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—— Abstract

Video content is becoming increasingly omnipresent on mobile platforms thanks to advances in

mobile heterogeneous architectures. These platforms typically include limited rechargeable batteries
which do not improve as fast as video content. Most state-of-the-art studies proposed solutions
based on parallelism to exploit the GPP heterogeneity and DVFS to scale up/down the GPP
frequency based on the video workload. However, some studies assume to have information about
the workload before to start decoding. Others do not exploit the asymmetry character of recent
mobile architectures. To address these two challenges, we propose a solution based on classification
and frequency scaling. First, a model to classify frames based on their type and size is built during
design-time. Second, this model is applied for each frame to decide which GPP cores will decode it.
Third, the frequency of the chosen GPP cores is dynamically adjusted based on the output buffer
size. Experiments on real-world mobile platforms show that the proposed solution can save more
than 20% of energy (mJ/Frame) compared to the Ondemand Linux governor with less than 5% of
miss-rate. Moreover, it needs less than one second of decoding to enter the stable state and the
overhead represents less than 1% of the frame decoding time.
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1 Introduction

Mobile video content will generate nearly four-fifths of mobile data traffic by 2022, according
to Cisco [2]. Smartphones, tablets, and media players are the favored and most frequently-
used tools to consume this multimedia content. This proliferation can be explained by the
omnipresence of mobile devices which made the consumption of these data easier. Also, the
Covid-19 crisis has soared the use of video content, e.g., video-conferencing [10].

This context made the energy efficiency one of the most important factors in modern
mobile platforms design, in particular for video decoding applications. To reduce video
decoding energy consumption while delivering high performance, one proposed solution is
the use of hardware (HW) video decoding performed by a HW decoder Intellectual Property
(HDIP), such as the HEVC decoder [37, 11]. Actually, in a state-of-the-art work, dedicated
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processors outperform general purpose processors (GPPs) by around 1000x in terms of
energy efficiency [23]. As a consequence, most modern smartphones are equipped with an
HDIP [39, 28]. However, HDIPs are not flexible and are costly to implement, which generate
a long time-to-market for new video codecs [19].

Heterogeneous multi-cores GPPs embedded in mobile platforms are composed of cores
of different performances, e.g., ARM big.LITTLE architecture processors. They offer a
great opportunity to enhance both performance and energy efficiency of software (SW) video
decoding using parallelism and frequency scaling. In particular, HEVC is a parallel-friendly
video codec as it supports different parallelism schemes [36]. Furthermore, GPPs are flexible
as they allow developing and rapidly deploying new codecs. Therefore, if well exploited,
GPPs energy consumption may be as close as possible to that of the HDIP of the target
platform while satisfying the real-time decoding constraint.

To exploit the heterogeneity of modern GPPs, one should balance the video frames
workload among GPP cores carefully. However, video frames, in a same video sequence, have
different complexities. In addition, predicting the complexity of a frame is a challenging task
as the information about it are normally not known before to start the decoding process,
except at the crude level of whether a frame is of type I/P/B and its size.

Dynamic voltage and frequency scaling (DVFS) is a technique that addresses the variability
of the video workload to reduce the consumed energy. It is enabled by scaling down/up the
voltage (and frequency) based on the frame complexity. However, despite the possibility
of decoding each video frame at a different frequency, Jensen’s inequality [24] shows that
decoding several frames at the average frequency gives better energy efficiency than decoding
each frame at a different frequency.

The research questions (RQ) addressed in this paper are as follows:

1. RQ1: How to balance the video frames among the heterogeneous GPP cores, based on a
little amount of information on the video frame to decode ?

2. RQ2: Once the GPP cores are selected, how to adjust their frequency in order to reduce
the energy consumption ?

In this paper, we propose a solution composed of three phases:

1. Modeling of frame complexity: to establish a model able to classify video frames into two
groups: (i) most complex frames, and (ii) least complex frames.

