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Abstract: Most research activities that utilize linear matrix inequality (LMI) techniques are based on
the assumption that the separation principle of control and observer synthesis holds. This principle
states that the combination of separately designed linear state feedback controllers and linear state
observers, which are independently proven to be stable, results in overall stable system dynamics.
However, even for linear systems, this property does not necessarily hold if polytopic parameter
uncertainty and stochastic noise influence the system’s state and output equations. In this case,
the control and observer design needs to be performed simultaneously to guarantee stabilization.
However, the loss of the validity of the separation principle leads to nonlinear matrix inequalities
instead of LMIs. For those nonlinear inequalities, the current paper proposes an iterative LMI solution
procedure. If this algorithm produces a feasible solution, the resulting controller and observer gains
ensure robust stability of the closed-loop control system for all possible parameter values. In addition,
the proposed optimization criterion leads to a minimization of the sensitivity to stochastic noise so
that the actual state trajectories converge as closely as possible to the desired operating point. The
efficiency of the proposed solution approach is demonstrated by stabilizing the Zeeman catastrophe
machine along the unstable branch of its bifurcation diagram. Additionally, an observer-based
tracking control task is embedded into an iterative learning-type control framework.

Keywords: polytopic uncertainty; stochastic disturbances; robust control; observer design; linear
matrix inequalities; optimization

1. Introduction

LMIs provide powerful tools for the design of guaranteed stabilizing controllers for
exactly known (nominal) system models as well as for scenarios with bounded uncertainty
in selected parameters. In both cases, the basic idea of using LMIs for control design (as well
as for the dual task of state estimation) is the proof of asymptotic stability of the closed-loop
dynamics by means of a suitable Lyapunov function candidate. Then, this stability proof
can be included directly in the stabilizing control synthesis. The most important options
for a control synthesis with the help of LMIs are the solution of a so-called pure feasibility
problem (i.e., a controller guaranteeing asymptotic stability and, in the cases of bounded
parameter uncertainty, achieving input-to-state stability) or extensions which deal with
optimization problems (such as H2 and H∞). Furthermore, regions for the closed-loop
eigenvalues can be specified so that minimum and maximum state variation rates during
transient phases can be influenced systematically. Numerous references, such as [1–7],
provide further information concerning techniques for an LMI-based control synthesis.

For linear system models with uncertain, bounded parameters, parameter-indepen-
dent Lyapunov function candidates can be used in many application scenarios. The result-
ing LMIs need to be specified for suitably chosen extremal system realizations of a polytopic
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uncertainty representation. Thereby, not only stability can be ensured but also restrictions
on admissible eigenvalue domains (referred to as Γ-stability in [8]) can be guaranteed if
the design task is solved successfully [5,6]. If the assumption of a parameter-independent
Lyapunov function leads to an unacceptably high level of conservativeness, augmented
LMI representations can be introduced, which are based on parameter-dependent tech-
niques (cf. [2,3]). Besides pure parameter uncertainty, which reflects inevitable tolerances
such as imprecisely known masses in mechanical systems, quasi-linear system models can
also be handled with these techniques. In such cases, polytopic uncertainty representations
are required that are composed of state-dependent system and input matrices, which
are bounded by their element-wise defined worst-case realizations. In such a way, LMI
techniques can also be employed for the design of robust controllers for nonlinear process
models [9].

The statements above hold equally for the design of state observers with a
Luenberger-like structure. Corresponding design criteria have been derived by exploiting
the duality to control synthesis in [10]. However, the interconnection of independently
designed controllers and state observers, where both of them need to be robust against
bounded parameter uncertainty, is not ensured to be asymptotically stable. This issue is
visualized in Section 2 with an academic example. As a consequence, it is inevitable to
design controllers and observers simultaneously. For example, this problem is treated
in [11–13] for discrete-time systems. The simultaneous controller and observer design leads
to nonlinear matrix inequalities that can be solved in an iterative way.

Moreover, most practical systems are subject to stochastic disturbances in the forms of
actuator, process, and sensor noise. These systems can be controlled by an optimal observer-
based LQG technique if the system model is linear and specified by precisely known,
that is, point-valued system matrices. The LQG technique combines a linear quadratic
regulator design with the optimal Gaussian (i.e., Kalman filter-based) state estimation.
As summarized, for example, by Skelton in [7], the problem of control parameterizations
that make sure that the noise-induced output and input covariances (i.e., uncertainty on
the closed-loop system outputs and actuator signals) fall below specific threshold values,
can be cast into LMIs.

If the techniques for an optimal LMI-based observer parameterization of continuous-
time systems, published in [14], are used, the domains around the system’s equilibrium
states can be identified for which no contractivity, that is, stability in a stochastic sense,
can be verified. To perform the analysis, the Itô differential operator [15] was applied to a
Lyapunov function candidate to perform its temporal differentiation in the corresponding
stochastic setting. In addition, we introduced an LMI-based numerical optimization of the
observer gains in [14] to minimize the domains for which the contractivity of the observer’s
error dynamics cannot be proven by the technique above.

This paper proposes a novel iterative solution that (i) solves the nonlinear matrix
inequalities for a combined control and observer design of linear continuous-time pro-
cesses with polytopic parameter uncertainty in an iterative manner and (ii) generalizes
the procedures from [14] to optimize the controller and observer gains so that the sensi-
tivity against actuator, process, and sensor noise on the closed-loop trajectories and the
observer’s error dynamics is minimized by means of the simultaneous control and observer
design. Besides the design of observer-based full state feedback controllers, our approach
is also capable of designing output feedback control laws, where the measured outputs
and fed-back quantities do not necessarily have to coincide. Due to the inclusion of the
state observer in the design procedure, the proposed approach is more general than the
robust output feedback design that was proposed by Gershon and Shaked in [16] for
discrete-time systems.

Finally, the work of Do et al. in [17] should be mentioned. There, a combined control
and observer design was performed. However, the authors do not aim at directly minimiz-
ing the domain for which stability in a stochastic sense cannot be proven. Instead, they
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aim to achieve the stability of the overall closed-loop control structure by suppressing the
influence of disturbances by means of a frequency response shaping approach.

