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Properties of the pressure field in highly nonlinear

free surface flows with critical jet.

Yves-Marie SCOLAN(1), Stéphane ETIENNE(2)

(1) ENSTA Bretagne IRDL UMR 6027, Brest, France
(2) Ecole Polytechnique de Montréal, Canada1

Abstract

In this note we examine fluid violent kinematics in a plunging breaker. The fluid motion
is computed in the frame of the potential flow theory. The fluid kinematics is basically
generated by forcing the motion of a rectangular tank, starting from rest. When a sufficient
level of energy is injected in the fluid, the free surface has highly nonlinear behavior, here
a plunging breaker. In the vicinity of the main tip crest, a sharp corner (cusp) appears
along the surface of the barrel. The appearance of this critical jet is described and discussed
in terms of the spatial and temporal variations of the pressure field. In the present case a
local pressure maximum is captured that follows a continuous decreasing pressure gradient
in a region of positive Gaussian curvature of the pressure. It is also shown that, at the free
surface before the appearance of the critical jet, there is a strong correlation between the
change of sign of the Gaussian curvature of the pressure on the one hand and the radius of
curvature of the free surface profile on the other hand.

Keywords: Two-dimensional potential flow, plunging breaker, critical jet, pressure field.

1. Introduction

The circumstances under which a critical jet may appear on a free surface are hardly
documented in the literature. Longuet-Higgins is certainly the main contributor to the
analysis of nonlinear free surface flow in potential theory in all its aspects; particularly those
of interest to us in this note. In particular in Longuet-Higgins (1980a), it is established that
the spatial variations of the pressure provide much information about the appearance of
sharp corners (cusps) at the free surface. By using the terminology of Longuet-Higgins, this
sudden growth of the free surface is called a critical jet. For that the author examines the
singularities of the pressure field. In order to capture such singularities, one has to compute
the pressure gradient, the mean curvature (identical to the Laplacian) and the Gaussian
curvature. The former is always negative for potential flows, the latter is either negative
(saddle points in hyperbolic region) or positive (local maximum in elliptic region). The
gaussian curvature is considered as the product of the principal curvatures, that is to say
the inverse of the product of local radii of curvature.

Examples of the development of sharp corner on a free surface is theoretically studied
in subsequent papers (see Longuet-Higgins, 1980b). It is shown that by continuing the
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pressure field outside the fluid domain, local asymptotic solutions are provided and sharp
corners along the zero pressure line (free surface) can be captured. Other theoretical solutions
are also exhibited in Longuet-Higgins (1993). Critical jets are described in Longuet-Higgins
and Dommermuth (2001b). In this article a small size jet is observed (in Fig. 6) however
without giving any quantitative value of the local acceleration. The question of finite-time
singular behavior is posed by Longuet-Higgins (1993). The power law is proposed and

it is shown that acceleration behaves as (t − to)
−

4

3 where to is somewhat arbitrary. The
notion of ”inertial shock” is introduced and associated to singular values of the velocity,
pressure and acceleration while fluid displacements remain finite. Such flows are observed
experimentally and compare well with theoretical results like in Zeff et al (2000) or Longuet-
Higgins and Dommermuth (2001b). The so-called flip-through (see Cooker and Peregrine,
1990) phenomenon belongs to this type of accelerated flow as well. Cooker (2001) and Cooker
(2010) exhibits local solutions of the pressure starting with a local free surface deformation
like a semicircular trench. It is shown that great pressure gradient and acceleration are
expected below the free surface just below the initial crater. This has common features with
the bazooka effect described in Longuet-Higgins (2001a).

If theoretically it is shown that cusps or sharp corners can appear on a free surface, we
still need to better examine how such critical jets are associated with high kinematics.Grilli
and Subramanya (1996) observe in their computations the appearance of a critical jet in the
close vicinity of the tip of a plunging breaker. It seems that this occurrence is associated
with a rapid fluid motion. In their case the fluid motion follows from an impulsive motion
of a wave maker. Indeed we can expect that a large amount of energy must be stored by
the fluid so that critical jets can appear. That is a conjecture but numerical experiments in
a sloshing tank confirm that (see Scolan et al, 2016; Scolan, 2018).

