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Lie symmetries applied to interval integration

Julien Damers a, Luc Jaulin a, Simon Rohou a

aENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

Abstract

In this paper, we propose a new approach for improving significantly existing guaranteed integration methods for state equations
with uncertain initial conditions. We first find a tube that encloses the solution of the differential equation assuming that the
initial state is known. Then, using Lie symmetries, we inflate the tube in order to contain the uncertainty associated with the
initial state. The method is shown to be efficient on examples coming from reachability analysis and robotics.

Key words: Interval analysis, guaranteed integration, IVP, Lie groups, symmetries, tubes.

1 Introduction

When dealing with non-linear dynamical systems such
as mobile robots or cyber-physical systems, it is impor-
tant to guarantee the compliance of some properties [14],
for instance for security reasons. Different solvers have
been designed for this purpose such as Acumen [52] or
PHAVer [17]. For instance, we would like to guarantee
that the systemwill not enter inside a forbidden region or
that it will reach a target set. The guarantee can be ob-
tained by using reachability analysis [3, 23, 13, 12, 5, 2],
invariant based approaches [18] or guaranteed integra-
tion methods [33, 42, 7, 41]. The goal of guaranteed in-
tegration is to find a tube [32] enclosing all feasible tra-
jectories of a system, assuming that the initial vector is
known [30, 4]. It has been used to prove conjectures such
as the existence of the Lorenz attractor [54], or that a
given system is chaotic [20]. It has also been used for
state estimation [31, 40, 1], localization [43, 26, 15, 55]
or SLAM [36].

The main default of guaranteed integration methods is
that they are very sensitive to uncertainties. In the con-
text of a badly known initial vector or when bounded
errors exist in the evolution equation, the tube enclos-
ing the trajectory is so large that no conclusion can be
drawn. In this paper, we show for the first time that we
may significantly reduce the pessimism of the integra-
tion with respect to some uncertainties using Lie groups
and Lie symmetries.

Email addresses: julien.damers@ensta-bretagne.org
(Julien Damers), lucjaulin@gmail.com (Luc Jaulin),
simon.rohou@ensta-bretagne.fr (Simon Rohou).

A Lie group [48] is both an abstract group and a smooth
n-dimensional manifold so that multiplication and in-
version are both smooth. They have been introduced to
model the continuous symmetries of differential equa-
tions [39] and are widely used for their resolution. The
main idea behind Lie groups is to take advantage of the
possible symmetries of the system in order to extend one
solution of the problem to all other solutions [51, 50].
One can also note that in the context of control theory,
symmetries have been used for stability analysis [46],
observers design [6][24], navigation [11] and safety veri-
fication [49].

Our main contribution is to show that Lie symmetries
can be combined with interval based methods [35], in or-
der to propagate uncertainties [53] through differential
equations. More precisely, our goal is to compute an en-
closure of the solution of a differential equation assuming
that the initial state is inside a box that may be large.
We show that in this context, our method outperforms
existing approaches. Some test-cases related to robotic
applications illustrate the efficiency of this strategy.

The paper is structured as follows. Section 2 provides
basic notions on symmetry groups with their interpre-
tation in the context of differential equations. Section 3
defines Lie groups and shows how they can be used to
compute one solution from another. Section 4 introduces
our new guaranteed integration method that combines
Lie symmetries with classical interval integration tools.
The efficiency of the approach is shown on several exam-
ples. Section 5 proposes an application to the reachabil-
ity analysis of a dynamical system. Section 6 concludes
the paper and proposes some perspectives.
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2 Symmetry groups

In this section, we recall some notions of symmetry
groups and group actions. Most of these definitions are
taken from the book of Olver [39]. They will be com-
bined with interval integration techniques in Section 4
to reduce the propagation of uncertainties through a
differential equation.

2.1 Group S3

The main concepts behind Lie symmetries for differen-
tial equations can be understood from an example: the
symmetric group S3 consisting of all six permutations in
a set A = {a, b, c}.

S3 = {σ1, . . . , σ6}
= {(a, b, c) → (a, b, c); (a, b, c) → (a, c, b);

(a, b, c) → (b, a, c); (a, b, c) → (c, b, a)

, (a, b, c) → (b, c, a); (a, b, c) → (c, a, b)}.

(1)

A permutation σi : A →A is here denoted by extension.
For instance, when we write σ6 : (a, b, c) → (c, a, b) , we
mean that σ6(a) = c, σ6(b) = b, σ6(c) = a. It is easy to
check that (S3, ◦) is a group since: it is closed by the
composition ◦, it satisfies the associative property, there
is an identity element (here σ1), and there is an inverse
for each σ ∈ S3 (e.g., σ−1

5 = σ6). In this group, we
can make some computations and solve equations. For
instance, since

σ6 ◦ σ2 ◦ σ−1
6 (a, b, c) = σ6 ◦ σ2 (b, c, a)

= σ6 (b, a, c) = (c, b, a)

= σ4 (a, b, c) ,

(2)

we have σ4 = σ6 ◦ σ2 ◦ σ−1
6 .

Group action.Consider a setF of objects and the group
(G, ◦), with σ1 as neutral element. Consider also a binary
operator • from G× F to F. The structure (G, ◦, •) is a
left group action on F if it satisfies the following axioms:

∀f ∈ F, σ1 • f = f (identity)

∀σi ∈ G,∀σj ∈ G

(σi ◦ σj) • f = σi • (σj • f) (compatibility)

(3)

If the compatibility condition is replaced by

(σi ◦ σj) • f = σj • (σi • f) (4)

then (G, ◦, •) is a right group action.

In the context of S3, the operator • may be seen as a
composition ◦, but it is generally not the case. For in-
stance, F can be a set of objects in a 3D word, and G
may correspond to the set of Euclidean transformations
(rotations, translations). In such a case, a typical action
could be “rotate the object f”, which is not a composi-
tion.