2. Assignment of frames using classification: to decide to which GPP cores (high performance
or energy-efficient) a frame should be submitted to. This phase solves RQ1.

3. Frequency scaling using feedback control (PI controller) with DVFS: to monitor the
output buffer size in order to adjust the GPP frequency, here we reused the work in [27].
This phase solves RQ2.

The results show that, on the tested platforms, the proposed solution can save on average
more than 20% of energy (mJ/Frame) compared to the Ondemand Linux governor. Moreover,
the classification allows to exploit the heterogeneity of ARM big. LITTLE architecture by
limiting the miss-rate to less than 5% of decoded frames. Finally, the proposed solution is
very light as it represents on overage less than 1% of the frame decoding time.

Section 2 gives some background. Then, Section 3 reviews some related work. Our
contribution is described in Section 4 with experimental results in Section 5. Finally, we
conclude in Section 6.
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2 Background
2.1 HW video decoding

HDIPs are massively parallel. Their architectures have been optimized for such parallelism
by eliminating the power consumption related to instruction decoding and control logic
characterizing GPPs [22]. For example, they integrate extreme multi-threading HW or
specific data handling and memory access optimization HW [3]. The main advantage of such
accelerators is their energy efficiency. For that, video decoding functions, in general, exhibit
massive data parallelism thanks to some schemes proposed by video codecs.

The GPP generally communicates with the HDIP as an input/output (I/O) operation.

This inter processor communication (IPC) may generate some energy overhead [21, 26]. The
IPC also includes all other elements involved in the HW video decoding such as memory
transfers. When the HDIP is called to proceed with the decoding process, the GPP may
enter the idle state and needs to handle the HW interrupt. This also generates some energy
overhead.

2.2 SW parallel processing

To understand how architectural strategies can provide high processing performance at
low power levels, it is necessary to look at the CMOS circuit dynamic power consumption
equation. The dynamic energy of a CMOS circuit can be formulated as:

Edyn = den * 1 (1)
Piyn = K.Cost- f. V3 2)

where Pgyy is the dynamic power, K is a constant, Ceg is the circuit effective capacitance, f
is the circuit clock frequency, and Vyy is the circuit voltage [16].

For instance, running a process using 2 GPP cores clocked at %
consumed energy compared to using 2 GPP cores clocked at f. More energy can be saved in
the case where the voltage Vg is scaled with the frequency f. Therefore, by decreasing the
frequency to the lowest level that provides the required performance, one can significantly
reduce the consumed energy.

can save 2x of the

3 Related work

The studies conducted on video decoding energy consumption can be grouped according to
the decoding parallelism scheme: (i) tiling, (ii) wavefront parallel processing (WPP), and
(iii) frame-by-frame.

Tiling parallelism scheme

This scheme is supported by HEVC. In [41, 35, 12], the proposed solutions consist in scheduling
frame tiles among heterogeneous cores, in a mobile asymmetric multi-cores architecture, e.g.,
ARM big. LITTLE. The scheduling is based on the tile complexity and the performance ratio
between big and LITTLE cores. The tile complexity can be estimated by its resolution, the

number of PUs that it incorporates, or the number of bits encoded in each CTU! of the tile.

L PU (Prediction Unit) and CTU (Coding Tree Unit) are sub-parts of a tile. CTU is the basic processing
unit of HEVC decoding process (conceptually corresponding to a Macro-block in prior standards) [32].

4:3
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WPP parallelism scheme

HEVC supports also the WPP parallelism scheme. In [34], the authors developed a strategy
based on task migration between big and LITTLE cores such that all cores are busy all
the time. In [17], the authors proposed an approach called Overlapped WaveFront (OWF)
that can be implemented on top of WPP. The proposed decoder consists of three pipeline
stages: parse, issue, and output. Each of these stages is performed by a different thread.
The proposed solution (OWF') achieves higher performance and scalability than both WPP
and tiling.