In the present work, as in Longuet-Higgins (1980a) and Cooker (2001), we analyse the
pressure field before the appearance of a critical jet. Here, we are interested in the com-
bination of both the positive Gaussian curvature of the pressure and the zeros of pressure
gradient. Those quantities are computed for some ”exotic” free surface flows that are simu-
lated in a sloshing tank. We focus on one configuration where a standard plunging breaker
develops as a result of the forced motion of the tank. Then, as the crest starts overturning a
sudden secondary jet appears in the close vicinity of the main crest tip. From a parametrical
study it is possible to tune some parameters of the forced tank motion in order to make
the critical jet more prominent. That is the objective of this note to describe the spatial-
temporal variations of the scalar or vector fields (pressure, acceleration,...) before and after
the critical jet appears.

This note is decomposed as follows. Section 2 recalls the main equations of the model.
The expression of the pressure and its derivatives are described as well. In section 3, the
conditions that lead to the studied case are detailed. Then the spatial-temporal variations of
scalar or vector fields (pressure, curvatures, acceleration,...) are discussed. The conclusion
draws the perspectives of future works.

2. Governing equations

The numerical model is detailed in Scolan (2010). It follows from the pioneering numerical
developments proposed by Tuck (1998). The boundary value problem is here formulated for
the velocity potential Φ that describes the flow in the moving tank as illustrated in figure
(1) We consider the forced motion of a two-dimensional tank. Three degrees of freedom
(dof) can be considered: two translational motions and one rotational motion. The velocity
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potential Φ verifies a boundary value problem which reads



















∆Φ = 0 in the fluid domain

Φ,t +
1
2
~∇2Φ + g

(

~Y · ~EP − h
)

= 0 P on the free surface
d
dt

~EP = ~∇Φ P on the free surface

Φ,n = d
dt

~EM · ~n M on the wall of the tank

(1)

where ~n is the unit normal vector on any considered surface pointing outside the fluid.
The velocity potential Φ is decomposed classicaly into two contributions. One is known

as the Stokes-Joukowski velocity potential φ and it accounts for the forced motion of the
tank (see Faltinsen et al, 2000). The other contribution ϕ captures the fluid motion in the
moving tank. The former velocity potential reads

φ = ~vA ~AP , (2)

where ~vA is the translational velocity of the point A. No rotational forced motion is con-
sidered here but the full problem with both translational and rotational forced motions is
described in Scolan and Brosset (2017). The boundary conditions for ϕ are a simple homoge-
neous Neumann condition on the tank walls and it is completed with the dynamic boundary
condition on the free surface. Two techniques are combined in order to have a robust and fast
computation of nonlinear free surface potential flows. The equations are two-dimensional
which makes it possible to use a conformal mapping of the physical computational domain.
For example a Schwartz-Christoffel transformation (see Spiegel, 1999, p. 206) leads to the
following analytic function

w = − cos
πz

L
, (3)

This transformation simply turns the inner domain of a semi-infinite strip (width L) defined
in the upper physical z-plane, into a half upper w-plane. The origin O of the coordinate
system in the physical plane is always located at the bottom left corner. The images of the
vertical walls and horizontal bottom are now located along the real axis of w-plane. The
fluid motion is described with the velocity potential ϕ. It is enforced through a dsitribution
of sources. Instead of a distribution on the actual physical boundaries, it is preferred a
desingularized technique. The advantage (among some others) is to avoid the additional
work induced by the discretization of an integral equation. Convergence tests from Cao et
al (1991) show how to choose the desingularizing distance for the present applications. This
choice follows from considerations about the conservations of mass and energy which have
to be checked over time. In the present computations the conservation of mass is met with
a maximum relative error of 10−4.5 and the conservation of energy is met with a maximum
relative error of 10−3. The present model is robust enough to avoid the use of any smoothing
or regridding. Once the change of variables is performed, the set of source singularities and
their mirror images with respect to the horizontal axis in the transformed w-plane makes it
possible to easily account for the impermeability condition on the walls.