This paper is structured as follows. After a short introductory example in Section 2,
Section 3 reviews our results published in [14] to turn them into a novel iterative LMI ap-
proach for an optimized, guaranteed stabilizing combined control and observer synthesis
in Section 4. The efficiency of this approach is demonstrated in Section 5 in numerical
simulations for the stabilization of the Zeeman catastrophe machine [18]. The stabilization
is performed along the curve of input-dependent unstable equilibria. In addition, a rep-
resentative tracking control task is presented, in which the feedforward control signal is
determined by a P-type iterative learning control approach [19,20]. Finally, conclusions
and an outlook on future work are provided in Section 6.

2. Observer-Based Control of Systems with Polytopic Uncertainty: A Cautionary Tale

As an introductory warning example, consider the unstable linear plant

ẋ(t) = a · x(t) + u(t) (1)

with the interval parameter a ∈ [a] = [a ; a] = [1 ; 3]. It is desired to parameterize a linear
feedback controller u(t) = −k · x̂(t), where x̂(t) is a filtered state estimate resulting from
the observer

˙̂x(t) = anom · x̂(t) + u(t) + h · (ym(t)− x̂(t)). (2)

Here, ym(t) = x(t) represents the measured plant output and anom is a fixed point-
valued parameter taken from the interval [a].

Remark 1. Because this example should purely visualize the loss of validity of the classical separa-
tion principle of control and observer synthesis due to the bounded uncertainty of the parameter
a ∈ [a], stochastic process and sensor noise are not considered in this section. Noise will be
accounted for systematically in Sections 3 and 4.

A classical control synthesis for the system model (1) would assume that x̂(t) ≈ x(t)
holds. Then, the closed-loop dynamics result in

ẋ(t) = (a− k) · x(t), (3)

which become asymptotically stable if the controller gain k is chosen so that

k > a = 3 (4)

holds.
Similarly, the observer error dynamics with e(t) = x(t)− x̂(t) would classically be

stated as
ė(t) = (a− h) · e(t), (5)

under the assumption of an identical parameter a in both the plant and observer model,
where

h > a = 3 (6)

would ensure stability.
When considering that anom in the observer differential Equation (2) is some point

value taken from the interval [a ; a], the resulting combined system dynamics turn into
[

ẋ(t)
˙̂x(t)

]
=

[
a −k
h anom − k− h

]
·
[

x(t)
x̂(t)

]
= Ã(a, anom, k, h) ·

[
x(t)
x̂(t),

]
(7)
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for which the control and observer gains k and h need to be chosen so that all eigenvalues
of Ã(a, anom, k, h) are guaranteed to lie strictly within the open left complex half-plane for
all possible realizations of a ∈ [a].

Due to the simple structure of the scalar system model with a single uncertain param-
eter, the optimal choice (with respect to maximizing the admissible domains for the gains
k and h) is obvious; it would be anom = a = 3. However, in more general settings, such
simple statements are typically not possible. At least for systems with a small number of
uncertain parameters, as well as controller and observer gains, the choice could be assisted
analytically by the parameter space approach from [8].

For more complex models, only numerical techniques are helpful for determining
the admissible domains of stabilizing controller and observer gains k and h, respectively.
For the academic example in this section, a numerical analysis of the stability domains is
shown in Figure 1. Domains of robustly stabilizing gains are highlighted in a light gray
color, while gains with unstable eigenvalues for at least one a ∈ [a] are highlighted in dark
gray. Clearly, setting anom to a value that is significantly smaller than a (e.g., to the interval
midpoint 1

2 · (a + a) in Figure 1a) requires much larger gains for k and h than the settings
in Figure 1b–d. The loss of the validity of the separation principle of control and observer
design can be seen clearly from the fact that the boundary between stable and unstable
realizations is a curved line that is not parallel to the coordinate axes k and h in Figure 1.
The separation principle would only hold in cases where the stability boundaries for k and
h are fully decoupled.

The iterative LMI-based solution procedure given in the following sections provides a
systematic approach for stabilizing the observer-based closed-loop control system when
the point-valued parameterization of the parallel model in the observer (the parameter
anom in (Equation (2))) is fixed. In addition to purely finding the stabilizing controller and
observer gains, the proposed technique optimizes the gains so that the resulting dynamics
become as insensitive as possible against stochastic actuator, process, and sensor noise.
An optimization of the point-valued parameters of the parallel model included in the state
observer can be considered a subject for future work.

(a) anom = 2.0. (b) anom = 2.9.

Figure 1. Cont.
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(c) anom = 2.99. (d) anom = 2.999.

Figure 1. Stability analysis of the observer-based closed-loop control system (7) for different values of anom and a ∈ [1 ; 3]:
The choice of anom 6= a requires a significant increase of both k and h above the thresholds k > 3 and h > 3.

3. Methodological Background: LMI-Based Control and Observer Design

In this paper, dynamic system models are considered, which are given by the stochastic
differential equations

dx(t) = A(p) · x(t)dt + B(p) · (u(t)dt + Gu(p) · dwu) + Gp(p) · dwp (8)

with the state vector x := x(t) ∈ Rnx and the input vector u := u(t) ∈ Rnu ; A(p) and
B(p) are the system and input matrices, where p ∈ Rnp is a vector of either constant or
time-varying bounded parameters. Alternatively, this vector may denote the dependence
of all system matrices on the state variables x, cf. [9]. For the sake of a compact notation,
all entries of p are treated as mutually independent with an affine dependence of A and B
on these quantities. Moreover, wu ∈ Rmu and wp ∈ Rmp are stochastically independent
standard normally distributed Brownian motions of actuator and process noise. In this
sense, Gu(p) and Gp(p) represent the (element-wise non-negative) disturbance input
matrices containing the corresponding standard deviations.

The measured system output is given by

ym(t) = Cmx(t) + Gmwm, (9)

where the output matrix Cm ∈ Rny×nx is assumed to be exactly known; wm is the standard
normally distributed sensor noise, while Gm is the weighting matrix representing the actual
standard deviation of the output disturbance.

