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Résumé

Une approche stochastique est mise en oeuvre pour traiter la question d’une structure marine exposée
à des impacts de vagues. L’étude se concentre sur (i) la fréquence moyenne des impacts de vagues et
(ii) la distribution de probabilité des variables cinématiques associées à ces impacts. Le champ de vagues
est modélisé comme la réalisation d’un processus Gaussien. Les mouvements de tenue à la mer du corps
considéré sont pris en compte dans l’analyse. Le couplage de l’approche stochastique avec un modèle
d’impact hydrodynamique est illustré sur le cas d’étude d’un aileron exposé à des impacts de vagues.

Summary

A stochastic approach is implemented to address the problem of a marine structure exposed to water wave
impacts. The focus is on (i) the average frequency of wave impacts, and (ii) the related probability distri-
bution of impact kinematic variables. The wave field is assumed to be Gaussian. The seakeeping motions
of the considered body are taken into account in the analysis. The coupling of the stochastic model with a
water entry model is demonstrated through the case study of a foil exposed to wave impacts.

1. Introduction

When a ship sails on the sea, her appendages may be exposed to water wave impacts. The appendages may be
below (e.g. fin stabilisers) or above (e.g. diving planes on a surfaced submarine) the mean sea level. From an
engineering standpoint, it may be important to know, for a given sea state, (i) the average frequency of wave
impacts, and (ii) the probability distribution of resulting hydrodynamic loads. Such a knowledge would be
valuable as a guidance for the structural design of the appendage. It would offer the possibility to implement
a design approach taking into account the expected extreme impacts (which could damage the structure by
inducing stresses exceeding the material yield strength), as well as repeated milder impacts (which could lead
to structural failure through fatigue damage)

If the considered body is sufficiently small compared to water wave wavelengths – which is usually the
case for appendages – the body geometry may be reduced to a single material point regarding the question
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of impact occurrence. Then, an impact event can be modelled as the upcrossing of the material point by the
sea free surface. Thus, the problem becomes more tractable and may be addressed by using the level crossing
theory of stochastic processes, based on the pioneering work of Rice (1944,1945) [1, 2] and subsequent works
(see for example [3], Chapter 8, and references therein). When the motions of the waves and those of the
ship are modelled at the first order, the randomness of related kinematic variables can be modelled through
Gaussian processes. In this framework, the average impact frequency and the related joint probability distri-
bution of kinematic variables can be analytically computed. The distribution of kinematic variables may be
transferred through an impact model to compute the probability distribution of hydrodynamic loads. If the im-
pact model is computationally efficient (e.g. based on a Wagner-type approach), the transfer may be achieved
via a Monte Carlo method. Helmers et al. (2012) [4] used such an approach to investigate the probability
distribution of impact loads for a wedge-shaped body exposed to irregular waves. Conversely, if the impact
model is numerically demanding (e.g. CFD simulations) other approaches may be used, such as metamodels
or reliability methods.

The present study investigates the stochastic framework briefly described above, taking into account the
effect of seakeeping motions in the analysis. Section 2 develops the theoretical framework to reach analytically
the impact frequency and the related probability distribution of impact kinematic variables. In Section 3 the
stochastic approach is coupled with a water entry model to compute the distribution of hydrodynamic loads
on a foil exposed to wave impacts.

2. Theoretical framework: impact frequency and conditional distribution of kine-
matic variables

2.1 Sea state modelled as a Gaussian process

Throughout the present proceedings, sea states are considered to be unidirectional and the water depth is
assumed to be infinite. These two assumptions are adopted for the sake of simplicity. However, the develop-
ments reported in the present document may be readily generalised to multi-directional sea states and finite
water depth. The problem is formulated in a coordinate system Oxz, which is attached to the reference frame
of the mean flow (see Fig. 1 for an illustration of the problem). The wave field is modelled as the superposition
of independent Airy waves which follow the linear wave dispersion relation, k = ω2/g, where ω is the angular
frequency, k the wave number and g the acceleration due to gravity. In the framework of the linear wave
model, the free surface elevation η(x, t), can be modelled as a Gaussian process, which is stationary in time
and homogeneous in space. It is fully characterised (in a probabilistic sense) by its variance density spectrum
S(ω) (commonly referred to as the wave spectrum) and its mean (which is zero in the present case).