An illustration is given by Figure 1 where F is the set of
all applications from A = {a, b, c} to A. We define f ∈ F
as the application f(a) = a, f(b) = a, f(c) = b. We
have chosen to represent f under the form of a dynam-
ical graph since later, it will correspond to a dynamical
system. For instance, f(c) = b means that if the system
is at state c then at the next step, it will be at state b.
Define the action of σi on f as

σi • f = f ◦ σi. (5)

We can check that it satisfies the axioms of a right group
action. Since the identity relation is trivial, it suffices to
check the compatibility relation (4)

(σi ◦ σj) • f
(5)
= f ◦ (σi ◦ σj)

= (f ◦ σi) ◦ σj

(5)
= (σi • f) ◦ σj

(5)
= σj • (σi • f)

For instance, the action of σ5 on f is g = σ5 • f =
f ◦ σ5. Thus, g(a) = σ5 • f(a) = f ◦ σ5(a) = f(c) =
b. We understand that the action of σ5 transforms the
dynamical system f into another one.

Fig. 1. A permutation σ5 of S3 acting on an object f ∈ F.

Orbit. Consider a group G acting on a set F. The orbit
of an element x in F is G (x) = {g(x)|g ∈ G}.

Stabilizer. For f in F, we define the stabilizer subgroup
SymG(f) ofG with respect to f as the set of all elements
in G for which f remains unchanged:

SymG(f) = {σ ∈ G|σ • f = f} . (6)

In our example we can check that:

SymG(f) = {σ1, σ3}. (7)

In group theory, the symmetry group of a geometric ob-
ject f (e.g., a cube or a cylinder) is the group of all trans-
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formations for which the object is invariant. In the con-
text of this paper, the object will be a vector field repre-
senting a state equation of a dynamical system. Transfor-
mations such as translations, rotations, scaling, . . . may
leave the vector field unchanged. These transformations
form a symmetry group as explained in the following.

2.2 Application to differential equations

In the context of this paper, A corresponds to the state
space Rn and F corresponds to the set of all state equa-
tions of the form ẋ = f(x) where x ∈ Rn [39]. In this
paper, we assume that f is locally Lipschitz so that there
exists a function Φt : Rn → Rn, called the flow, which
associates to all initial vectors x0 the solution Φt(x0) of
the state equation.

The stabilizers of f ∈ F are the symmetries of the system.
For ease of understanding, we will voluntarily use the
same notations between the state equation ẋ = f(x) and
the vector field f .

We denote by diff(Rn) the set of diffeomorphisms from
Rn to Rn.

Definition 1 Consider a state equation ẋ = f(x), x ∈
Rn and g ∈ diff(Rn). We define the action of g as

g • f =
(
dg

dx
◦ g−1

)
·
(
f ◦ g−1

)
. (8)

It transforms the field f into another field.

Proposition 2 Assume that ẋ = f(x) and y = g(x),
where x ∈ Rn and g ∈ diff(Rn). Then, we have ẏ =
g • f(y). Equivalently, the action of g generates from the
system ẋ = f(x) the new system ẏ = (g • f) (y).

Proof: Wehave the following first order approximation:

y(t+ dt)

= g(x(t+ dt))

= g(x(t)) + dg
dx (x(t)) ·

dx
dt (t) · dt+ o(dt)

= g(x(t)) + dg
dx (x(t)) · f(x(t)) · dt+ o(dt)

= y(t) + dt · dg
dx

(
g−1(y(t))

)
· f
(
g−1(y(t))

)
+ o(dt)

= y(t) + dt · (g • f) (y(t)) + o(dt)

Thus, due to the unicity of the first order Taylor expan-
sion, we get ẏ = (g • f) (y).

Proposition 3 The set (diff(Rn), ◦, •) equipped with the
composition ◦ and the action • as defined by Equation
(3) is a left group action.

Proof: We first check that (diff(Rn), ◦, •) is closed by
the composition ◦: if g1,g2 ∈ diff(Rn) then g1 ◦ g2 ∈
diff(Rn); We have the associativity ((g1 ◦ g2) ◦ g3 =
g1◦(g2◦g3)); there is an identity element g0 in diff(Rn);
and for each g1 ∈ diff(Rn) there is g2 ∈ diff(Rn) such
that g1 ◦ g2 = g0. To check that it is a group action,
we also need the identity and compatibility (see Equa-
tion (3)). The identity is trivial. Let us now check the
compatibility. For this, we consider the state equation
ẋ = f(x).
(i) If z = h ◦ g(x), and since ẋ = f(x), we have from
Proposition 2:

ż = ((h ◦ g) • f) (z).

(ii) Since z = h(y) and since ẏ = (g • f) (y), we have
from Proposition 2:

ż = (h • (g • f)) (z).

Thus we get the compatibility property

(h ◦ g) • f = h • (g • f).

Definition 4 A transformation g is a stabilizer of f if
g•f = f , i.e. if it satisfies the partial differential equation

g • f =
(
dg

dx
◦ g−1

)
·
(
f ◦ g−1

)
= f . (9)

Remark 5 Equation (9) is equivalent to(
dg

dx

)
· f = f ◦ g. (10)

When g is linear, we get g ◦ f = f ◦ g. This means that
both functions f and g commute by composition. This is
known as the equivariance property [21].

Proposition 6 If Φt : Rn → Rn is the flow associated
with the state equation ẋ = f(x). We have:

g • f = f ⇔ Φt ◦ g = g ◦Φt. (11)

Proof: Take y = g(x) and x0 ∈ Rn. For the corre-
sponding trajectory x(t) = Φt(x0), we have

g ◦Φt(x0) = Φt ◦ g(x0),∀t
⇔ g(x(t)) = Φt(g(x0)),∀t
⇔ y(t) = Φt(y(0)),∀t
⇔ ẏ = f(y)

⇔ g • f = f .
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The last equivalence comes from Proposition 2 which
states that ẏ = g • f(y). We have indeed{

ẏ = f(y)

ẏ = g • f(y)
⇒ g • f = f

and reciprocally{
g • f = f

ẏ = g • f(y)
⇒ ẏ = f(y).