In the sequel, we shall use complex functions to describe the potential flow. The total
complex potential is denoted F which is a function of the complex coordinate z. The complex
potential is expanded as a summation of sources distributed in the vicinity of the boundaries
and located outside the fluid domain. Its real part yields the velocity potenlial Φ

F (z, t) =
N
∑

j=1

qj(t)G(w,Wj(t)) + (z − zA)χA(t) (4)
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where χA(t) is the conjugate of the complex translational velocity of point A. Wj(t) is the
complex coordinate of the jth source point attached to the free surface in the transformed
plane. Zj(t) is the complex coordinate of the jth source points in the physical plane located
outside the fluid domain and surrounding all the fluid boundaries. Wj(t) are also the image
of the jth source Zj(t) in the physical plane by using the mapping function is Wj = g(Zj)
defined by (3). The intensities qj(t) are obtained from the velocity potential updated at
the free surface by solving a time differential system for ϕ. G is the complex potential of a
source (and its mirror image) calculated in the transformed plane w as follows

G(w,Wj) = Gj = log(w −Wj) + log(w −Wj) (5)

where the second contribution allows to account for the impermeability condition along
the surface of the tank. The other two contributions in F (z, t) are the equivalent complex
expressions of the Stokes-Joukowski velocity potential φ defined in (2).

For two-dimensional configurations, the pressure p(x, y, t) meets the following two equa-
tions at the free surface,

p = 0,
dp

dt
= 0 (6)

It is also useful to formulate the Euler equation for the velocity ~u = (u, v)

~u,t + (~u · ~∇)~u+
~∇p

ρ
= ~g (7)

in a equivalent complex form as follows

F,zt + F,z2F,z +
p,z
ρ

− ig = 0 (8)

where p,z is the conjugate of the pressure gradient p,z = p,x − ip,y The points where the
pressure is stationary follow from the conditions p,x = p,y = 0. The location of vanishing
pressure gradient is also that of a saddle point or local maximum of pressure. The distinc-
tion between these two cases is done by evaluating the Gaussian curvature and the mean
curvature. The latter is simply the Laplacian of the pressure and it reads

∆p = p,x2 + p,y2 = 4p,zz = −2ρF,z2F,z2 = −2ρ|F,z2|
2 (9)

where F,z2 follows from
F,z2 = u,x − iu,y, (10)

having in mind the identities that follow from incompressibility (u,x + v,y = 0) and irrota-
tionality (u,y − v,x = 0). It is worth reminding that F,zz = 0 since F is analytic, but it is
not the case for the pressure whose Laplacian is not zero in equation (9). The Gaussian
curvature is given by the formula

Ω =
1

ρ2
(

p,x2p,y2 − p2,xy
)

= |F,z2|
4 − |F,z3F ,z + F,z2t|

2 (11)

The change of sign of Ω indicates a change of the property of the pressure at a point where
its gradient drops to zero. When Ω < 0 a zero of the pressure gradient indicates a saddle
point. When Ω > 0 a zero of the pressure gradient indicates a local maximum. When this
occurs in a close vicinity to a free surface, great pressure gradients are expected and then
appearance of a cusp as well due to great acceleration. The appearance of a cusp along the
free surface can be identified by calculating the radius of curvature. To evolve continuously
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along the free surface, the arclength σ is calculated from the left wall to the right wall. A
cartesian coordinate (x, y) of the fluid particle at the free surface only depend on this arc
length and time t. The radius of curvature reads

Rc =
((x,σ)

2 + (y,σ)
2)3/2

x,σy,σ2 − y,σx,σ2

(12)

The change of sign of Rc is of interest. It means that there is an inflexion point. In practice,
only the change of sign of the denominator x,σy,σ2 − y,σx,σ2 is examined.

3. Discussion

The objectives of the present numerical simulations, are to arrive at a plunging breaker
close to the left vertical wall of the rectangular tank. For that a parametric study has been
achieved (see Scolan, 2018) where a large range of plunging breakers associated with a critical
jet are simulated. On the basis of this parametric study, we analyze here one of the critical
jet simulations. The applications of the present study participates to the prediction of the
fluid critical kinematics in a liquefied natural gas carrier (see Brosset et al, 2009; Dias and
Ghidaglia, 2018).