Figure 1. Illustration of the considered problem. The sea state is modelled as a Gaussian process. The body lies at a
given average altitude a; it may have seakeeping motions. The characteristic size of the body (here sketched

as a foil of chord c) is assumed to be much smaller than the water wave wavelengths, λwave.
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2.2 Considered variables

In the present study, the kinematic variables, whose distributions given up-crossing are investigated, are
(i) w(x, t), the vertical velocity of the fluid at z = 0, which is equal to1 η,t(x, t) to the first order,
(ii) w,t(x, t), the vertical acceleration of the fluid at z = 0, which is equal to η,tt(x, t) to the first order,
(iii) η,x(x, t), the slope of the free surface.

The vertical velocity and acceleration, expressed at z = 0, are considered as a direct proxy for the kinematics
at the free surface. When seakeeping motions are taken into account (see §2.4), the following additional
kinematic variables are considered:

(iv) η̇b(t), the vertical velocity of the fluid measured in the reference frame of the material point,
(v) η̈b(t), the vertical acceleration of the fluid measured in the reference frame of the material point,
(vi) δθ(t), the pitch motion of the floating platform.

The variables η̇b, η̈b and δθ have been added as being relevant to compute the hydrodynamic loads related to
the water entry event. Including other kinematic variables in the stochastic analysis – such as the horizontal
velocity of the fluid, the horizontal acceleration of the fluid or the local curvature of the free surface – would
be straightforward.

2.3 Body at rest

When the body is assumed to be at rest at a location (x = x0,z = a), an impact event stands for the up-crossing
of the level a by the stochastic process

η0(t) = η(x0, t) , (1)

whose time derivative is given by
η̇0(t) = η,t(x0, t) . (2)

Gathering the variables of interest, one may define the random vector

Z =


η = η0
η,tt
η,t = η̇0
η,x

 . (3)

Probability distribution given impact. Z is a zero-mean Gaussian vector, whose covariance matrix ΣZ can
be expressed as

[ΣZ]k,l =
∫ +∞

0
dω Re

{
Hk(ω)H̄l(ω)

}
S(ω) , (4)

where Hk(ω) is the linear transfer function whose input and output are respectively the sea surface elevation
η and the k-th variable of the random vector Z and H̄l(ω) denotes the complex conjugate of Hl(ω). In the
present case, the linear wave theory yields the following transfer functions:

Hη(ω) = 1
Hη,tt (ω) =−ω2

Hη,t (ω) = iω
Hη,x(ω) =−iω2/g ,

(5)

where i is the imaginary unit. As these transfer functions are either real or imaginary, Z can be split into two
independent Gaussian random vectors,

X =

[
η = η0
η,tt

]
and Y =

[
η,t = η̇0
η,x

]
, (6)

1 In the present document, Q,v denotes the derivative of the function Q with respect to the variable v.

3



whose covariance matrices are given by

ΣX =

[
m0 −m2
−m2 m4

]
and ΣY =

[
m2 −m3/g
−m3/g m4/g2

]
. (7)

In Eq. (7), mp denotes the p-th moment of the wave spectrum:

mp =
∫ +∞

0
dω ω

pS(ω) . (8)

In terms of probability density function, the independence of X and Y translates into

fZ(η ,η,tt ,η,t ,η,x) = fX(η ,η,tt)× fY (η,t ,η,x) , (9)

where fZ , fX , fY , are the probability density functions of the random vectors Z, X , Y , respectively. Let Ž
denote the random vector containing the variables of Z, except for η . The conditional density function of Ž,
given that η0 is up-crossing the level a, can be written as (see for example [3]):

fŽ|η0↑a(η,tt ,η,t ,η,x) =
η,t · fŽ|η=a(η,tt ,η,t ,η,x)∫ +∞

0
dξ ξ fη,t |η=a(ξ )

, with η,t > 0 , (10)

where fŽ|η=a and fη,t |η=a are the conditional density functions of Ž and η,t , given η = a. Taking advantage of
the independence of the vectors X and Y , Eq. (10) can be further expressed as follows:

fŽ|η0↑a(η,tt ,η,t ,η,x) = fη,tt |η=a(η,tt)×
√

2π

m2
η,t fY (η,t ,η,x) , with η,t > 0 . (11)

Impact frequency. The average up-crossing frequency, i.e. the impact frequency, at a given altitude a, is
given by Rice’s formula [2]:

µ
↑
0 (a) =

∫ +∞

0
η̇0 fη0,η̇0(a, η̇0) dη̇0 . (12)

As η0 and η̇0 are independent normal variables, Eq. (12) can be readily further expressed as:

