisingly, regarding of all meth-
ods, the performance trends reveal that the studied mis-
match has a lower impact in the present real scenario.
Finally, apart from the model with no re�ection, our pro-
posed method leads to better results than the ones from
the state-of-the-art. Again, the Jaccard index is plot-
ted in the �g. 7, with a focus on the iterative selections
only. Similarly to the simulation results, the Jaccard in-
dex is similar to the True positive rate with the 2-nd and
3-rd re�ection order models. The di�erence is marginal
with 1-st order, but becomes signi�cant with the free
�eld model. Again, this di�erence indicates a presence
of False positives or False negatives that degrades the
e�ective performance of source localization.

In addition to the previous Monte Carlo analysis,
the �g. 8 provides an illustration of source localization
results in one speci�c realization. It shows the absolute
values of source vectors s̃K, estimated with the di�er-
ent methods, with S = 4 sources, K = 50 sensors, and a
model with the 3-rd order of re�ection. The red dots cor-
respond to the true source positions, the black `+' (resp.
`x') signs provide the estimated source locations when
they are true positives (resp. false positives). These �g-
ures reveal a sparse structure as expected, even if they do
not contain 4 non-zero peaks only (then it can eventually
leads to false positives). Our method (�g. 8(a)) appears
to be the most sparse. Although theses maps are speci�c
to one realization, we veri�ed that theses observations
remain true for any other one.

2. Statistical analysis of the selected sensors

This last section investigates if there are recurring
patterns of selection in the di�erent Monte Carlo real-
izations. In other words, one may wonder whether some
sensors of the array are more important than others, re-
garding the information they provide. Indeed, the pro-
posed selection is data-informed and depends on each
speci�c realization, i.e. the source positions. Neverthe-
less, does the selection prioritize some sensors more often
in average?

This question naturally leads to analyze the proba-
bility that the k-th sensor is selected among the r �rst
ones. As such, it relates with the following empirical cu-
mulative distribution (cdf):

P(pk ∈ K; |K| ≤ r). (27)

Obviously, this probability monotonically increases since
it is a cdf, and is de�ned for 2 ≤ r ≤ M .

The �g. 9 draws this empirical cdf for each of the
M = 1020 sensors. It evidences that cdfs are heteroge-
neous, and reach 1 at a di�erent rate according to the sen-
sor index k. Consequently, some sensors are more likely
to be selected than others to create an array of r (or less)
elements. To illustrate this, we display in �g. 10, the 60
sensors having the highest values P(pk ∈ K; |K| ≤ r) for
r = 50, and the color indicates the corresponding value.
Interestingly, most of these sensors lie in the plane in
which the sources belong to.

Remark At this point, the statistical study indeed
reveals recurring selection patterns in the di�erent re-
alizations. One intuition would be to extract the most
appearing sensors to design one global array. In this way,
array design could be done once and o�ine for a realistic
scenario, thanks to the proposed online sensor selection
performed on a set of simulated data. Although beyond
the scope of this paper, it seems to be an interesting fu-
ture investigation.

VII. DISCUSSION AND OPEN PROBLEMS

With this paper, the authors wish to initiate the in-
vestigation of source localization helped by iterative sen-
sor selection. The presented work experimentally vali-
dates the interest of this research direction, however some
problems remain open.

First, the stopping criterion of the algorithm 1 is a
chosen sensor number K. In practice, this remains a lim-
itation because K may be too small to reach the asymp-
totic performance obtained when K = M . It also may be
chosen too large, so that the addition of the latest sensors
brings a marginal improvement on the source location es-
timation. Thus, an alternative stopping criterion based
on an automatic choice of K is a future direction to in-
vestigate in order to enhance the use of the algorithm.

The second open problem deals with the computa-
tion time. Indeed, SBL needs to be repeated K times,
and has a complexity of order O(|K| ·N2)45. If K ≈ M it
is trivial that the iterative approach requires more com-
putation than doing SBL once with the full array. Never-
theless, the computation time of the algorithm 1 is gen-
erally more time-consuming, since the dimension of the
source vectorN mainly drives the complexity of SBL. Re-
placing the conventional SBL with an accelerated tech-
nique of lower complexity is consequently one interesting
direction to explore � see for example the state of the art
introduction in29.
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(a) (b)

(c) (d)

FIG. 8. Source localization estimation done by SBL s̃K for 1 realization, with S = 4 sources and K = 50 sensors. (a) Proposed

approach, (b) SelRand, (c) SelGen, (d) SelRelax. (color online)

FIG. 9. Cumulative distribution function (27) of the M =

1020 sensors, for 0 ≤ r ≤ 1020. (color online)

VIII. CONCLUSION

In this paper, a greedy sensor selection approach
is proposed, with a view to performing sparse acoustic
source localization with a limited number of sensors. The
approach relies on the D-optimal design in the Bayesian

FIG. 10. cdf values (27) for r = 50, at corresponding sensor

locations. For sake of clarity, we only display the 60 highest

values. (color online)

framework, and enables the selection procedure to be on-
line. The method alternates between source localization
given the selected sensors, and a selection of the most in-
formative sensor candidate given the source localization
covariance.

The performance analysis encompasses both numer-
ical and experimental validations, in an acoustic indoor
scenario. The comparison with di�erent state-of the art
methods shows that the proposed approach generally per-
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forms better. An empirical study of the sensor selection
robustness to model mismatch is also presented. In the
studied scenario, choosing a reliable mirror source model
is challenging for indoor source localization, especially
concerning the choice of the re�ection order. Interest-
ingly, the proposed online approach is more robust to
this given mismatch than the compared state-of-the-art
methods. The origin of this observed robustness need
further investigations towards a more theoretical com-
prehension.

Finally, further works could investigate how to tackle
o�ine microphone array design, based on the proposed
online sensor selection with synthesized data. This idea,
suggested in sec. VIB 2, would open possibilities to mi-
crophone array design.
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