Frame-by-frame parallelism scheme

Most state-of-the-art studies exploited the frame-by-frame parallelism scheme to reduce
energy consumption of SW video decoding. For instance, in [29], the authors proposed a
solution that dynamically adapts the processing frequency to the video frames characteristics.
The complexity of the (L + 1)*" frame is estimated by the average decoding time of the last
L decoded frames, L being a parameter.

In [31], the authors introduced a method that determines the most energy efficient
operating point in terms of GPP frequency and number of GPP active cores in a mobile
multi-processor SoC (MPSoC) to perform HEVC decoding. The proposed method jointly
considers the DPM, DVFS, and parallelism capabilities of, on the one hand, the targeted
MPSoC and, on the other hand, the HEVC application. In [20, 18], the authors exploited the
SIMD and multi-threading to decode multiple frames in parallel, in addition to low-power
states that reduce the active and idle powers.

Approximate computing can also be used to save energy when performing video de-
coding [30]. It consists in skipping some modules or replacing them by others of lower
complexity.

In [27], the authors proposed a solution to reduce the energy consumption of video
decoding using a PI controller. The proposed solution controls the GPP frequency based
on the output buffer size, i.e., the number of decoded frames waiting for display. The GPP
frequency is scaled up or down depending on the buffer size and the display rate. This
technique were reused in our contribution.

Discussion

All the aforementioned studies suffer from at least one of the following drawbacks. First, they
do not take into account the multi-cores GPPs heterogeneity of mobile platforms. Second,
they rely on detailed information to predict the complexity of a frame, e.g., number of bits
contained in a CTU. However, these information are not available before to start decoding
except if they are collected at the encoder side and are standardized. Third, they modify the
decoding algorithm which makes it not complaint to the standard.

In this paper, a solution based on parallelism and DVFS is proposed to save energy when
performing video decoding. It is compliant to the HEVC standard. The proposed solution
is composed of three phases: (1) modeling of frame complexity, (2) classification of video
frames for an adaptive assignment, and (3) frequency scaling using feedback control with
DVFS (as introduced in [27]).
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Figure 1 The proposed solution overview.

4  Contribution

In this paper, we propose a solution to reduce the energy consumption of HEVC SW decoding
on mobile platforms. It aims at diminishing the HEVC SW decoding energy consumption to
be as close as possible to that of the HEVC HDIP of the target platform while satisfying the
real-time decoding constraint. This is achieved by two mechanisms: parallelism and DVFS.

Our proposed solution includes three different phases: (1) modeling of frame complexity,
(2) assignment of frames to appropriate GPP cores using classification, and (3) frequency
scaling using a PI controller with DVFS. Fig.1 depicts an overview of the proposed solution.
The first phase is performed offline, i.e., during design time, whereas the two other phases
are performed online, i.e., during the decoding process. Phase 2 solves RQ1 and phase 3
solves RQ2.

4.1 Phase 1: Modeling of frame complexity

The objective of the first phase is to build a model of frame complexity which is able to
balance the video frames workload between the high performance and energy-efficient GPP
cores. Indeed, this work focuses on heterogeneous processors containing high performance
cores and energy-efficient ones (such as ARM big. LITTLE processors). For that, any given
video frame is classified into two groups: (i) most complex frames to be decoded by high
performance GPP cores, and (ii) least complex frames to be decoded by energy-efficient GPP
cores. The complexity is expressed as the number of GPP clock cycles required to decode a
frame.

To build the model of frame complexity, as illustrated in Fig.1, there are two steps: (a)
training of the model, and (b) validation of the model. In the first step, data related to
frames representing multiple video sequences are collected. Then, a part of them (70%) is
injected to the model for training, i.e., the model takes those data to learn how to correlate
the input parameters to the output one which is the frame complexity. In the second step,
the model is applied on the remaining data (30%) to evaluate its accuracy.