µ
↑
0 (a) =

1
2π

√
m2

m0
exp
(
− a2

2m0

)
. (13)

Illustrative example. As an illustrative example, Fig. 2 shows the univariate probability density functions
of kinematic variables, obtained for a sea state with Hs = 4 m, Tp = 10 s, and a material point fixed at an
altitude a = 1 m. For testing purpose, the probability density functions have been computed by using two
different methods: (i) analytical calculation by successive integrations of the multivariate density function
given in Eq. (11), (ii) Monte Carlo simulation of many realisations of the stochastic process, based on the
random-phase/amplitude model (see e.g. [5]). Both methods show an excellent agreement on the conditional
density function of kinematic variables. It was also checked that the up-crossing frequency obtained from the
simulations is in good agreement with the analytical expression given in Eq. (13). The analytical integration
of Eq. (11) – not detailed here – shows that: (i) the conditional distribution of η,t is of Rayleigh-type with a
mode equal to

√
m2, (ii) the conditional distribution of η,tt is normal, (iii) the conditional distribution of η,x

is the convolution product of a Rayleigh distribution with a normal distribution. A modification of the chosen
altitude a would change the results only through a shift in the conditional mean of η,tt .
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Figure 2. Univariate probability density functions of random kinematic variables, given impact, for a body at rest. The
wave spectrum is assumed to have a JONSWAP shape with a peak-shape parameter γ = 3.3, a significant

wave height Hs = 4 m, and a peak period Tp = 10 s. The material point is fixed at an altitude a = 1 m. The
dashed black lines show the results obtained by integrating the analytical multivariate density function given
in Eq. (11). The solid grey lines show the numerical results obtained from Monte Carlo simulations (multiple

realisations of the sea state).

2.4 Body with seakeeping motions

Accounting for seakeeping motions in the present stochastic approach, presents no specific difficulty, as long
as the seakeeping motions are linearly modelled. Waves are assumed to be unidirectional, approaching the
floating platform from an angle ψ . As an illustrative example, let us consider the case of a ship which is
symmetric about its longitudinal centreplane, and is standing in head seas (cosψ = −1) or following seas
(cosψ = 1), with no forward speed. Then, the seakeeping motions to be considered are: (i) the heave motion,
δ z(t), (ii) the surge motion, δx(t), (iii) the pitch motion, δθ(t). The coordinates of the material point, in the
frame of the mean flow, are given by (assuming δθ to be small)

x(t)' [xp + zpδθ(t)+δx(t)]cosψ + x0
z(t)' a− xpδθ(t)+δ z(t), (14)

where (xp,zp) is the position of the material point in the frame used to compute the Response Amplitude
Operators (RAOs) of the ship, and x0 is the average longitudinal position of the origin of this frame. The xp-
axis is oriented toward the bow, the zp-axis is oriented upwards, and the ship is nosed down for δθ > 0. a is the
altitude of the material point when the ship is at rest (hydrostatic equilibrium). If the longitudinal seakeeping
motion is small compared to the water wave wavelengths (consistent with the linearity assumption), i.e. if

k[zpδθ(t)+δx(t)]� 1 , (15)

the seakeeping motion along the x-axis can be ignored in the stochastic problem.2 In this framework, an impact
event stands for the up-crossing of the stochastic process z(t) by the stochastic process

ηp(t) = η(x0 + xp cosψ, t) , (16)

which is the free surface elevation at the location of the material point. By defining the stochastic process

ηb(t) = ηp(t)+ xpδθ(t)−δ z(t), (17)

2 In the opposite case, the sea surface elevation at the location of the material point, would depend on the seakeeping response.
Then, the problem would become nonlinear, making analytical developments much less tractable.
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an impact event is also equivalent to the up-crossing of the level a by the Gaussian process ηb(t). To compute
the distribution of kinematic variables, given impact, the following Gaussian vector is considered:

Zb =



η,tt
η,t
η,x
δθ

η̈b
ηb
η̇b


. (18)

The variables ηb and η̇b need to be considered since the up-crossing condition is checked for the stochastic
process ηb(t). The variables η̈b and δθ have been also included in the considered Gaussian vector, as being
relevant (together with η̇b) to compute slamming loads. The transfer function of ηb (whose input is η = ηp),
is given by

Hηb = 1+ exp
{

ikxp cosψ
}
(xpHθ −Hz) , (19)

where Hθ is the pitch RAO and Hz is the heave RAO. The phase-shift term, exp
{

ikxp cosψ
}

, accounts for
the fact that the free surface elevation is monitored at the location of the material point (and not at the origin
of the frame used to compute RAOs). The transfer functions of the time derivatives η̇b and η̈b are given by

Hη̇b(ω) = iωHηb(ω)
Hη̈b(ω) =−ω2Hηb(ω) .

