%0 Conference Proceedings %T GpLMS: Generalized Parallel Least Mean Square Algorithm for Partial Observations %+ Institut supérieur de l'électronique et du numérique (ISEN) %+ École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne) %+ Equipe Security, Intelligence and Integrity of Information (Lab-STICC_SI3) %A Akkad, Ghattas %A Nguyen, Viet-Dung %A Mansour, Ali %< avec comité de lecture %B 14th International KES Conference on Intelligent Decision Technologies, KES-IDT 2022 %C Rhodes, Greece %I Springer Nature Singapore %3 Smart Innovation, Systems and Technologies %V 309 %P 441-448 %8 2022-06-20 %D 2022 %R 10.1007/978-981-19-3444-5_38 %K Array processing %K Adaptive beamforming %K Least mean square (LMS) %K Parallel LMS %Z Engineering Sciences [physics]/Signal and Image processingConference papers %X We propose a generalized parallel least mean square algorithm (GpLMS) to deal with partial observation scenarios. GpLMS takes advantage of a two stage parallel LMS architecture to enhance the convergence rate and updates weight vector based on observed entries to obtain a low computational complexity. We compare the results from our proposed algorithm with the state-of-the-arts in an adaptive beamforming context to illustrate its effectiveness. %G English %L hal-03772375 %U https://hal-ensta-bretagne.archives-ouvertes.fr/hal-03772375 %~ UNIV-BREST %~ INSTITUT-TELECOM %~ ENSTA-BRETAGNE %~ CNRS %~ UNIV-UBS %~ ENSTA-BRETAGNE-STIC %~ ENIB %~ LAB-STICC %~ INSTITUTS-TELECOM %~ LAB-STICC_SI3 %~ LAB-STICC_T2I3