Remark 7 Consider the solution t 7→ Φt(x0) of the
state equation ẋ = f(x), for x(0) = x0. Set x1 = g(x0),
where g is a stabilizer. From Proposition 6, we get:

Φt(x1) = Φt ◦ g(x0)
(11)
= g ◦Φt(x0) (12)

We thus get an expression of the solution of the state
equation corresponding to the initial condition x(0) =
x1. If we have a family of stabilizers, we can generate a
family of solutions from the unique solution Φt(x0).

Example 8 Since

Φt ◦Φt1 = Φt1 ◦Φt = Φt+t1 (13)

with t1 ∈ R, thenΦt1 • f = f , i.e.,Φt1 is a stabilizer. The
function Φt1 is called the one-parameter flow symmetry
[39].

Proposition 9 Consider a state equation ẋ = f(x) and
a stabilizer g. In the new coordinate system y = h (x)
where h is bijective and smooth, the action h ◦g ◦h−1 is
a stabilizer.

Proof: In the y space, the flow is defined by:

Ψt(y) = h ◦Φt ◦ h−1(y). (14)

Since g is a stabilizer for the system, we have

Φt(x) = g ◦Φt ◦ g−1(x)

⇔ Φt ◦ h−1(y) = g ◦Φt ◦ g−1 ◦ h−1 (y)

⇔ h ◦Φt ◦ h−1(y)︸ ︷︷ ︸
Ψt(y)

= h ◦ g ◦ Φt︸ ︷︷ ︸
h−1◦Ψt◦h

◦ g−1 ◦ h−1 (y)

⇔ Ψt(y) =
(
h ◦ g ◦ h−1

)
◦Ψt ◦

(
h ◦ g−1 ◦ h−1

)
(y)

⇔ Ψt ◦
(
h ◦ g ◦ h−1

)
(y) =

(
h ◦ g ◦ h−1

)
◦Ψt.

As a consequence, h◦g◦h−1 is a stabilizer for the system
in the y coordinates.

Proposition 10 The set of all stabilizers of f is a group
with respect to the composition ◦. It is called the symme-
try group of f and is denoted by Sym(f).

Proof: To check the group property, we take g1,g2 in
Sym(f). We have

(g1 ◦ g2) ◦Φt = g1 ◦ (g2 ◦Φt)
(11)
= g1 ◦ (Φt ◦ g2)

= (g1 ◦Φt) ◦ g2
(11)
= (Φt ◦ g1) ◦ g2

= Φt ◦ (g1 ◦ g2)

Thus g1 ◦ g2 ∈ Sym(f). The other properties to be
checked to make Sym(f) a group are trivial. See [51] for
a detailed proof.

2.3 Test case 1

Consider the system(
ẋ1

ẋ2

)
= f(x) =

(
1

−x2

)
. (15)

As illustrated by Figure 2, the mirror symmetry g1 with
respect to the axis Ox1 is a stabilizer since its action
does not change the field. The horizontal translation g2

is also a stabilizer. Since for all t1,Φt1 ◦Φt = Φt◦Φt1 we
get that Φt1 is also a stabilizer. Therefore, g1, g2, Φt1
all belong to Sym(f). In the figure, a,b, c,d, e, f ,g,h are
points of the state space that are fixed to illustrate how
we can move along any trajectory.

Fig. 2. The system has a x2 symmetry translation and an
Ox1 mirror-symmetry.

From this example, we see the main idea we want to de-
velop. For the system, if we know one trajectory (called
the reference, red in the picture), we may generate other
trajectories by the application of symmetries. For in-
stance if we want to compute Φt(a), we apply the for-
mula Φt(a) = g1 ◦ Φt ◦ g−1

1 (a), i.e., we first move to
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the reference using g−1
1 to get b, then we move forward

on the reference to get c, and we come back to the right
state with g1 to finally get d = Φt(a).

In a similar way, since Φt(h) = g2 ◦Φt ◦g−1
2 (h), we can

compute e = Φt(h) using the knowledge of the reference
only (red) and the symmetry g2.

As we will see on the following section, in some cases,
it is possible to get a symmetry g1 to move from the
initial state onto the reference. If we assume that we have
computed accurately the solutionΦt, for a specific initial
state to get the reference, then, we will be able to move
precisely forward and backward in time everywhere in
the state space.

3 Lie groups of symmetries

3.1 Definition

Consider a state equation ẋ = f(x) and a manifold P.
A Lie group Gp of symmetries is a family of diffeomor-
phisms gp ∈ diff(Rn) parameterized by p ∈ P such that

• Gp is a Lie group with respect to the composition ◦,
• ∀p ∈ P,gp • f = f .

Lie symmetries are usually found from the physics and
the intuition we have on the system. Nevertheless, for
many systems such as the chaotic Lorenz attractor, such
symmetries probably will not exist [54]. Indeed, for such
chaotic system, we believe that there is no diffeomor-
phism that transforms one trajectory into any other.

3.2 Transport function

Consider a Lie group of symmetriesGp. We assume that
the group action Gp is transitive, i.e., it has only one
orbit [39]. In this case, there exists a function h : Rn ×
Rn 7→ P, named transport function, such that h(x,a)
corresponds to the displacement p to be chosen so that
the point a is moved to x by gp, i.e.,

gh(x,a)(a) = x. (16)

Note that such a transport function is not necessary
unique.

The notion of transport function is related to the mov-
ing frame [6] with some differences: here, we assume that
we have one orbit which allows us to avoid the introduc-
tion of the notion of cross section. Moreover, our trans-
port function h has two arguments instead of one which
makes simpler the transport from one point to any other
point of the state space. Finding an expression forh(x,a)
can be done using symbolic method as for instance by

solving the normalization equations as explained in [38]
page 163.

We will show that it has a fundamental role for a combi-
nation with interval methods for guaranteed integration.
In what follows, we will assume that we have a closed
form for h(x,a). In practice, it can be derived from the
symmetries of the problem as illustrated by the follow-
ing examples.