(20)

Probability distribution given impact. A priori, the transfer functions Hηb and Hη̇b are neither purely real
nor purely imaginary. As a result, contrary to the approach adopted in §2.3. the variables of the vector Zb
cannot be divided into two independent Gaussian vectors. The covariance matrix of Zb may be computed
by an expression of the form of Eq. (4). Then, the probability density function of Žb (vector collecting the
variables of Zb, except for ηb), given impact, can be expressed as

fŽb|ηb↑a =

√
2π

ση̇b

η̇b× fŽb|ηb=a(η,tt ,η,t ,η,x,δθ , η̈b, η̇b) , η̇b > 0 , (21)

where fŽb|ηb=a is the conditional probability density function of the vector Žb, given ηb = a, and ση̇b is the
non-conditional standard deviation of η̇b.

Impact frequency. Similarly to Eq. (13), the up-crossing frequency of the level a by the sea surface elevation,
i.e. the impact frequency, can be expressed as:

µ
↑
b(a) =

1
2π

ση̇b

σηb

exp

(
− a2

2σ2
ηb

)
, (22)

where σηb is the non-conditional standard deviation of ηb.

Illustrative example. As an illustrative example, let us consider the case of a ship with no forward speed, in
head seas. The assumed heave and pitch RAOs (not reported here) correspond to a ship of length L' 100 m.
The assumed sea state is the same as in Fig. 2. By successively integrating Eq. (21), the resulting univariate
density functions, given up-crossing, are shown in Fig. 3. The results are shown for three different material
points attached to the ship, P1, P2, P3. When the ship is at rest (hydrostatic equilibrium), the altitude of the
three considered material points is a = 1 m. The longitudinal positions of P1, P2, P3, in the frame of the ship,
are respectively xp1 =+50 m (bow), xp2 = 0 (midship), xp3 =−50 m (stern).

At the position P2, the impact frequency, µ
↑
b@P2 = 5.6 · 10−2 Hz, is smaller compared to the case where

no seakeeping motion is considered (µ↑0 = 7.3 · 10−2 Hz). From a physical viewpoint, it is related to the fact
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Figure 3. Probability density functions of random kinematic variables, given impact – effect of seakeeping motions.
Results obtained for a fixed platform (no seakeeping motion) are shown as dotted lines. Results with

seakeeping motions are shown for three different material points attached to the ship, P1 (bow, black curves),
P2 (midship, dark grey curves), P3 (stern, light grey curves).

that the material point tends to follow the elevation of the longest waves, due to the heave motion of the ship.
Conversely, for P1 and P3, the motion of the material point becomes out of phase with the local free surface
elevation, both because of the phase shift introduced by the longitudinal gap between the considered material
point and the centre of the ship, and because of the pitch motion. This results in a larger impact frequency at
positions P1 and P3, µ

↑
b@P1 = µ

↑
b@P3 = 7.9 ·10−2 Hz.

The random variable η̇b, given up-crossing, follows a Rayleigh distribution with a mode equal to ση̇b .
The variable η̈b, given up-crossing, follows a normal distribution. When the material point has seakeeping
motions, η,t given up-crossing is not Rayleigh-distributed anymore and negative values are allowed. Indeed
the moving material point may enter the water domain, even though the free surface elevation, η , is locally
decreasing. Instead, the conditional distribution of η,t , given up-crossing, results from the convolution product
of a Rayleigh distribution with a normal distribution (calculation not detailed here). Regarding the other
variables, η,tt , η,x, δθ , they also follow distributions which can be expressed as the convolution product of a
Rayleigh distribution with a normal distribution.