The length of the tank is L = 1.08m and it is filled up to h = 0.22833m. The fluid
critical kinematics is obtained in the tank by forcing its motion. Here the motion consists
in an horizontal cycle starting from rest (see Karimi et al, 2016). Figure (2) shows the time
variations of the displacement, velocity and acceleration. By stopping the forced motion at
some intermediate instants, a parametric study makes it possible to capture a large variety
of critical jets along the surface of the overturning crest in the barrel. The retained case is
a restart at instant to = 1.63s which is indicated with a vertical line in figure (2). It means
that after this instant, no more energy is injected in the fluid. As the motion of the tank is
not forced any longer, the complex potential F (z, t) that describes the flow reduces to the
first contribution in equation (4).

We consider a restart with a given quantity of kinetic energy and potential energy in the
fluid. This configuration is unfortunately difficult to reproduce experimentally due to the
necessity to stop the tank motion instantly. For these precise initial conditions (deformation
of the free surface and distribution of velocity potential on this free surface), the parametric
study shows that we end up with a relatively large size of critical jet as illustrated in figure
(3).

For the discussion, we choose two instants t1 = 0.1506s and t2 = 0.1542s, at which we
analyze the properties of the fluid kinematics and dynamics. The corresponding free surface
profiles are plotted in figure (3). The first instant t1 = 0.1506s precedes the start of the
growing jet. It is easy to identify this instant by analyzing the change of sign of the radius
of curvature along the free surface. The second instant t2 = 0.1542s corresponds to a well
developed jet.

Figure (4) shows snapshots of the three vector fields that appear in Euler equation (7),

namely the acceleration ~u,t, the convective component (~u · ~∇)~u and pressure gradient
~∇p
ρ

at
instant t1. Closer views focus on the region where maximum is reached. The sum of these
three quantities is exactly equal to the vector gravity ~g oriented vertically downwards. It
is worth reminding that the pressure gradient at the free surface is parallel to the normal
and oriented inside the fluid domain consistently with the fact the pressure is nil at the free
surface and positive inside the fluid domain. It should be noted that the normal gradient of
the pressure is great in the barrel up to the top of the barrel where the tangent is horizontal.
Up to this instant for which the free surface is very smooth in the barrel, these features
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are quite consistent with the observations made in Peregrine et al (1980), Yasuda (1997) or
Scolan and Guilcher (2019). In figure (4) we emphasize the points of the maximum positive

Gaussian curvature Ω and the minimum of the pressure gradient ||~∇p||. The former point
is identified from the isocontour of positive Ω in figure (5f). The latter point can be picked

up from the isocontour of ||~∇p|| plotted in figures (5c) and its closer view (5d). This is
also the maximum of the pressure field plotted in figures (5a) and its closer view (5b). In
figure (4) we add a closed curve that delimits the inner region where the Gaussian curvature

is positive. That confirms that the point where ||~∇p|| vanishes is clearly a maximum and
not a saddle point. The point of maximum Gaussian curvature is very close to the free
surface. The spatial distributions of ||~∇p|| and |Ω| are quite identical on the two sides of
the point where the acceleration reaches its maximum. Figure (5g) shows the isocontour of
the acceleration modulus. As the local variation is very great, the logscale of acceleration
is used to distinguish the isocontours. The mean curvature (plotted in figure 5h) reaches
its (negative) maximum along the free surface at the same point of maximum acceleration.
The spatial distributions of ||~u,t|| and |∆p| are quite identical around the point where the
acceleration reaches its maximum. Here again logscale of the mean curvature is plotted to
capture the great variation of this quantity around its maximum.

In order to illustrate the relative importance and the local orientation of the vector com-
ponents in Euler equation (7), their cartesian components are drawn in figure (6). The origin
of the coordinate system corresponds to the point where the maximum positive Gaussian
curvature is reached at instant t1 = 0.1506s. The vectorial sum of the three vectors (~u,t,

(~u · ~∇)~u,
~∇p
ρ
) is equal to the gravity ~g. It is clear that gravity is negligible there since the

length of vector ~g is roughly the size of the plot divided by 100. The Eulerian acceleration
~u,t and convective term (~u · ~∇)~u are in opposite directions. Their sum yields the Lagrangian
acceleration. This quantity is very great in the close vicinity of the maximum of Gaussian
curvature and its main contribution originates from the convective term. This fact might be
counter intuitive since in Bernoulli equation, written at the free surface where the pressure
vanishes, the contribution of |φ,t| is always greater than the contribution of 1

2
(~∇φ)2.