3.3 Example 1 (continued)

System (15) (from the previous Test case 1) has the fol-
lowing Lie symmetry:

gp :

(
x1

x2

)
→

(
x1 + p1

p2x2

)
, p ∈ R2. (17)

This can be found by the geometry of the vector field. To
check this, we need to prove that ∀p,gp • f = f . We have

gp • f(x) (8)
=
((

dgp

dx ◦ g−1
p

)
·
(
f ◦ g−1

p

))
(x)

=
((

dgp

dx

)
· f
)
◦ g−1

p (x)

=

((
1 0

0 p2

)
·

(
1

−x2

))
◦

(
x1 − p1

x2

p2

)
·

=

(
1

−p2x2

)
◦

(
x1 − p1

x2

p2

)

=

(
1

−x2

)
= f(x)

The transport function is obtained as follows:

gp(a) = x ⇔

(
a1 + p1

p2a2

)
= x

⇔ p =

(
x1 − a1

x2/a2

)
= h(x,a).

(18)

3.4 Test case 2

Consider the system:{
ẋ1 = 1

ẋ2 = sinx1

. (19)

This system is invariant by a translation with respect
to the direction x2. Equivalently, if we move the related
vector-field with respect to the x2-axis, the field does
not change. The set of all x2-translations is a Lie group
L which is diffeomorphic to (R,+). Furthermore, if we
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perform a translation p2 = ±k2π along x1, the field does
not change neither. However, p2 belongs to a discrete set
and not to a continuous manifold as required to have a
Lie symmetry.

Fig. 3. We switch from one trajectory to another by any
translation along x2 or any 2π translation along x1.

Proposition 11 The following transformations

gp(x) =

(
0

p1

)
+Φp2

(x) (20)

with p = (p1, p2) are Lie symmetries for System (19).

This proposition illustrates that the flow itselfΦt(x) can
be used as a symmetry (see Example 8).

Proof: If we define

g1
p1

:

(
x1

x2

)
→

(
x1

p1 + x2

)
, p1 ∈ R , (21)

and

g2
p2

:

(
x1

x2

)
→ Φp2

(x), p2 ∈ R, (22)

then we have gp = g1
p1
◦g2

p2
. We thus have to check that

both g1
p1

and g2
p2

are stabilizers (See (i), (ii) below).

(i) From the equivariance property (see Remark 5), for
g1
p1
which is linear, we get:

I2×2︸︷︷︸
dg1

p1
dx (x)

·

(
1

sinx1

)
︸ ︷︷ ︸

f(x)

=

(
1

sinx1

)
︸ ︷︷ ︸

f(x)

◦

(
x1

p1 + x2

)
︸ ︷︷ ︸

g1
p1

(x)

which is true.

(ii) From Example 8, we know that g2
p2
is a stabilizer.

Transport function. The transport function (depicted
in Figure 4) is obtained as follows:

gp(a) = x ⇔

(
0

p1

)
+Φp2(a) = x

⇔

(
0

p1

)
+

(
ϕp2,1(a)

ϕp2,2(a)

)
=

(
x1

x2

)

⇔

(
0

p1

)
+

(
a1 + p2

ϕp2,2(a)

)
=

(
x1

x2

)

⇔

(
p2

p1 + ϕx1−a1,2(a)

)
=

(
x1 − a1

x2

)

⇔

(
p1

p2

)
=

(
x2 − ϕx1−a1,2(a)

x1 − a1

)
︸ ︷︷ ︸

h(x,a)

(23)

Fig. 4. From the transport function, we find the right p to
move from a to x by using gp.

3.5 Test-case 3

We now consider a test-case taken from [25], Chapter 1,
defined by:

{
ẋ1 = −x3

1 − x1x
2
2 + x1 − x2

ẋ2 = −x3
2 − x2

1x2 + x1 + x2

. (24)

Proposition 12 The following transformations

gp(x) =
1√

p2 + (x2
1 + x2

2) (1− p2)
·Rp1 ·

(
x1

x2

)
,(25)

with

Rp1
=

(
cos p1 − sin p1

sin p1 cos p1

)
(26)

and p = (p1, p2) are Lie symmetries for System (24).

6



Proof: We have gp = g1 ◦ g2, where

g1 : x → Rp1 · x
g2 : x → 1√

p2+(x2
1+x2

2)(1−p2)
· x (27)

Therefore, we need to show that for all p, both g1 and
g2 are stabilizers. Let us rewrite into polar coordinates.
We have(

x1

x2

)
= r

(
cos θ

sin θ

)
(
ẋ1

ẋ2

)
=

(
−r sin θ cos θ

r cos θ sin θ

)(
θ̇

ṙ

)

Therefore

(
θ̇

ṙ

)
=

(
−r sin θ cos θ

r cos θ sin θ

)−1(
ẋ1

ẋ2

)

=

(
− sin θ

r
cos θ
r

cos θ sin θ

)
·

(
−x3

1 − x1x
2
2 + x1 − x2

−x3
2 − x2

1x2 + x1 + x2

)

=

(
− sin θ

r
cos θ
r

cos θ sin θ

)
·(

−r3 cos3 θ − r3 cos θ sin2 θ + r cos θ − r sin θ

−r3 sin3 θ − r3 cos2 θ sin θ + r cos θ + r sin θ

)

=

(
1

−r3 + r

)

Since these two equations for the evolution θ and r are
decoupled, we need two find a stabilizer for θ̇ = 1 and
for ṙ = −r

(
r2 − 1

)
separately. A stabilizer for θ̇ = 1 is

trivially a translation of the form g1(θ) = θ+ p1. Let us
find stabilizer g2(r) for ṙ = −r

(
r2 − 1

)
. From Equation

(10), we get the equivariance condition:

dg2
dr (r) · r

(
r2 − 1

)
=
(
r
(
r2 − 1

))
◦ g2 (r)

= g2 (r)
(
g22 (r)− 1

)
.

(28)

Or equivalently

dg2
dr

(r) =
g2 (r)

(
g22 (r)− 1

)
r (r2 − 1)

(29)

which is a Bernoulli equation. The solution has the form

g2(r) =
r√

p2 + r2(1− p2)
(30)

where p2 is a parameter. As a consequence, the polar
coordinate transformation(

θ

r

)
g→

 θ + p1
r√

p2+r2(1−p2)

 (31)

is a stabilizer. To get the stabilizer in the Cartesian co-
ordinates, we apply Proposition 9 with

h

(
θ

r

)
= r

(
cos θ

sin θ

)
.