3. Propagation of distributions through an impact model – Illustrative example.

If the water entry model is fully analytical and simple enough, the transfer of the probability distribution
of kinematic variables (Eqs. 11-21) through the water entry model (to access hydrodynamic loads) may
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Figure 4. Distribution of hydrodynamic loads. The assumed sea state has a significant wave height Hs = 27 cm, and a
peak period Tp = 3 s (tank test configuration). The body is a two-dimensional NACA 0028 foil with a chord

c = 15 cm. The foil is horizontal (relative to the mean sea level), located at an altitude a = 10 cm (lowest
point of the body), and facing the sea. The resulting impact frequency is µ

↑
0 ' 0.13 Hz. The left and right

panels show, respectively, the probability density functions of maximal impact force F⊥max and impulsion J⊥

(divided by the fluid density, ρ , and the span of the foil, L). The results obtained from approaches (a) and (b),
described in Section 3, are respectively shown as dashed lines and solid lines. In the left panel, both curves are
almost superimposed. The density function of J⊥ is bimodal, which is due to the dual definition of the impact

duration, tip (see the body of the text). The peak of the first mode (corresponding to mild impacts, with
tip = twe) is cropped in the present figure.

be performed analytically. Such an approach has been implemented for instance in [6] where the authors
used a univariate quadratic model for the slamming pressure, considering the fluid vertical velocity as the
only relevant variable. When the hydrodynamic model becomes more elaborate, with possibly multiple input
variables, a fully analytical transfer becomes more challenging, if not impossible (for instance if the impact
model is based on CFD simulations). Then, the transfer may be performed by using alternative approaches,
such as Monte Carlo sampling, metamodels, or reliability methods.

In the present study, the stochastic approach has been coupled with the semi-analytical water entry model
introduced by [7]. Combining Wagner’s approach with the concept of “Fictitious Body Continuation” [8], this
water entry model can account for flow separation (when the fluid detaches from the edges of the body). In
the present case study, the considered body is the same as in [7], i.e. a two-dimensional foil of section NACA
0028 (as represented in Fig. 1). The foil is assumed to be at rest (in the reference frame of the mean flow); no
seakeeping motion is considered. The kinematic variables used as input of the impact model are the relative
fluid velocity w = η,t , the relative fluid acceleration w,t = η,tt , and the orientation angle of the body with
respect to the local free surface (this last variable is directly inferred from the local free surface slope, η,x).
The transfer of the distribution of kinematic variables through the impact model has been performed by use of
a Monte Carlo sampling. The wave slope η,x is assumed to be fixed during the impact (due to a limitation of
the water entry model), while the time evolution of w and w,t is taken into account (see below).

As a sample of our results, Fig. 4 shows the probability density functions of two quantities: (i) F⊥max, the
maximum value (during a given impact) of F⊥, which is defined as the hydrodynamic force (per unit span
of the foil) component normal to the local free surface; (ii) J⊥, the time-integral of F⊥ (i.e. impulse) over
the duration of the impact, tip. The duration of an impact event is defined as follows: if the water entry stops
(i.e. the free-surface elevation starts decreasing, initiating a water exit phase) before the flow has detached
from both sides of the body, then tip = twe, where twe is the duration of the water entry stage. Otherwise, the
considered impact duration correspond to the time, tsep, when the flow has detached from both sides of the body
(after flow separation, hydrodynamic loads start decreasing rapidly, see [7]). Two different approaches were
used to estimate hydrodynamic loads: (a) approximate approach assuming that the flow acceleration is constant
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during the impact (hence only the initial values of w and w,t need to be drawn), (b) Monte Carlo simulation of
the stochastic evolution of kinematic variables after up-crossing (this option is numerically more demanding).
Both methods give close results, which shows that the approximate approach (a) can provide satisfactory
predictions if the body is sufficiently small compared to wave dimensions (wave height and wavelength), as it
is the case here.

Acknowledgements

The present work was supported by the French National Agency for Research (ANR) and the French Government De-
fense procurement and technology agency (DGA) [ANR-17-ASTR-0026 APPHY]; the related research project involves
SIREHNA, Bureau Veritas, IFREMER, and ENSTA Bretagne.

References

[1] S. O. Rice, “Mathematical analysis of random noise,” The Bell System Technical Journal, vol. 23, pp. 282–332, July
1944.

[2] S. O. Rice, “Mathematical analysis of random noise,” The Bell System Technical Journal, vol. 24, pp. 46–156, Jan
1945.

[3] G. Lindgren, Stationary Stochastic Processes - Theory and Applications. Chapman and Hall/CRC, 2012.

[4] J. B. Helmers, H. Sun, T. Landet, and T. Driveklepp, “Stochastic Analysis of Impact Loads on Marine Structures,”
OMAE, vol. 1, pp. 659–670, 2012.

[5] L. H. Holthuijsen, Waves in Oceanic and Coastal Waters. Cambridge University Press, 2007.

[6] M. K. Ochi and L. E. Motter, “Prediction of slamming characteristics and hull responses for ship design,” Trans.
SNAME, vol. 81, pp. 144–176, 1973.
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