Figures (7) and (8) show the same quantities than in figures (4) and (5) respectively but
at a later instant when the critical jet has already well increased in size. The features of
the kinematics and dynamics of the flow remain quite similar but the order of magnitude
increases significantly, with a factor 10 approximately.

The time variations of ||~∇p||min, pmax and Ωmax are plotted in figure (9). We start
the analysis at instant t = 0.1342s when the dynamics increases rapidely. At this instant
||~∇p||min is of the order of gravity g = 9.81m/s2. Then this quantity regularly decreases
and vanishes at the instant when the critical jet appears, roughly t ≈ 0.1502s. It should
be noted that the critical jet appears precisely when the quantity pmax starts to increase
significantly. The maximum of pmax is reached at instant t = 0.15194s and it is of the
order of the hydrostatic pressure ρgh. This pressure is rather small compared to maximum
pressure computed when a flip-through (for example) is observed. That possibly means that
the presence of a wall (material surface or plane of symmetry) may play an important role
in the increase of the pressure. The maximum of Ωmax is approximately reached at instant
t = 0.1512s and it is of the order of 1012s−2.

It appears that the combination of a maximum pressure and a positive Gaussian curvature
in a close vicinity of the free surface is the necessary condition for the appearance of a local
and concentrated great fluid kinematics. As a consequence a sharp corner appears and
grows continuously. It is therefore important to track over time these two properties of
the pressure field before the sharp corner appears. Figure (10a) shows the time tracking of
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the locations of the maximum pressure pmax (when it exists effectively) and the minimum

modulus of the pressure gradient ||~∇p||min. The two trajectories are superposed after the
instant t = 0.1502s. These points are otherwise embedded in a region where the Gaussian
curvature is positive. That means that we have a local maximum pressure indeed. Beyond
the instant t = 0.1502s and until the end of the numerical simulation, these points are
superposed, indicating the persistence of the local maximum. Before the instant t = 0.1502s,
the location ||~∇p||min follows a straight path. It should be noted that the corresponding
trajectory is continuous in space.

A closer view of the trajectories is done in figure (10b). In addition, the locations of the
maximum positive Gaussian curvature Ωmax are plotted. It is observed that the Gaussian
curvature has positive values close to the free surface, well before the appearance of the
other maxima, but without provoking a cusp at the free surface. It can be observed that
the region of positive Gaussian curvature intersects the free surface precisely where the free
surface profile has local change of curvature. This point is better described later in this
discussion.

The location of Ωmax suddenly migrates to the region where the pressure gets its own
maximum. The first local maximum of pressure occurs clearly inside the fluid (relatively)
far from the free surface. Finally, when the critical jet appears approximately at instant
t1 = 0.1506s, the trajectories of both maxima stay within a close vicinity. It should be noted
that Ωmax occurs at the root of the critical jet as if this great local variation of the pressure
up to its local maximum maintains the development of the critical jet.

The local variation of the pressure between the free surface and the point where Ωmax is
reached, is hence very rapid. As a matter of fact, the pressure is nil at the free surface, the
normal gradient of the pressure is finite and great and the curvature varies spatially very
rapidely and changes sign as well. In order to illustrate the sharp front of the pressure in
the close vicinity of the free surface, we fit a function between the two points corresponding
to Ωmax and pmax at instant t = 0.1512s. The slope at the free surface is very steep, while
a threshold is reached rapidely, hence suggesting a hyperbolic tangent function. Figure
(11) compares the function p(σ)/ρ = α tanh(βσ) with the numerical pressure distribution
between the two points located at Ωmax and pmax/ρ, σ being the distance from the free
surface. It is obtained for α = 2.05m2/s2 and β = 484m−1.