Fig.2 depicts the inputs and output of the established model. The output is: (i) the
group of most complex frames, or (ii) the group of least complex frames. The inputs are the
independent variables (a.k.a. features): frame type and frame size. In a previous work [13],
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Figure 2 The proposed solution: phase 1 (Modeling of frame complexity).

it has been shown that these two parameters are very correlated to the frame complexity in
MPEG video codec. However, in case of HEVC, our experiments revealed a weak correlation
(R? = 0.55). As a result, we added three configuration parameters to improve the accuracy
of the model.

The added parameters are: (i) video bitrate, (ii) video frame rate, and (iii) the performance
ratio between the high performance and energy-efficient GPP cores. First, it has been shown
that the video bitrate is correlated with the video decoding energy consumption in case
of HEVC SW decoding [14]. Second, the video frame rate is used to determine the frame
decoding deadline. Finally, the performance ratio is used as the GPP cores offer heterogeneous
performances.

Finally, the regression model used to train the video frames data is the logistic regres-
sion [25]. The reason of this choice is its simplicity of implementation and its efficiency to
take a binary decision (most complex or least complex frames) [25].

The model resulting from this phase is expressed by the following formula, using a logistic
function:

1
-1 T e—p(@l,52,23)

y 3)
where y is the output of the model used in phase 2. It takes values between 0 and 1.
p(xl, 22, 23) is the linear function of the input and configuration parameters described above.
It is a real number.

The linear function is formulated as follows:

Wp + W1 * Ubjtrate + W2 * ftypc + w3 * fsizc

Vb , ize) = - 4
p( bitrate ftpr?fSlZC) mtzoﬁperformance ( )

where wy is the intercept (a constant), vpigrate i the the video bitrate, fiype and fsise are
the type and size of the frame to decode, respectively, and ratio_performance is the ratio
of performance between the high performance and energy-efficient GPP cores of the target
platform. Finally, wq, wo, and ws are the coefficients of the model.

4.2 Phase 2: GPP cores assighment using classification

The objective of the second phase is to decide online which GPP cores (high performance
or energy-efficient) will decode the next frame. For that, the model built in the previous
(offline) phase classifies the frames into two groups: (i) most complex frames, and (ii) least
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Figure 3 The proposed solution: phase 2 (Assignment using classification).

complex frames. The first group is submitted to the high performance GPP cores and the
latter to the energy-efficient ones. Then, the frame is decoded in parallel among the selected
GPP cores via tiling or WPP parallelism scheme (depending on the coding configurations).
This phase is performed during run-time, i.e., while performing video decoding as illustrated
in Fig.1. It is applied for each frame of the input video.

The classification is realized using Equation (4). Fig.3 depicts the algorithm of classifica-
tion in a graphical representation. For each frame, the classifier function using Equation (4)
is applied. If the result is positive, the frame is submitted to the high performance GPP
cores; otherwise, it is submitted to the energy-efficient GPP cores. Note that if two or more
consecutive frames are submitted to the same GPP cores type, they are stored in an input
buffer.

4.3 Phase 3: Frequency scaling using Pl controller [27]

The objective of this phase is to select the clock frequency at which the selected GPP cores
will decode the current frame. For that, the Proportional Integral (PI) controller proposed
in [27] is adopted. This controller monitors the output buffer size in order to maintain it at
a desired value (set point) which is an input parameter of the controller. To set the desired
value, one can follow the guidelines given in the literature review, such as [27, 18]. This
phase is performed during run-time, as illustrated in Fig.1. It is applied for each frame of
the input video.

The PI controller has two inputs: (i) a set point, i.e., the desired output buffer, and (ii)
the current output buffer size. Then, according to the output buffer size, the PI controller
adjusts the GPP frequency, using DVFS, so that the current buffer size meets the set point.
Note that the controller is engaged only when the difference between the set point and the
current output buffer size is not zero.