And so the stabilizer is

h ◦ g ◦ h−1

(
x1

x2

)

= h ◦ g

(
atan2(x2, x1)√

x2
1 + x2

2

)

= h ◦

 atan2(x2, x1) + p1√
x2
1+x2

2√
p2+(x2

1+x2
2)(1−p2)


=

√
x2
1+x2

2√
p2+(x2

1+x2
2)(1−p2)

(
cos (atan2(x2, x1) + p1)

sin (atan2(x2, x1) + p1)

)

= 1√
p2+(x2

1+x2
2)(1−p2)

·Rp1
·

(
x1

x2

)
.

(32)

Figure 5 shows the vector field associated with our sys-
tem. In the approach, that we will use later for our guar-
anteed integration, we first need to compute numerically
one solution: the reference, painted red. On this reference
we are able to applyΦt, the flowΦ for a time t. To apply
Φt somewhere else, we apply a transformation g−1 to
move on the reference, then we apply Φt along this ref-
erence, and we finally move back using g. This operation
corresponding to Equation (11) is represented by the
two green paths. These paths (ai,bi, ci,di), i ∈ {1, 2}
allow us to move from ai to di = Φt(ai) using the sym-
metry gi and the flow ci = Φt(bi). Here we have n = 2
different strategies to move from any point to the refer-
ence trajectory (i.e., either we rotate by the angle p1 or
we inflate by p2), whereas n− 1 are sufficient in general,
since we can always benefit of the one-parameter flow
symmetry (see Example 8).

Transport function. We rewrite gp(a) = x into the
form p = h (x,a). We have

gp(a) = x

⇔ 1√
p2+∥a∥2(1−p2)

·Rp1 ·

(
a1

a2

)
=

(
x1

x2

)
.
(33)
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Fig. 5. Illustration of Test-case 3. The symmetry group trans-
forms one trajectory into another.

Thus

p1 = atan2(a1x2 − a2x1, a1x1 + a2x2).

Moreover

1

p2 + ∥a∥2(1− p2)
∥a∥2 = ∥x∥2

i.e.

p2 =
∥a∥2 − ∥x∥2∥a∥2

∥x∥2 − ∥x∥2∥a∥2
. (34)

Finally

h (x,a) =

 atan2(a1x2 − a2x1, a1x1 + a2x2)

1
1−∥a∥2

(
∥a∥2

∥x∥2 − ∥a∥2
)  .(35)

3.6 Test-case 4

We now consider a robotic test-case (see e.g., [16] or [27],
Chapter 4) where the system is the Dubins car defined
as: 

ẋ1 = u1 · cosx3

ẋ2 = u1 · sinx3

ẋ3 = u2

(36)

where u1, u2 are time dependent. To avoid the time de-
pendency in u, we rewrite the system into

ẋ1 = u1(x4) · cosx3

ẋ2 = u1(x4) · sinx3

ẋ3 = u2(x4)

ẋ4 = 1

(37)

where x4 is the clock variable.

Proposition 13 The following transformations

gp


x1

x2

x3

x4

 =


(
p1

p2

)
+Rp3

·

(
x1

x2

)
x3 + p3

x4

◦Φp4
(x)(38)

where Rp3
is the rotation matrix previously given in

Equation (26) are Lie symmetries for System (37).

It corresponds to two transformations: the translation
related to (p1, p2) and the rotation linked to p3. The
symmetry gp corresponds to the direct Euclidean group
SE(2), well known in geometry.

Proof: If we define

g1
p


x1

x2

x3

x4

 =


p1 + x1

p2 + x2

x3

x4

 , (39)

g2
p


x1

x2

x3

x4

 =


Rp3 ·

(
x1

x2

)
x3 + p3

x4

 (40)

and g3
p = Φp4

(x) then we have gp = g1
p ◦ g2

p ◦ g3
p. We

thus have to check that g1
p, g

2
p and g3

p are stabilizers (see
(i), (ii), (iii) below).

(i) We check Equation (9) for g1
p:

I4×4︸︷︷︸
dg1

p
dx (x)

·


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)

x4


︸ ︷︷ ︸

f(x)

=


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)

x4


︸ ︷︷ ︸

f(x)

◦


p1 + x1

p2 + x2

x3

x4


︸ ︷︷ ︸

g1
p(x)

(41)
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which is true.

(ii) We check Equation (9) for g2
p:

(
Rp3 02×2

02×2 I2×2

)
︸ ︷︷ ︸

dg2
p

dx (x)

·


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)

1


︸ ︷︷ ︸

f(x)

=


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)

1


︸ ︷︷ ︸

f(x)

◦


cos p3 · x1 − sin p3 · x2

sin p3 · x1 + cos p3 · x2

x3 + p3

x4


︸ ︷︷ ︸

g2
p(x)

i.e.,

(
Rp3 02×2

02×2 I2×2

)
·


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)

1



=


u1(x4) · cos (x3 + p3)

u1(x4) · sin (x3 + p3)

u2(x4)

1


(42)

which is true.

(iii) From Example 8, we know that g3
p is a stabilizer.

Transport function. To get the transport function, we
rewrite gp(a) = x into the form p = h (x,a):

gp(a) = x

(38)⇔




(
p1

p2

)
+Rp3

·

(
y1

y2

)
y3 + p3

y4

 =


x1

x2

x3

x4


y = Φp4(a)

.
(43)

Now, we have x4 = y4 = ϕp4,4(a) = a4 + p4, due to
the fact that x4 corresponds to the time and thus p4 =

x4 − a4. We deduce that gp(a) = x is equivalent to
(
p1

p2

)
+Rp3

·

(
ϕp4,1(a)

ϕp4,2(a)

)
p3

p4

 =


x1

x2

x3 − ϕp4,3(a)

x4 − a4


i.e., 

p1

p2

p3

p4

 = x−


Rx3−ϕx4−a4,3(a) ·

(
ϕx4−a4,1(a)

ϕx4−a4,2(a)

)
ϕx4−a4,3(a)

a4


︸ ︷︷ ︸

=h(x,a)

(44)

4 Integration method

The tools presented so far can be used in the context of
guaranteed integration. We will see how the use of Lie
symmetries can enhance classical methods of interval
integration. For all test-cases presented below, we used
a Processor Intel I7 8650U @ 1.90GHz.