In the following, we aim at designing either an observer-based state feedback (Case 1)
or an observer-based output feedback control strategy (Case 2). In the second case, the mea-
sured output does not necessarily coincide with the system output to be controlled. A linear
filter-based output feedback (Case 3), in which the filter is designed in a model-free manner,
is only mentioned for the sake of completeness and has been treated by the authors in
a separate publication [21]. The reason for this separate investigation is the fact that the
design criteria do not fully coincide with the requirements derived for the Cases 1 and 2 in
this paper:

Case 1: The control signal is defined as

u = uff −K · x̂, (10)
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where (without loss of generality) uff is a constant feedforward signal and x̂ is the
state estimate determined by the robust observer

˙̂x = Anom · x̂ + Bnom · u + H · (ym − ŷ)

ŷ = Cm · x̂,
(11)

which makes use of the nominal system and input matrices Anom and Bnom, see
Section 3.4. For the following stabilization and performance optimization, uff = 0 is
assumed. Desired operating points outside the origin x = 0 are easily achievable by
adding suitable nonzero offset terms.

Case 2: The control signal is defined as

u = uff −Ko ·C · x̂, (12)

with the same observer as in (11). Note that the output matrix C does not necessarily
coincide with the matrix Cm defined in (9).

Case 3: The control signal is defined as

u = uff −Ky ·Cy · ŷf, (13)

where ŷf is a vector consisting of filtered system outputs and estimated output
derivatives, cf. [21].

Remark 2. Case 3 can be interpreted as a dynamic output feedback control approach, whereas the
Cases 1 and 2 are model-based approaches employing feedback controllers that rely on an estimation
of the complete state vector by an appropriate full observer. It should be noted that the different
control structure of Case 3 leads to a similar, however not identical, LMI approach. Therefore, Case 3
is treated separately in [21]. Moreover, as already discussed in [21], Case 3 should typically only
be used if a maximum of two time derivatives of measured output signals are estimated with the
model-free filter. In all other cases, the observer-based concepts of Cases 1 and 2 are advantageous.

To guarantee solvability of the control design task in all three cases above, it is assumed
that the system (8) is stabilizable using either of the system inputs (10), (12), or (13), and
that the pair (A(p), Cm) is robustly observable (or at least detectable) in Case 1 as well as
in Case 2. Here, robust observability is defined as observability of all possible values of the
parameters p according to the definition given in [8]. Note that the requirements of both
stabilizability and detectability will not be proven explicitly. These properties are instead
verified constructively by determining a solution that ensures input-to-state stability of the
system dynamics as well as of the observer’s error dynamics.

3.1. Polytopic Uncertainty Modeling

As shown in [4,6,22], it is possible to describe the influence of uncertainty in many
practical applications by bounded uncertainty domains D of polytope type. There, it is
assumed that all system matrices in (8) belong to a convex combination of extremal vertex
matrices in the form

D =
{[

A, B, Gu, Gp
]∣∣∣
[
A(ξ), B(ξ), Gu(ξ), Gp(ξ)

]

=
nv

∑
v=1

ξv ·
[
Av, Bv, Gu,v, Gp,v

]
;

nv

∑
v=1

ξv = 1; ξv ≥ 0
}

,
(14)

where nv denotes the number of independent extremal realizations for the union of all four
matrices included in (14).
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3.2. Robust State Feedback Control

In all following subsections, sufficient conditions for asymptotic stability of the closed-
loop system dynamics (and the observers’ error dynamics, respectively) are derived on
the basis of quadratic, parameter-independent, radially unbounded Lyapunov function
candidates

V(x) =
1
2

xT · P · x (15)

with the positive definite matrix
P = PT � 0 (16)

as a free decision variable to be determined during the proposed iterative solution of
matrix inequalities.

Theorem 1 ([4,6] Sufficient stability condition for full state feedback). Robust asymptotic
stability of the closed-loop control system according to Case 1 for a noise- and error-free state
feedback (i.e., x ≡ x̂) is ensured if the gain matrix K satisfies the bilinear matrix inequalities

(Av − BvK)T · P + P · (Av − BvK) ≺ 0, (17)

P = PT � 0, for all polytope vertices v ∈ {1, . . . , nv} in (14).

Proof. Substituting the control law (10) with uff ≡ 0 in the deterministic part of the system
model (8), computing the time derivative of the Lyapunov function candidate (15), and rep-
resenting the system matrices A(p) and B(p) by the polytopic uncertainty model (14)
leads to

V̇(x) =
1
2

ẋT · P · x + 1
2

xT · P · ẋ

=
1
2

xT ·
nv

∑
v=1

ξv ·
(
(Av − BvK)T · P + P · (Av − BvK)

)
· x.

(18)

A sufficient stability condition is guaranteed to be satisfied in terms of V̇(x) < 0 for
all x 6= 0 if all matrix inequalities (17) hold true for a parameter-independent controller
gain K.

Corollary 1. To allow for an efficient solution of the bilinear matrix inequalities in Theorem 1 with
the help of standard solvers for LMIs such as SEDUMI [23] in combination with YALMIP [24],
the linearizing change of variables

P = Q−1 and K = YP (19)

is introduced. Multiplying (17) from the left and right with the matrix Q leads to equivalent LMIs

AvQ + QAT
v − BvY− YTBT

v ≺ 0 (20)

with Q = QT � 0. Their solution Q = P−1 with Y = KP−1 then needs to be transformed back by
means of (19).

3.3. Robust Output Feedback Control

Theorem 2 (Sufficient stability condition for output feedback control). Robust asymptotic
stability of the closed-loop control system according to Case 2 for an error-free output feedback (i.e.,
Cx ≡ Cx̂) is ensured if the gain matrix Ko satisfies the bilinear matrix inequalities

(Av − BvKoC)T · P + P · (Av − BvKoC) ≺ 0, (21)

P = PT � 0, for all polytope vertices v ∈ {1, . . . , nv} in (14).
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Proof. The proof of Theorem 2 is a direct consequence of the sufficient stability condition
used for the proof of Theorem 1.