To speed up or slow down the GPP cores, the GPP frequency, gpp_ cores_ freq, is calculated
by multiplying the highest supported GPP cores frequency, GPP__coreSmax freq, Dy a scaling
factor, r.

gpp__cores_freg= GPP_coresmax freq * T (5)

The scaling factor, r, is, in turn, decomposed into two components, as illustrated by the
following formula:

r(n) =re(n) + re(n) (6)

where r, is the scaling factor estimation based on the history of the decoded frames, 7. is
the output of the PI controller which is considered as an adjustment of r, to compensate the
missed deadlines in the past, and n is the number of the next frame to decode. That is, a
negative value of r. indicates that the GPP cores should be slowed down, and vice versa.
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5 Performance evaluation

5.1 Evaluation methodology & setup

This section describes the evaluation methodology.

5.1.1 Experimentation setups

The HW and SW experimental setups as well as datasets (33 video sequences) on which
the proposed solution was applied are presented and summarized in Table 1. First, the
experiments were carried out on two different platforms (Snapdragon 810 and Odroid-xu3
for HW and SW video decoding, respectively). Then, the same experiments were performed
on a single platform (RB3) for both HW and SW video decoding.

Table 1 Experimental setups.

Snapdragon 810 Odroid-xu3 RB3
(1] (7] (8]
HW setup
HEVC HW Supported Not supported Supported
HEVC SW Not supported Supported Supported
Power N6705A DC Power Analyzer [14]
measurement
SW setup
0S Android 6.0 Ubuntu 16.04 Linaro Linux 10.3
. Linux kernel .
Linux kernel 3.10.84 414176+ Linux kernel 5.4.0
HEVC HW Android application
decoder + Mediacodec API Open-HEVC [5]
HEVC SW .
decoder - Open-HEVC [5] Ffmpeg [4] + v412 library

Video sequences datasets : 33 video sequences

JCT-VC [15], Jellyfish [6], and some well-known video sequences on the web, e.g., [38].
Resolution: 1080p. Frame rate: 25, 30, and 50 fps. Mode: Random Access. Profile: Main

To build the model of phase 1 of the proposed solution, sickit-learn framework [9] was
used via Python programming language.

5.1.2 Methodology

We evaluated our solution in four steps.

First, the proposed solution is compared to 5 state-of-the-art solutions, as summarized
in Table 2. In the first one, no DVFS is applied (Performance governor), the second uses
the Ondemand governor [33]. The characterization method is not a real strategy. We have
extracted the best configuration (number of GPP cores and their frequency) by testing all
possible configurations offline (whereas the proposed solution selects it dynamically without
such an effort). We also compared to the solution based only on PI controller [27] to show
the impact of the classification we proposed. We finally compared the energy consumption
with the one of the HDIP to evaluate how far is our solution from it.

Second, the accuracy of the model built in phase 1 is evaluated.
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Table 2 The proposed video decoding energy consumption optimization summary.

Proposed solution Classification + DVFS (PI controller)

No DVFS (Performance Linux governor) [33]
DVFS (Ondemand Linux governor) [33]

State-of-the-art work

Characterization proposed in [14]
DVFS (PI controller) [27]
HW decoding (HDIP) of the target platform

Table 3 The proposed solution energy saving (%) over state-of-the-art work.

State-of-the- Characterization | + DVFS (PI
(Performance (Ondemand
art work . . work [14] controller)
Linux Linux [27]
governor) governor)
Average of On Snapdragon
the proposed
lution 810 and 40 30 7 20
Sgnl;rgoy Odroid-xu3
saving (%) platforms
On RB3 platform 35 20 4 23

Third, the stability of the output buffer, which is its occupation variation, is studied. We
consider a system stable when the cores frequency does not change more than once in a
second since this period is usually used to make group of pictures (GoP), e.g., for streaming
applications.

Fourth, the overhead of the proposed solution (in percentage) is evaluated using the
following formula:

s__time
ratio _overhead = ps_

* 100 7
frame__dec__time (7)
where ps__time represents the time spent to run the proposed solution (phases 2 and 3), and
frame__dec__time represents the time required to decode a frame.

5.2 Results and discussion

In this section, the results of the HEVC SW decoding energy consumption optimization are
described and analyzed.