In order to get an overview of the acceleration at the free surface, figure (12) shows the
temporal-spatial variations of the Langrangian acceleration ||d~u

dt
|| at the free surface for the

sequence of the simulation as it varies significantly. This modulus is exactly the normal
gradient of the pressure |p,n/ρ| provided the acceleration gravity is negligible. This is indeed
the case over a large arclength of the free surface and for the last stages of the simulation
after t ≈ 0.15s. At a given instant the acceleration reaches its maxima at two points on
both sides of the tip of the critical jet. The black marks track the main maximum which is
located somewhere in the secondary barrel (between the critical jet and the main crest). The
second maximum (less sharp) occurs at the top of the main barrel. Between the two maxima
of acceleration there is the tip of the critical jet where the velocity reaches its maximum. It
should be noted that the time variation of the acceleration shows that its maximum (about
2700m/s2) is reached before the end of the simulation at instant t = 0.153s consistently with
the time variation of the maximum of pressure shown in figure (9).

The radius of curvature along the free surface profile is also a variable that gives some
insights into the posed problem. This radius follows from the definition (12). Figure (13a)
shows the last free surface profiles of the simulation and some of them are emphasized. They
clearly show a change of sign of the curvature sufficiently before the appearance of the critical
jet. The corresponding radius of curvature is plotted in figure (13b), actually its absolute
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value. The infinite radius means that the denominator of Rc in equation (12) vanishes. The
plot covers the last stages of the simulation up to the full development of the critical jet
that appears at t = 0.1506s. Before that instant the free surface profile shows a change of
curvature starting at t = 0.138s and ending just before the appearance of the critical jet.

The location in time and space of the zeros of Ω and Rc is represented in figure (14). It
is a kind of upper view of figure (13b). There is a strong correlation between the zeros of Ω
and Rc. It is reminded that the zeros of Ω bounds the region where the Gaussian curvature
is positive. The figure hence shows that even a slight growth of the free surface is associated
with a positive Gaussian curvature, that is to say a potentially significant cusp if the pressure
gradient should vanish there. Geometrically this can be explained if we consider the pressure
surface as a steep ”cliff” close to the free surface, say almost vertical and flat. If we pull
somewhere the line that describes the foot of the cliff (thus imitating a local growth), that
influences the surface of the cliff above and its Gaussian curvature. The formal proof is still
to be done.

4. Conclusion

Similar free surface flow computations have also been done but for less strong forcing.
This is possible by tuning the duration of the forcing, thus less energy is injected in the fluid
but still an overturning crest is yielded. Nevetheless the critical jet does not appear. That
is because the region of positive Gaussian curvature and the region of vanishing pressure
gradient in the vicinity of the free surface do not overlap.

It is observed that when the pressure gradient vanishes close to the free surface and when
this precisely occurs in a region where the Gaussian curvature reaches high positive values as
close as possible to the free surface, then a cusp is likely to occur which is accompanied with
a great kinematics. This observation confirms what Longuet-Higgins (1980a) anticipated
theoretically.

In future works we shall analyze other configurations where overturning crest does not
necessarily precede the appearance of a critical jet. An example is described in Longuet-
Higgins (2001a), and the critical jet is known as the ”bazooka” effect. Using again a hori-
zontal cyclic motion of a rectangular tank, Scolan and Etienne (2018) describe such a phe-
nomenon which is followed by a flip-through event (see Cooker and Peregrine, 1990). The
resulting kinematics are very large. A preliminary analysis confirms that the main charac-
teristics described in this note are also met for these violent free surface flows with critical
jets.
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Figure 1: Notations used to describe the motion of the moving tank. (XA, YA) are the cartesian coordinates of
the point of rotation A in the earth fixed coordinate system (E,X, Y ). (xA, yA) are the cartesian coordinate
of the point of rotation A in the coordinate system (O, x, y) attached to the moving tank. The angle of
rotation is θ.
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vertical line shows indicates the instant (to = 1.63s) at which the motion is stopped.
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forced motion of the tank plotted in figure (2). The time step between each profile is (a) 2 10−4s and (b)
5 10−4s. The profiles at the two instants t1 = 0.1506s and t2 = 0.1542s are superimposed.
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Figure 4: Vector fields of the (a) acceleration ~u,t, (b) convective term (~u · ~∇)~u and (c) pressure gradient
~∇p
ρ
,

at instant t1 = 0.1506s. The right figures are closer views of the left figures. The two cartesian components
of the vector are divided respectively by 2 105, 106 and 105 for (a), (b) and (c). The units of the vectors
are m2/s2, Units of the horizontal and vertical coordinates: m. The green and blue marks are the locations