Corollary 2 ([25]). For precisely known matrices C, an LMI formulation of Theorem 2 is obtained
by introducing a linearizing change of variables with Q = P−1 � 0 and the equality constraints

MC = CQ and N = KoM. (22)

Multiplying (21) from the left and right by Q and considering the relations (22) yields the
LMIs

AvQ + QAv
T − BvNC−CTNTBv

T ≺ 0. (23)

If the matrix C, and therefore also M, have full row rank, the resulting controller gain is given
by

Ko = NM−1. (24)

Remark 3. In the literature [10,25], an alternative problem formulation is often given in terms of

PAv + Av
TP− BNC−CTNTBT ≺ 0 (25)

with P � 0 and the additional equality constraint

BM = PB, (26)

leading to Ko = M−1N. Applying this formulation is, however, only useful for precisely known
matrices B, where C instead may be subject to a polytopic uncertainty model.

Remark 4. Theorems 1 and 2 become identical for the case of a full state feedback, namely, for C = I.
Then, the constraint MC = CQ becomes redundant as M = Q.

3.4. Robust State Observation

Following the duality principle between control and observer synthesis, as described
for example in [10,26], leads to the counterparts of Theorem 1 and Corollary 1 according to
the following Theorem 3, where the observer differential equation is given by Equation (11).

Theorem 3 ([10] Sufficient stability condition for robust state observer). The error dynamics
of a robust state observer according to Equation (11) with the exactly known output matrix Cm are
robustly asymptotically stable if the observer gain H satisfies the bilinear matrix inequalities

(Av −HCm)T · P′O + P′O · (Av −HCm) ≺ 0 (27)

for some positive definite matrix P′O = P′O
T � 0 at all polytope vertices v ∈ {1, . . . , nv} in (14).

As stated before, the matrix Cm in (27) does not necessarily have to be identical to
the matrix C to be fed back in the control law (12). Note that the prime symbol (·)′ in (27)
has been introduced to indicate that the matrix P′O is typically not the same as PO in the
following corollary.

Corollary 3 ([10]). To allow for an efficient solution of the bilinear matrix inequalities in Theorem 3,
after considering the duality between control and observer synthesis by evaluating the transposed
of (27) according to

(Av −HCm) · PO + PO · (Av −HCm)T ≺ 0, (28)

the linearizing change of variables

PO = QO
−1 and H = (YOPO)

T (29)
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is introduced. Multiplying (27) from the left and right with the matrix QO leads to equivalent LMIs

AT
v QO + QOAv −CT

mYO − YT
OCm ≺ 0 (30)

for all polytope vertices v ∈ {1, . . . , nv} in (14).

4. Main Results: Iterative LMI Solution for a Combined Control and Observer
Synthesis in the Presence of Stochastic Noise

This section provides the main result of this paper. It consists of the description of an
augmented stochastic differential equation model, comprising the controlled plant as well
as the robust state observer. Based on this augmented model, optimality conditions for the
combined computation of the control and observer gains are presented which allow us to
minimize the size of the domain around the desired operating point for which stability
cannot be proven due to the presence of stochastic actuator, process, and sensor noise. For a
visualization of such domains in the frame of oscillation attenuation for boom cranes in
marine applications, the reader is referred to [27].

4.1. Observer-Based Feedback Control in the Presence of Noise

To ensure stability of the control laws (10) or (12) despite the general invalidity of the
separation principle according to Section 2 and to simultaneously optimize the controller
and observer gain matrices in Cases 1 and 2, the closed-loop control systems’ dynamics as
well as the point-valued observers’ error dynamics ev = xv − x̂v are described by using a
combined set of stochastic differential equation models. In the following, all system models
are derived for each of the worst-case realizations v ∈ {1, . . . , nv}, to simultaneously
account for bounded parameter uncertainty and stochastic noise.

For that purpose, the deterministic system models from the previous section (i.e.,
the noise-free, however, parameter-dependent terms) are extended by the terms for stochas-
tic process and sensor noise as well as by accounting for the control signals

uv = −KoCx̂v = −KoC · (xv − ev). (31)

Hence, each vertex realization for the closed-loop control system is represented by a
stochastic differential equation

dxv =
(
(Av − BvKoC)xv + BvKoCev

)
dt +

[
BvGu,v Gp,v

]
·
[

dwu
dwp

]
. (32)

Here and in the following, C ≡ I and Ko ≡ K hold for Case 1.
Similarly, the stochastic differential equation for the observer dynamics at each vertex v

is obtained as

dx̂v =
(
(Anom − BnomKoC)x̂v + HCmev

)
dt + HGm dwm. (33)

The latter leads to the associated error dynamics

dev =
(
((Av −Anom)− (Bv − Bnom)KoC)xv

)
dt

+
(
((Anom −HCm)− (Bnom − Bv)KoC)ev

)
dt

+
[
BvGu,v Gp,v −HGm

]
·



dwu
dwp
dwm


.

(34)

As discussed in [14], it may be impossible to verify stability in the close vicinity of
the desired stationary operating point in the presence of stochastic noise. This is true even
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if a robust stabilization by simultaneously designing the controller and observer for the
noise-free polytopic uncertainty model is successful.

To design a state observer minimizing the sensitivity against noise, our previous
work [14] suggests estimating the volume of an ellipsoid centered at the desired operating
point for which stability properties cannot be proven. For the case of exactly known
system models, an LMI-based optimization approach was introduced in [14] to reduce
the corresponding ellipsoid volume. This approach is now extended by the following
two aspects: (i) simultaneously computing the controller and observer gains in a jointly
stabilizing sense in the presence of noise, as well as (ii) additionally considering the goal of
achieving insensitivity against bounded parameter uncertainty in the system matrices by
the minimization of the aforementioned ellipsoid volume.