5.2.1 Comparison to the state-of-the-art work

In case of Snapdragon 810 and Odroid-xu3 platforms, the proposed solution can save on
average 40% and 30% of energy (mJ/Frame) compared to the Performance and Ondemand
Linux governors, respectively. Then, the proposed solution not only determines dynamically
the suitable GPP cluster and its clock frequency, in contrast to the characterization solu-
tion [14], but also can save up to 7% of energy (mJ/Frame). The classification technique,
phase 2, brings on average 20% of energy saving as compared to [27]. Finally, the ratio of
energy between the proposed solution and the HW video decoding is about 3x.

4:9

PARMA-DITAM 2022



4:10

Energy-Aware HEVC SW Decoding

To validate these results, experiments were conducted on RB3 platform which supports
both HW and SW HEVC decoding. On this platform, the proposed solution can save up
to 35%, 20%, 4%, and 23% of energy (mJ/Frame) compared to the Performance Linux
governor, the Ondemand Linux governor, the characterization work, and PI controller
solution, respectively. Concerning the HW video decoding, our solution consumes on average
4% more energy.

On all tested platforms, the miss-rate represents on average less than 5% of any given
video sequence. In addition, our solution needs less than one second of decoding to enter the
stable state of the output buffer size and thus the GPP frequency, as suggested by Jensen’s
inequality in [40].

Table 3 summarizes the energy saving percentage of the proposed solution over state-of-
the-art work.

5.2.2 Accuracy of the model

The model of frame complexity was trained with 70% of video frames dataset extracted from
33 videos sequences representing different durations and scenarios. The remaining 30% was
used for validation. In case of Odroid-xu3 platform, the accuracy of the model was 93%,
whereas 98% was achieved in case of RB3 platform. This indicates that at most 7 frames over
100 are not decoded by the right GPP cluster, e.g., they are decoded by the GPP LITTLE
cluster instead of the big one. The result is that these frames may not be decoded within the
deadline. This can be corrected by the PI controller of phase 3 (the miss rate was smaller
then this proportion).

5.2.3 Stability of the output buffer

At the beginning of the decoding process, the GPP clusters are clocked at their highest
supported frequency values. This allows to fill the output buffer as fast as possible to reach
the desired output buffer size. Then, the display process starts receiving frames, and thus
the PI controller starts monitoring the output buffer size.

The stability of this latter was reached in less than one second of decoding. The GPPs
cores frequency changes at most once in a second of decoding. The fluctuation of output
buffer size is due to the frames complexity which changes from one frame to another.

5.2.4 Overhead of the proposed solution

The overhead of the proposed solution is evaluated here. It is calculated using Equation (7).
The results show that the overhead represents on average less than 1% of the decoding time.
That is, it is negligible compared to the gain of energy that the proposed solution permits
to get.

6 Conclusions & future work

This paper presents a solution to reduce the energy consumption of HEVC decoding on a
heterogeneous mobile platform. The proposed solution is split into three phases: (1) modeling
of frame complexity, (2) assignment of frames to appropriate GPP cores using classification,
and (3) frequency scaling using a PI controller with DVFS. Phases 2 and 3 solves RQ1 and
RQ2, respectively.

The established model in phase 1 is more than 90% accurate. This accuracy permits
to exploit efficiently the heterogeneous character of mobile architectures, such as ARM
big. LITTLE. Moreover, the classification has a great role to exploit the heterogeneity of
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ARM big.LITTLE architecture and limit the miss-rate. Actually, the proposed solution
induces less than 5% of miss-rate, whereas 10% of miss-rate is observed when the Ondemand
Linux governor is set up. In terms of the overhead, the proposed solution is very slight as it
represents on average less than 1% of the frame decoding time. Finally, it should be noted

that the HW video decoding presents the best trade-off between performance and energy

consumption at the system level point of view.

In our future work, the aim is to apply our methodology to the successor of the HEVC

standard, versatile video coding (VVC).
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