of the maximum positive value of the Gaussian curvature Ω and the minimum of ||~∇p|| respectively. The
closed curves delimit the inner region where the Gaussian curvature is positive.
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Figure 5: Isocontours of scalar fields at instant t1 = 0.1506s. The three digits in brackets give the minimum,
the step and the maximum of each isocontour plot. (a), (b) : pressure (0, 0.1, 1.912), (0, 0.01, 1.912) (c), (d) :
modulus of the pressure gradient,(0, 5, 1000), (0, 2, 100) (e), (f) : respectively negative and positive Gaussian
curvature (log10), (−20, 0.5, 0), (0, 0.5, 15) (g) : log of the modulus of the acceleration, (0, 0.1, 4), (h) : log
of the mean curvature. (0, 0.1, 9), Units of the horizontal and vertical coordinates: m.
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Figure 6: Vector components of the acceleration ~u,t, convective term (~u · ~∇)~u and pressure gradient
~∇p
ρ
,

centered at the point where the maximum positive Gaussian curvature is reached at instant t1 = 0.1506s.
The scale is 1:1000 and unit is m/s2.
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Figure 7: Vector fields of the (a) acceleration ~u,t, (b) convective term (~u · ~∇)~u and (c) pressure gradient
~∇p
ρ
,

at instant t2 = 0.1542s. The right figures are closer views of the left figures. The two cartesian components
of the vector are divided respectively by 106, 106 and 2 105 for (a), (b) and (c). The units of the vectors
are m2/s2, Units of the horizontal and vertical coordinates: m. The green and blue marks are the locations

of the maximum positive value of the Gaussian curvature Ω and the minimum of ||~∇p|| respectively. The
closed curves delimit the inner region where the Gaussian curvature is positive.
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Figure 8: Isocontours of scalar fields at instant t2 = 0.1542s. The three digits in brackets give the minimum,
the step and the maximum of each isocontour plot. (a), (b) : pressure, (0, 0.1, 1.95), (0, 0.05, 1.95) (c), (d)
: modulus of the pressure gradient, (0, 20, 1800), (0, 20, 1000), (e), (f) : respectively negative and positive
Gaussian curvature, (−20, 0.5, 0), (0, 0.5, 15) (g) : log of the modulus of the acceleration, (0, 0.1, 4), (h) : log
of the mean curvature. (0, 0.1, 10), Units of the horizontal and vertical coordinates: m.
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Figure 10: (a) Time tracking of the positions of: Black mark: maximum positive Gaussian curvature. Green
mark: maximum pressure. Light blue mark: minimum modulus of the pressure gradient. The arrow indicates
the time instant t = 0.15s when a local maximum of the pressure appears. (b) Closer view on the tracking
after the instant t = 0.15s, the successive profiles of the free surface are superimposed. Time interval between
each profile: 4 10−4s. Units of the horizontal and vertical coordinates: m.
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Figure 11: Fitting of a hyperbolic tangent function p(σ)/ρ = αtanh(βσ) to the variation of the pressure
along a straight line joining the two points located at pmax/ρ and Ωmax. σ is the distance from the free
surface, α = 2.05m2/s2 and β = 484m−1.
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Figure 12: Spatial and temporal variation of the Lagrangian acceleration (amplitude in m/s2) in the time
interval t ∈ [0.15s, 0.1555s]. The blue dots follow the main crest. The green dots follow the maximum
velocity. The black dots follow the maximum acceleration. Arclength is measured along the free surface
from the left wall to the right wall.
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Figure 13: Restart with to = 1.63s. (a) Free surface profiles in the plunging jet. The superimposed black
curves correspond to the instants t = 0.1450s, t = 0.1506s, t = 0.1531s and t = 0.1558s. (b) Spatial and
temporal variation of the curvature radius in the time interval t ∈ [0.135s, 0.1555s]. The superimposed black
curves correspond to the instants t = 0.1506s and t = 0.1531s.
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Figure 14: Temporal-spatial variations of the locations where the Gaussian curvature Ω and radius of
cuurvature Rc along the free surface change sign. The spatial variation is given by the arclength σ measured
from the left wall.
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