For that purpose, define an augmented vector

zv =
[
xT

v eT
v
]T (35)

consisting of system states and estimation errors for each extremal system representation
from the polytope (14). The corresponding stochastic differential equations are given by

dzv = Av · zv dt +Gv ·



dwu
dwp
dwm


 (36)

with

Av =

[
Av − BvKoC BvKoC

A2,1,v A2,2,v

]
, (37)

where the sub-matrices in the second row result in

A2,1,v = (Av −Anom)− (Bv − Bnom)KoC (38)

and
A2,2,v = (Anom −HCm)− (Bnom − Bv)KoC. (39)

Similarly, the augmented matrix of noise standard deviations turns into

Gv =

[
BvGu,v Gp,v 0
BvGu,v Gp,v −HGm

]
. (40)

Note that for the simplified case of [14] without parameter uncertainty, the sub-
matrices in (38) and (39) turn into A2,1,v = 0 and A2,2,v = Anom −HCm with Anom ≡ Av
and Bnom ≡ Bv. For this case, the separation principle holds and the observer and controller
parameterization (hence also their optimization) can be performed independently.

The following subsection introduces a cost function J that can be minimized in an
iterative manner by applying state-of-the-art LMI solvers, such as SEDUMI [23] in com-
bination with YALMIP [24]. Thereby, the controller and observer gains, as well as the
Lyapunov function candidate, are computed in parallel.

4.2. Optimality of the Noise Insensitive Observer-Based Control Design

Theorem 4 (Optimal control and observer parameterization). The parameterization of the
observer-based controller for the augmented system (36)–(40) is optimal in the sense of a minimiza-
tion of the influence of noise if the controller and observer gains are chosen to minimize the cost
function

J =
nv

∑
v=1


 trace{Nv}

det
(
− ˇ̄Av

) · det
(
P̌′O
)

det
(
Q̌
)


 (41)
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with Nv = NT
v � 0 and

ˇ̄Av := ǍT
v P̌+ P̌Ǎv ≺ 0, (42)

where 

Nv ǦT

v

Ǧv

[
Q 0
0

(
P̌′O
)−1

]

 � 0, (43)

Ǧv =

[
BvGu,v Gp,v 0
BvGu,v Gp,v −Q̌−1

O YT
OGm

]
, (44)

and (
Av − ȞCm

)T · P̌′O + P̌′O ·
(
Av − ȞCm

)
≺ 0 (45)

with Ȟ = Q̌−1
O Y̌T

O hold. Here, ˇ(·) symbols indicate an iterative evaluation, where all such values
are replaced by the outcome of the previous iteration stage, especially by inserting the previous gain
values into (37) to obtain the matrices Ǎv in (42).

Proof. Define a quadratic form

V(zv) =
1
2

zT
v ·P · zv (46)

as the candidate for a Lyapunov function with the block diagonal matrix

P = blkdiag
(
P, P′O

)
=

[
P 0
0 P′O

]
(47)

consisting of those matrices that were obtained from the Corollaries 1 or 2, as well as from
Theorem 3.

The corresponding time derivative of (46) is computed by applying the Itô differential
operator [14,15]. It leads to the expression

L(V) =
1
2

(
zT

v

(
AT

v P+PAv

)
zv + trace

{
GT

v PGv

})
. (48)

Despite the strict negative definiteness of AT
v P+PAv (corresponding to the asymp-

totic stability of the deterministic part of the augmented system model due to the existence
of a positive definite matrix P = PT � 0), the value of L(V) may become positive in the
close vicinity of zv = 0 due to persistent stochastic excitation. The non-provable stability
domain is, hence, characterized by the interior of an ellipsoid that is described by the
boundary L(V) = 0 according to

zT
vM

−1
v zv − 1 = 0, (49)

where

M−1
v =

( −Āv

trace{GT
v PGv}

)
(50)

and
Āv := AT

v P+PAv ≺ 0. (51)

The volume of this ellipsoid is proportional to

√
det(Mv) =

√
trace{GT

v PGv}
det(−Āv)

. (52)
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Following the same steps as in ([14], Equations (17)–(20)), it is desired to minimize the
quality criterion

Jv =
trace

{
GT

v PGv
}

det(−Āv)
· det

(
P′O
)

det(Q)
(53)

by tuning the control and observer gains, where the second factor helps to maximize the
domains for which the linear feedback in the closed-loop system is bounded by some
positive constant [28].

According to [28], multiplicative couplings between P and the gains included in Gv
are removed by an iterative LMI formulation of the optimization task. For that purpose,
the term GT

v PGv is relaxed into the matrix inequality

Nv � GT
v PGv corresponding to Nv −GT

v PGv � 0 (54)

with Nv = NT
v � 0. The inequality (54) is finally re-written by applying the Schur

complement formula according to


Nv GT

v

Gv

[
Q 0
0

(
P′O
)−1

]

 � 0. (55)

The proof is completed by approximating
(
P′O
)−1 with the solution of the inequal-

ity (45) and by replacing all nonlinearities related to the gains and parameterizations of
V(zv) in (46) by the results of the preceding iteration step.

Remark 5. The pure block diagonal structure of this matrix P in (47) with independent param-
eters for the state and error dynamics, may introduce some degree of conservativeness. However,
the positive definiteness of this matrix always guarantees closed-loop stability (see the discussion of
Equation (48)). Moreover, the simulations in the following section have shown that the resulting
control signals outperform classical design approaches in terms of a reduction of the control effort.
In addition, notice that the obtained solution can be conservative due to the use of a common
quadratic Lyapunov function for the whole polytope. The use of parameter-dependent Lyapunov
functions, such as those discussed in [29] for discrete-time processes with time-varying parameters,
will be a subject of future research.

4.3. Summary of the Proposed Algorithm and Further Discussion

The proposed iterative LMI formulation of the combined optimization of control and
observer gains for linear systems with polytopic parameter uncertainty and stochastic
process, actuator, and sensor noise is summarized in the structure diagram in Figure 2.