4.1 Problem

Consider the system

ẋ = f(x) (45)

where the initial vector x0 is known to be inside the
box [x0]. Define by Xt the set of all states x at time t
consistent with the initial box [x0] and with Equation
(45). In this section, we want to characterize the sets Xt

for t ∈ T. The set Tmay be discrete, T = {t1, t2, . . . , tm}
or an interval T = [0, tmax].

Proposition 14 If Φt is the flow associated to f , then
we have

Xt = Φ−1
−t ([x0]). (46)

Proof: We have

x ∈ Xt ⇔ ∃x0 ∈ [x0], x = Φt(x0)

⇔ ∃x0 ∈ [x0], x0 = Φ−t(x)

⇔ Φ−t(x) ∈ [x0]

⇔ x ∈ Φ−1
−t ([x0])

(47)

which concludes the proof.
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As a consequence, characterizing Xt is a set inversion
problem. If we have an inclusion function for Φ−1

−t when
t is set, then we can get an inner and an outer approxi-
mation for the sets Xt, t ∈ T, using a set inversion algo-
rithm such as SIVIA [29]. This formulation allows us to
get an inner approximation in a much simpler way than
the approach proposed in [22].

4.2 Getting an inclusion function for the flow

Let ẋ = f(x) be a state equation andΦt the correspond-
ing flow. Assume that the initial vector x(0) is inside
the box [x0]. Let [t] be an interval containing the cur-
rent time t. An interval integrator is an algorithm which
computes in a finite number of steps, a box [y] such that

∀t ∈ [t],∀x0 ∈ [x0],Φt(x0) ∈ [y]. (48)

There exist in the literature several algorithms which
provide such interval integrators such as [10] or [56].
Moreover, except for atypical situations (such as when
f is not locally Lipschitz or f is non computable), these
integrators are efficient and accurate, i.e., when the di-
ameters of [t] and [x](0) are infinitely small, the diame-
ter of the box [y] is also infinitely small. The enclosure
is guaranteed even with a calculus made with floating
point numbers. This guarantee is made possible thanks
to interval computation and the Picard operator. One of
the main efficient interval integrators are based on the
Lohner algorithm [33].

In this section, we assume that we have an accurate in-
terval enclosure [a](t) for a reference a(t) = Φt(a0) with
a(0) = a0. The reference satisfies Equation (45). Get-
ting such an accurate tube [a](t) for the reference can be
done for most dynamical systems since no uncertainty
should be considered and since the initial point is known.

The following proposition will make it possible to get an
efficient inclusion function for the flow.

Proposition 15 If h(x,a) is a transport function for
ẋ = f(x), then we have

Φt(x) = gh(x,a0) ◦ a(t). (49)

Proof: Since gp is a symmetry, we have for all p,

Φt(x) = gp ◦Φt ◦ g−1
p (x). (50)

Taking p = h(x,a0) we get

Φt(x) = gh(x,a0) ◦Φt ◦ g−1
h(x,a0)

(x)
(16)
= gh(x,a0) ◦Φt(a0)

= gh(x,a0) ◦ a(t).

(51)

Corollary 16 An inclusion function for Φt(x) is thus

[Φ][t]([x]) = [g][h]([x],a0)([a]([t])) (52)

where [g], [h] are inclusion functions for g, h and [a](t)
encloses the reference a(t).The point a0 is exactly known.

Proof: This claim is a consequence of Proposition 15
and of the fundamental theorem of interval arithmetic
[34].

Figure 6 provides an illustration of the interval inclusion
function [Φ][t]([x]) which computes a box [y] enclosing
y = Φt(x),x ∈ [x], t ∈ [t]. Note that we have a closed
form expression for gp and for h, and a thin enclosure
of the reference t 7→ a(t) under the form of a tube [43].

Fig. 6. Left: Construction of the function
Φt(x) = gh(x,a0)(a(t)); Right: its interval counterpart
[Φ][t]([x]) = [g][h]([x],a0)([a]([t]))

4.3 Method

Given a box [x] (0) containing the initial state x0, we
want to characterize the set of all feasible trajectories.
To get the set Xti of all feasible states at time ti, we
propose the following method:

• Step 1. Define a reference a(t) and enclose it in a thin
tube [a](t). The initial vector a0 is exactly known.

• Step 2. Find a Lie group of symmetries Gp and give
an expression for the transport function h(x,a).

• Step 3. Solve the set inversion problem of Equation
(46) with SIVIA, using the inclusion of Equation (52).

For the implementation, we used Tubex [44, 43]. We
first generate a precise tube [a](t) for a(t) by using
CAPD [56], that is based on the Lohner algorithm [33].

We will now illustrate the approach on four examples.
For each of these examples, we will compute the set

⋃
t∈T

Xt =
⋃
t∈T

Φ−1
−t ([x0]) (53)

where Φt(x) = gh(x,a0) ◦ a(t), and where T is either

10



• a discrete set T = {1, . . . ,m}, which allows us to draw
different non-overlapping setsXti on the same picture;

• an interval T = [0, tmax], in order to approximate for-
ward reach sets.

Note that the union appearing in Equation (53), as well
as other set-theoretical operators (such as the projec-
tion), can easily be done using separator algebra [28],
also based on interval analysis.

4.4 Test-case 1 (continued)

This is the continuation of the example considered in
Subsection 2.3.

• Step 1. An analytical expression for a reference a(t)
can be obtained for Equation (15). We take the initial
condition a0 = (0, 1)

⊺
and we get:

a(t) =

(
t

e−t

)
. (54)

• Step 2. The transport function is given by Equation
(18).