For the application scenario considered in the following section, the proposed iterative
solution technique converged to constant control and observer gains in less than 20 itera-
tions. It should be pointed out that each control and observer parameterization—for which
all augmented system matrices (37) can be proven to be asymptotically stable with the
help of a common Lyapunov function candidate—stabilizes the deterministic part of the
closed-loop control structure with certainty. Hence, a comparison of the optimized cost
function value according to (41), after convergence of the iterative optimization procedure
and the result of an evaluation of this cost function for a non-optimized, although guar-
anteed stabilizing parameterization, may be interpreted as the achieved enhancement of
robustness. In general, this cost function value is proportional to the average size of the
domain of non-provable contractivity around a desired operating point due to noise, where
Jv is evaluated for each of the vertices of the polytopic uncertainty representation.
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Generate the polytopic uncertainy model (14) for the open-loop system in terms of the list of nv vertex matrices
Av, Bv, Gu,v, Gp,v

Initialization of the controller parameterization by finding stabilizing gains according to Corollary 2 and store
the matrix Ǩo = Ko

Initialization of the observer parameterization by finding stabilizing gains according to Corollary 3 and store
the matrices Ȟ = H, Q̌O = QO, Y̌O = YO (under the assumption of the validity of the separation principle)

Specify the desired precision parameters ε > 0 and εO > 0

Set ∆Q = ∞ and ∆QO = ∞

While ∆Q > ε or ∆QO > εO

Compute the matrix P̌′O by solving the LMI (45) with the previous observer gain Ȟ

Determine the matrices Ǎv by an evaluation of (37) for all vertices nv with Ko = Ǩo

Determine the matrices Ǧv in (44) for all vertices nv as a function of the pre-computed matrix Q̌O and the
decision variable YO

Specify the matrix P̌ by an evaluation of (47) for the pre-computed matrices P = Q̌−1 and P′O = P̌′O

Set up the LMI constraint (42) for each vertex nv

Set up the LMI constraint (43) with the decision variables Q and Nv for each vertex nv

Define the cost function (41) to be minimized

Solve all LMIs (42), (43) together with the LMI constraints (22), (23) for the output feedback control
and (29), (30) for the observer design, while simultaneously minimizing (41), with the decision variables
Q � 0, M, N, QO � 0, YO (validity of separation principle is no longer assumed)

Determine the variations ∆Q =
∥∥Q− Q̌

∥∥
2 and ∆QO =

∥∥QO − Q̌O
∥∥

2

Store the matrices Ǩo = Ko, Ȟ = H, Q̌O = QO, Y̌O = YO

Figure 2. Structure diagram of the proposed offline control and observer parameterization.

5. Simulation Results

As a benchmark for the proposed control design, we consider the Zeeman catastrophe
machine illustrated in Figure 3. It consists of a disc of radius R that can rotate freely around
its center at the origin of the (x, y)-plane. The angle of orientation x1 (with corresponding
velocity x2) can be manipulated by using the position x3 as a control input. This position is
assumed to be controlled by an actuator with a non-negligible time constant T, where u
denotes the control signal in terms of the desired value for x3.
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(represented by a jump-like motion between two significantly different angles). Second,
a tracking controller is designed which allows for following a reference trajectory yd for
the angle x1.

According to the discussion above, the controller is parameterized with the output
matrix

C =

[
1 0 0
0 1 0

]
, (56)

while
Cm =

[
1 0 0

]
(57)

represents the sensor’s relation to the state vector.
The equations of motion of this system

ẋ1 = x2

ẋ2 =
k

mR
·
(

L1 − L0

L1
a− L2 − L0

L2
x̃
)

sin(x1)− dx2 +
k

mR
· L2 − L0

L2
· cos(x1) · x3

ẋ3 =
1
T
· (−x3 + u)

(58)

with the velocity-proportional damping term dx2 and the state-dependent spring lengths

L1 =

√
(R cos(x1) + a)2 +

(
R sin(x1)

2
)

(59)

and

L2 =

√
(x̃− R cos(x1))

2 +
(

x3 − R sin(x1)
2
)

(60)

can be derived on the basis of Lagrange’s equations of second kind. For this derivation, it
is assumed that the total mass m of the system is located at a single point on the edge of
the rotating disc.

xx̃

R

R

m
L1

−a

x3

y

x1
L2

Figure 3. Application scenario: Zeeman catastrophe machine.

For the LMI-based design procedure, the system model is re-written into the quasi-
linear form

ẋ =




0 1 0
a21 −d a23
0 0 − 1

T


 · x +




0
0
1
T


 · u (61)

of a polytopic uncertainty system model with Av and nv = 4, where

a21 =
k

mR
·
(

L1 − L0

L1
a− L2 − L0

L2
x̃
)

sin(x1)

x1
∈ [−5.2 ; 14.4] (62)

Figure 3. Application scenario: Zeeman catastrophe machine.

5.1. Modeling

Depending on the location x̃, which is assumed to be fixed, this simple mechanical
setup with the connecting elements of the variable lengths L1 and L2, which are given
by linear springs with stiffness k, can show nonlinear behavior including hysteresis and
chaotic motion [18]. Both springs have the nominal length L0.

The first goal of designing a partial state feedback controller (using only the mea-
surable angle x1 and its derivative x2, where both are smoothened and estimated by a
state observer) is to realize a stable transition between two bifurcation points at which the
open-loop dynamics change between asymptotic stability and instability (represented by a
jump-like motion between two significantly different angles). Second, a tracking controller
is designed, which allows for following a reference trajectory yd for the angle x1.

According to the discussion above, the controller is parameterized with the output
matrix

C =

[
1 0 0
0 1 0

]
, (56)

while
Cm =

[
1 0 0

]
(57)

represents the sensor’s relation to the state vector.
The equations of motion of this system

ẋ1 = x2

ẋ2 =
k

mR
·
(

L1 − L0

L1
a− L2 − L0

L2
x̃
)

sin(x1)− dx2 +
k

mR
· L2 − L0

L2
· cos(x1) · x3

ẋ3 =
1
T
· (−x3 + u)

(58)

with the velocity–proportional damping term dx2 and the state-dependent spring lengths

L1 =

√
(R cos(x1) + a)2 +

(
R sin(x1)

2
)

(59)

and

L2 =

√
(x̃− R cos(x1))

2 +
(

x3 − R sin(x1)
2
)

(60)

can be derived on the basis of Lagrange’s equations of second kind. For this derivation, it
is assumed that the total mass m of the system is located at a single point on the edge of
the rotating disc.
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For the LMI-based design procedure, the system model is re-written into the quasi-
linear form

ẋ =




0 1 0
a21 −d a23
0 0 − 1

T


 · x +




0
0
1
T


 · u (61)

of a polytopic uncertainty system model with Av and nv = 4, where

a21 =
k

mR
·
(

L1 − L0

L1
a− L2 − L0

L2
x̃
)

sin(x1)

x1
∈ [−5.2 ; 14.4] (62)

and
a23 =

k
mR
· L2 − L0

L2
· cos(x1) ∈ [−256 ; −17]. (63)

These intervals have been determined for the parameters T = 0.05, k = 5, m = 0.1,
R = 0.15, L0 = 0.1, a = 0.3, x̃ = 0.23, d = 0.5 and the worst-case operating domains

x1 ∈ [−265 ; −95] · π

180
(64)

and
x3 ∈ [−0.2 ; 0.2]. (65)

All of these parameters and state variables are assumed to be given in terms of
corresponding SI units.

Remark 6. In the following simulations, the nonlinear model is used to represent the controlled
plant and observer. The observer gain H is designed according to Section 4 with a point-valued
system matrix Anom given by the nominal values of the quasi-linear form. Note that this is only one
solution of the parameter-dependent observer matrix A(ξ). This simplification is possible under the
assumption that both tracking and state estimation errors are small. In general, however, the stability
of the nonlinear observer can be proven by checking the stability of all (2nx)2 combinations of the
vertex matrices Av of the controlled plant to each extremal system matrix Av of the observer.

5.2. Tracking the Unstable Branch of the Bifurcation Diagram

Figure 4a shows the numerically computed equilibria of the system (58) in dependence
of piecewise constant inputs u = x3. The hysteresis behavior of the open-loop system
can be clearly seen so that starting with angles of approximately −110◦, an increase of
x3 leads to a jump in the angle x1 (transition from the open to the filled green triangle at
some x3 > 0 in Figure 4), while successively reducing x3 leads to a jump between two
different angles for some x3 < 0 (red triangles in Figure 4). Figure 4a can be interpreted as
a bifurcation diagram in the phase space, where the branch between both open green and
red triangles is unstable and is not visible in an open-loop operation of the system.

However, this branch can be visualized by using the closed-loop control strategy as
shown in Figure 4b,c with

u = −k1 · (x1 − yd)− k2x2 − k3x3, (66)

where yd is a piecewise constant reference signal and k3 = 0 holds in the second scenario
due to the choice of C according to (56) for the LMI-based controller (12).

For the sake of comparison with a standard approach (which, however, does not
strictly guarantee closed-loop stability due to the parameter dependency of the system
model), an LQG approach has been implemented additionally. It makes use of a continuous-
time steady-state Extended Kalman Filter. Both LQG and LMI approaches are parameter-
ized with Gp = 10−2 · I, gu = 0, and gm = 10−2 in this subsection, where Cm is chosen
according to (57).



Algorithms 2021, 14, 205 16 of 23

The controller optimization in the LQG case was performed with Q = I and R = 1
for the point-valued parameters a21 = 14.4 and a23 = −17. These values were chosen to
reflect the strongest instability of the open-loop plant for the control synthesis. Due to the
state dependency of the system matrix in (61), this parameterization does not provide a
strict proof of stability. In contrast, the LMI approach provides a strict proof of stability
and considerably reduced deviations in transient operation from the unstable branch of
the bifurcation diagram compared to the LQG design. To limit the observer’s eigenvalues
so that a simulation with a fixed step size of 10−3 is admissible, the heuristically chosen
penalty term 5 · 10−5 · ‖YO‖2 was added onto J, defined in (41).

All simulations were performed for piecewise constant signals for yd (hold time of
5 s) with increments of approximately 1.41◦. If only the terminal states of each step are
plotted (cf. Figure 4d), the LMI-case reconstructs the exact unstable branch with deviations
of less than 10−4, which is slightly better than in the LQG case. Obviously, the LMI-based
solution approach does not only provide a strict proof of stability of the observer-based
control structure but in addition, it leads to a significant reduction of the control effort,
resulting also in much smoother values for x3 in Figure 4c. The reduction of the control
effort is investigated in more detail in the following example.

(a) Hysteresis loop. (b) LQG design.

(c) LMI design. (d) Steady states for the LMI design.

Figure 4. Guidance of the Zeeman catastrophe machine along the unstable branch of equilibria in the (x3, x1)-plane;
comparison of an observer-based full state feedback control parameterized by the LQG technique with the LMI-based
parameterization of (12).
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5.3. Trajectory Tracking Control

As a second application for the proposed LMI-based parameterization of the control
laws (10), Case 1, and (12), Case 2, and its comparison with the LQG design, consider the
following four scenarios:

S1: Gp = 10−2 · I, gu = 2 · 10−2 m, gm = 10−2 rad ≈ 0.573 deg;

S2: Gp = 10−2 · I, gu = 0 m, gm = 10−2 rad ≈ 0.573 deg;

S3: Gp = 10−2 · I, gu = 0 m, gm = 5 · 10−2 rad ≈ 2.865 deg;

S4: Gp = 10−2 · I, gu = 0 m, gm = 10 · 10−2 rad ≈ 5.730 deg.

Here, we assume tracking of a continuous reference trajectory along the unstable
branch of the previously investigated bifurcation diagram. Figure 5 presents a comparison
of all three control approaches with an ideal tracking behavior in a noise-free setting.
Obviously, the control effort of the LMI-based output feedback control is the best in all
scenarios. This is achieved by minimizing the domain of non-provable stability properties
and by feeding back only the first two components of the estimated state vector.

(a) Scenario S1. (b) Scenario S2.

(c) Scenario S3. (d) Scenario S4.

Figure 5. Comparison of the control effort for the LMI-based full state feedback controller (Case 1), the LMI-based output
feedback controller (Case 2), and the LQG technique with the ideal noise-free control signal.