• Step 3. From Proposition 15, we get

Φt(x) = gh(x,a0) ◦ a(t)

= g(x1,x2) ◦

(
t

e−t

)

=

(
t+ x1

x2 · e−t

)
.

(55)

For [x0] = [0, 1] × [2, 3] and for t ∈ T = {1, 2, 3, 4, 5, 6},
SIVIA yields Figure 7 in 1.4 sec. For T = [0, 6], it gener-
ates Figure 8 in 4.6 sec. Both represent the set

⋃
t∈T Xt.

The green box represents the initial box [x0]. The ma-
genta boxes are all inside the solution set and the blue
boxes are all outside. The black trajectory corresponds
to an accurate enclosure t 7→ [a](t) for the reference
t 7→ a(t).

4.5 Test-case 2 (continued)

This is the continuation of the example considered in
Subsection 3.4.

• Step 1. The reference t 7→ a(t) is obtained analytically.
For a0 = (0, 0)⊺, we have:{

a1(t) = t

a2(t) = 1− cos t
(56)

• Step 2. The transport function is given by Equation
(23).

Fig. 7. Result of Test-case 1 for a discrete time set:⋃
t∈{0,1,2,3}

Xt.

Fig. 8. Result of Test-case 1 for a continuous time set:⋃
t∈[0,5] Xt

• Step 3. Since Φt(0) = a(t), we have Φx1
(0) = a(x1).

Thus

h (x,0)
(23)
=

(
x2 − ϕx1,2(0)

x1

)
=

(
x2 − a2(x1)

x1

)
.

Moreover,

gp(x) =

(
0

p1

)
+Φp2

(x). (57)

Therefore:

gp ◦ a(t) (20)
=

(
0

p1

)
+Φp2

(a(t))

=

(
0

p1

)
+ a(t+ p2)

=

(
a1(t+ p2)

p1 + a2(t+ p2)

)
,

(58)
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thus:

Φt(x) = gh(x,0) ◦ a(t)

=

 a1(t+ x1)

x2 − a2(x1) + a2(t+ x1)


=

 t+ x1

x2 + cosx1 − cos(t+ x1)

 .

(59)

Figure 9 shows the set of feasible states at times t ∈
{2, 4, 6, 8} and Figure 10 shows the forward reach set for
t ∈ [0, 8]. The initial box is [x0] = [−0.5, 0.5]2 (green
painted). The computing time is 10.6 seconds.

Fig. 9. Result of Test-case 2 for a discrete time set:⋃
t∈{2,4,6,8}

Xt

Fig. 10. Result of Test-case 2 for a continuous time set:⋃
t∈[0,8]

Xt

4.6 Test-case 3 (continued)

This is the continuation of the example considered in
Subsection 3.5.

• Step 1. The reference t 7→ a(t) is obtained by integrat-
ing System (24) from the initial vector a0 = (1/2, 0)⊺.

• Step 2. The transport function is given by Equation
(35).

• Step 3. We have

Φt(x) = gh(x,a0) ◦ a(t)

If we develop this expression using Proposition 15 we
get

Φt(x) =

(
x1 −x2

x2 x1

)(
a01 a02

−a02 a01

)
· a(t)

∥a0∥2
√

1−∥a(t)∥2

1−∥a0∥2 +
(

∥a(t)∥2

∥a0∥2 − 1−∥a(t)∥2

1−∥a0∥2

)
∥x∥2

i.e., for a0 = (1/2, 0)⊺:

Φt(x) =

√
3

(
x1 −x2

x2 x1

)
· a(t)√

1− ∥a(t)∥2 + (4∥a(t)∥2 − 1)∥x∥2

To illustrate the integration, we have taken the example
already considered by [13] where the initial set is a disk
with center (1.5, 1.5) and radius 0.2. Figure 11 shows the
set of feasible states at times t ∈ {0, 1, 2, 3, 4, 5} and Fig-
ure 12 shows the forward reach set for t ∈ [0, 6]. Again,
the magenta boxes are all inside the solution set and the
blue are all outside. The black trajectory corresponds to
the reference t 7→ a(t). The computing time is less than
5sec for the discrete time case and 130 seconds for con-
tinuous time case. Compare to the results given in [13]
our results are much more accurate, we have both an in-
ner and an outer approximation (and not only an outer
approximation), and the computing time is less (130sec
instead of 250 sec).

Fig. 11. Result of Test-case 3 for a discrete time set:
⋃

t∈{0,5}
Xt

4.7 Test-case 4 (continued)

This is the continuation of the example considered in
Subsection 3.6.
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Fig. 12. Result of Test-case 3 for a continuous time set:⋃
t∈[0,6]

Xt

• Step 1. The reference t 7→ a(t) is obtained by integrat-
ing System (37) from a0 = (0, 0, 0, 0)⊺.

• Step 2. The transport function is given by Equation
(44).

• Step 3. Since Φt(0) = a(t), we have Φx4(0) = a(x4).
Thus:

h (x,0)
(44)
= x−


Rx3−a3(x4) ·

(
a1(x4)

a2(x4)

)
a3(x4)

0

 .(60)

Moreover,

gp ◦ a(t) (38)
=


(
p1

p2

)
+Rp3 ·

(
x1

x2

)
x3 + p3

x4

 ◦Φp4
(a(t))︸ ︷︷ ︸

=a(t+p4)

=


(
p1

p2

)
+Rp3 ·

(
a1(t+ p4)

a2(t+ p4)

)
a3(t+ p4) + p3

a4(t+ p4)

 .

Thus:

Φt(x)

= gh(x,0) ◦ a(t)

=



 h1(x,0)

h2(x,0)

+Rh3(x,0) ·

 a1(t+ h4(x,0))

a2(t+ h4(x,0))


a3(t+ h4(x,0)) + h3(x,0)

a4(t+ h4(x,0))



=



 x1

x2

+Rx3−a3(x4) ·

 a1(t+ x4)− a1(x4)

a2(t+ x4)− a2(x4)


x3 + a3(t+ x4)− a3(x4)

a4(t+ x4)

 .