To achieve accurate tracking of the reference trajectory yd in Figure 6, the feedforward
control signal uff in (10) and (12) was chosen as a signal that is piecewise constant for
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intervals of 100 ms. It is determined in the sense of a P-type iterative learning control
approach by the update rule

uff,i+1(tk) = uff,i(tk) + Sk · (yd(tk)− ŷi(tk)) (67)

with the initialization
uff,1(tk) = 0, (68)

where uff,i(t) = uff,i(tk) generally holds for tk ≤ t < tk+1. The learning gain Sk, weighting
the difference between the observed system output ŷi(tk) = Cm · x̂i(tk) in the iteration i
and the reference signal, is given by

Sk =
(

Cm · (−Ak + Bk ·K)−1 · Bk

)−1
, (69)

where K is either the LQG controller’s gain, the full state feedback gain in (10), or K =[
Ko 0

]
for the partial state feedback (12); Ak and Bk result from evaluating the system

matrices in (61) for the current state estimate x̂i(tk) at the point of time tk during the epoch i
(also denoted as trial or pass in the literature on iterative learning control).

(a) Scenario S1. (b) Scenario S2.

(c) Scenario S3. (d) Scenario S4.

Figure 6. Comparison of the output tracking behavior as well as the state reconstruction accuracy for the proposed
LMI-based output feedback controller (Case 2) after the 10th iteration.
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For the first iteration i = 1, the controller

ui(t) = uff,i(t)− k1 · (x1(t)− yd(t))− k2x2(t)− k3x3(t), (70)

is identical to (66) introduced in the previous subsection due to the initialization (68).
In addition to the accurate trajectory tracking for the final iteration i = 10, Figure 6

shows the strong suppression of measurement noise by the LMI-based observer and the
fact that the actual trajectories for the state x1 and the corresponding estimate x̂1 practically
cannot be distinguished within the graphical resolution. Finally, Figures 7 and 8 show the
noise-insensitive convergence of the control signals and root mean square (RMS) output
tracking errors for all four scenarios S1–S4.

As a summary, all three control approaches are compared in Table 1. It can be observed
that the LMI-based output feedback controller (Case 2) has the smallest deviations between
the actual control signals uS(tk) and the ideal noise-free system inputs ud(tk). This is
shown by a reduction of the RMS values

∆uS,RMS =

√√√√ 1
N

N

∑
k=1

(uS(tk)− ud(tk))
2 (71)

of the system inputs by more than 30% in all scenariosS ∈ {S1, . . . , S4}, in comparison with
the LQG implementation. These RMS values are evaluated on an equidistant discretization
grid with tk−1 − tk = 100 ms leading to N ≈ 104.

Moreover, the full state feedback according to Case 1 has a quality comparable to that
of the classical LQG in terms of the control amplitudes as well as the output RMS values

∆yS,RMS =

√√√√ 1
N

N

∑
k=1

(x1,S(tk)− yd(tk))
2, (72)

where x1,S(tk) is the simulated first state variable in the respective scenario S. However,
in comparison to the LQG, it possesses a strict proof of stability despite the polytopic pa-
rameter uncertainty, which makes the separation principle invalid as discussed in Section 2.
Concerning Case 2, which is less accurate concerning output tracking than the full state
feedback, it should be pointed out that the RMS output values are significantly smaller
than the standard deviations of the measurement noise, except for scenario S1, where a
large additive disturbance acts directly on the control input.

From a practical point of view, it is necessary to make a trade-off between tracking
accuracy and control effort. Using the presented approach, the partial state feedback
(Case 2) reduces the control effort in comparison to the full state feedback (Case 1), however,
with the cost of a slight decrease in tracking accuracy.

Table 1. Comparison of tracking errors and control effort of all controllers for the scenarios S1–S4
in terms of the root mean square deviations to an ideal noise-free trajectory tracking; the control
improvement is quantified by a comparison of Case 2 with the LQG in terms of ∆uRMS.

Scenario Case 1 Case 2 LGQ Control Improve-
∆yRMS/deg ∆uRMS/m ∆yRMS/deg ∆uRMS/m ∆yRMS/deg ∆uRMS/m ment in %

S1 0.945 0.0083 1.332 0.0027 0.713 0.0040 33.25

S2 0.091 0.0030 0.1275 0.0009 0.092 0.0021 56.51

S3 0.339 0.0246 0.463 0.0047 0.364 0.0106 55.95

S4 0.636 0.0425 0.925 0.0090 0.705 0.0211 57.59
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(a) Scenario S1. (b) Scenario S2.

(c) Scenario S3. (d) Scenario S4.

Figure 7. Comparison of the control signal u(t) for 10 iterations of the proposed LMI-based output feedback con-
troller (Case 2).

(a) Scenario S1. (b) Scenario S2.

Figure 8. Cont.
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(c) Scenario S3. (d) Scenario S4.

Figure 8. Reduction of the output tracking error over 10 iterations for the proposed LMI-based output feedback con-
troller (Case 2).

6. Conclusions and Outlook on Future Work

In this paper, a novel iterative LMI solution for the joint control and observer parame-
terization of systems with polytopic parameter uncertainty and stochastic process, actuator,
and sensor noise was derived. It is, by construction, equally applicable to the design of
observer-based state and output feedback approaches. Most importantly, it allows for
a guaranteed stabilization of the system dynamics despite bounded (polytopic) uncer-
tainty in the system matrices, which makes the classical separation principle of control
and observer design invalid. It was shown in benchmark simulations that the approach
outperforms an LQG design for which a point-valued system model was used for the
underlying controller and observer parameterization and, therefore, does not guarantee
stability by design.

In future work, this approach will be further investigated for discrete-time processes.
Moreover, it is desired to optimize the structure of output feedback controllers and reduced-
order observers for high-dimensional systems such that the number of variables that are
required for a robust parameterization is minimized. Finally, we aim at introducing and
optimizing weighting factors for the diagonal entries in the matrix (47) so that, during the
minimization of (41), the user can decide which of the individual states (or estimation error
signals) has the highest importance. This extension will have similarities to tuning the ratio
between the weighting matrix entries for state deviations in the classical LQR design.
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