Figures 13 shows the projection of the set of feasible
states at times t ∈ {1, 2, . . . , 14} on the (x1, x2) space.
Figure 14 depicts the projection of the forward reach set
for t ∈ [0, 14]. The initial box is [x0] = [−0.1, 0.1]2 ×
[−0.4, 0.4] × [0, 0] (green painted). The magenta boxes
are proved to be all inside the projection while the blue
ones are all outside. The thin trajectory corresponds to
the reference t 7→ a(t). The computing time is less than
750 sec.

Fig. 13. Result of Test-case 4 for a discrete time
set: Proj

(x1,x2)

⋃
t∈{0,14}

Xt.

In this section, we have provided four test-cases to il-
lustrate our approach. The first two examples can be
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Fig. 14. Result of Test-case 4 for a continuous time
set: Proj

(x1,x2)

⋃
t∈[0,14]

Xt.

solved analytically and are given for ease of understand-
ing. Examples 3 and 4 are more complex and we used
the interval integration solver CAPD [56], but we could
have used V-Node [37] or DynIbex [47] instead. Due to
the initial uncertainty, the fast explosion of the size of
the tubes makes these solvers inefficient, when they are
not combined with Lie symmetries as proposed here.

Remark. Some details related to the computation of all
test-cases are given by the following table.

Test-case Comp. time Bisections Accuracy

1 (continuous) 229ms 523 0.1

1 (discrete) 70ms 435 0.1

2 (continuous) 502ms 1288 0.1

2 (discrete) 106ms 797 0.1

3 (continuous) 130s 3112 0.01

3 (discrete) 5s 1807 0.01

4 (continuous) 682s 21435 0.01

4 (discrete) 11.9s 8677 0.01

5 Reachability

In this section, we illustrate how to use our interval inte-
gration in order to solve reachability problems [5][2][12].
Previously, we have have computed an inner approxi-
mation and an outer approximation of the reachable set
and bisections on the state space was needed. Without
such bisections, a tube similar to that represented on

Figure 15 is obtained is few seconds. The tube goes from
yellow for t = 0 to magenta.

Fig. 15. Tube obtained from the interval integration of the
small green box

Now, often in the context of reachability, we want to
check that the system will reach a given zone or that
system will never enter in some forbidden region R. The
reachability problem is transformed into a constraint
satisfaction problem (CSP). The unsatisfiability of the
CSP should be equivalent than checking the reachability
problem.

To illustrate the approach, we consider one more Test-
case 4. Figure 16 represents the area G that we want to
reach (green disk with center (0.1, 1) and radius

√
0.75)

and the forbidden zoneR (red disk with center (1.2, 1.3)
and radius , rayon 0.1). The black curve corresponds to
the boundary of the set represented on Figure 14. Three
constraints are involved

ẋ = f(x), x(0) ∈ [x0] (i)

∀t ∈ [0, 15],x(t) ̸∈ G (ii)

∃t ∈ [0, 15],x(t) ∈ R (iii)

• (i) claims that the system is initialized in the box [x0]
and that it satisfies the required state equation

• (ii) claims that the trajectory avoids the area to be
reached

• (iii) claims that the trajectory enters the forbidden
region

Using a contractor based approach, we get that there
we have no solution for Constraints (i) and (ii). We thus
conclude that G will always be reached for some t ∈
[0, 15].

Equivalently, Constraints (i) and (iii) are unsatisfiable
simultaneously. We conclude that trajectories will never
enter inside the forbidden region.
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For both CSP, no bisection on the state space is re-
quired. The contractor based approach require to con-
sider each constraint separately and contract the tubes
accordingly. The contraction process has to be done on
all constraints of the CSP until the empty solution set is
obtained. In the process our symmetry-based approach
is used to contract the tube for [x](·) with respect to
Constraint (i). The contraction had to be performed in
a forward and a backward manner.

Fig. 16. We want to show that the green disk will be reached
and that the small red disk will be avoided

6 Conclusion

This paper has presented a new approach for guaran-
teed interval integration of a state equation with uncer-
tain initial conditions in a context of reachability analy-
sis. The approach uses Lie groups of symmetries, which
has never been done in the context of guaranteed inte-
gration. It allows us to extend existing methods to cases
of large uncertainties. Compared to existing approaches,
our method behaves very well when the initial state is
strongly uncertain and when symmetries of the problem
are known.

In a near future, we would like to explore the following
perspectives.

• In the paper, the symmetries have been found by hand
for each example. Symbolic methods [8] would prob-
ably be useful to find them automatically, at least for
a large class of mobile robotic problems.

• When no symmetry exists in the formulation of the
problem, our method does not apply. Now, the non-
linear invariance condition (9) could be replaced by
equivalent but simpler linear conditions reflecting a
form of infinitesimal invariance [39]. This infinitesi-
mal formulation could be useful to deal with systems
for which the symmetries exist but are not known.
The combination with interval integration methods
remains to be studied.

• In the paper, we have studied a forward propagation of
the uncertainty. It seems straightforward to general-
ize the approach to allow both forward and backward
propagation, as needed when we solve state estimation
problems [19]. For such problems, existing methods
perform the interval integration many times in both
time directions. With our approach, the integration
has to be done only once: for the reference a(t). Hence,
we can expect efficient observers in a bounded-error
context.

• Our Lie group based approach has been proposed in
the context of interval analysis and bounded-error
paradigm. In a probabilistic world, we often use a par-
ticle filter. Our strategy could probably be used to
avoid redundant integrations for each particle. In this
way, the integration is factorized once for all particles.
We could then obtain much more efficient and accu-
rate particle filters.

Available libraries

The Codac library [45] has been used during this work.
It is a C++/Python library providing interval tools
for constraint programming over reals, trajectories and
sets. It has many applications in state estimation or
robot localization. This framework is compatible with
IBEX [9]: a C++ library for system solving and global
optimization based on interval arithmetic and con-
straint programming, see http://www.ibex-lib.org. The
code associated to all examples of this paper is given at:
https://codac.io/lie-symmetries.
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