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Abstract

This article presents PAMELA, an annotation-based Java modeling framework.
PAMELA provides a smooth integration between model and code and enables
Java developers to handle software development both at conceptual level and
at source-code level, without code transformation and/or generation, avoiding
round-trip-related issues.
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1. Introduction

Model-Driven Software Development focuses on managing abstract models
representing the conceptual level of the solution space. These models are gen-
erally represented as various artifacts, corresponding to different languages and
using different representations. But models are rarely executable and/or lack
the required level of expressiveness or performance to be exploited directly in
production. Thus, the solution they offer is often implemented by using code
generators that produce a representation of the solution in a target program-
ming language or framework[22]. The underlying semantics of the code to be
executed is generally encoded in those code generators and can be inlined or
implicitly defined by the code generation process, or may sometimes be explicit
to the code generation. Figure 1 shows the classical vision for Model-Driven
Engineering.

This approach, model first, then generation, raises two major issues. First,
it creates an important gap between the conceptual level (the model) and the
source code, where semantics may be totally hidden or implicit. Second, the
synchronization of the pair models-code in a co-evolution scenario where model
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Figure 1: Classical vision for Model-Driven Engineering

and source code may evolve independently (and often by different actors, e.g.,
architect and developer) becomes hard to maintain.

Round-trip mechanisms are commonly used to overcome those difficulties,
but they are difficult to use and to maintain. Indeed, the model/code co-
evolution problem remains an open subject in the software engineering research
community and, consequently, software development projects often abandon the
idea of maintaining the synchronization between model and source code during
development process. In that context, the model is developed in the early stages
of development process, used mainly to prototype software applications. Then,
it may be manually reviewed back at the end of development process, for doc-
umentation purposes.

Conversely, we propose a shift in the modeling paradigm in which models and
code are developed together and at the same time in what we call a continuous
modeling process. The PAMELA framework supports this paradigm shift by
providing the means to: 1) weave model-based annotations with Java source
code and 2) interpret model annotations at run-time.

The rest of the paper is organized as follows. Section 2 describes our ap-
proach and its associated development process. Section 3 presents the main
building blocks of the PAMELA framework together with an illustrative exam-
ple. Implementation details are discussed in Section 4, followed by a description
of industrial experimentation and validation cases in Section 5. We end the
paper in Section 6 by discussing related work.

2. Approach and Development Process

We advocate for a strong coupling between model and sources code, to give
architects and developers a way to both interact during the whole development
cycle.
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Figure 2: PAMELA approach for modeling

2.1. Architecture overview

PAMELA is an annotation-based Java modeling framework providing a
smooth integration between model and code, without code generation nor ex-
ternalized model serialization. Instead of generating the code, the API (mostly
Java interfaces with abstract method declarations) is locally executed (inter-
preted). The idea is to avoid separation between modeling and code to facilitate
consistency management and to avoid round-trip issues. Figure 2 summarizes
the PAMELA architecture. The left side shows the structure of the application
source code where java files contain the code and annotations that link part
of the code to PAMELA model entities such as class, attribute, method, etc.
The right side shows that at runtime the PAMELA interpreter maintains the
relationships between the application binary, result of the java compilation, and
the internal representation of PAMELA models. The preservation of the struc-
ture and of the whole information allow a very good and high level of control
over the execution. In the following section, we present some indications on the
different ways of programming using PAMELA.

2.2. Usage of PAMELA

Coupling model and code into the same artifact opens new ways of pro-
gramming. The classical (metadata enabled) programming process relies on
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programmers that produce code reusing pre-existing modeling concepts. These
concepts are implemented by modelers that provide the right annotations the
programmers use. This is, for instance, the process followed by Jakarta EE
(JEE) developers reusing JEE specific annotations. The evolution rhythm be-
tween models and code is low. This programming way is still possible with
PAMELA, but we allow the ability to reach a high evolution rhythm when the
programmer also becomes the modeler. In fact, when the programmer identifies
a pattern, an abstraction, a generalization, s/he can use PAMELA to develop
and capitalize on this abstraction by extending PAMELA’s metamodel.

The developed metamodels are implemented by annotations that rely on
Java/JVM entities and mechanisms. They include consistency checking, which
constrain their use and help the programmer to avoid inconsistencies or errors.
We have first experimented their use with setters/getters to define Plain Old
Java Objects (POJO), with traits to implement multiple inheritance or with
roles and rules to set security rules on classes.

Our experience shows that introducing and reusing new concepts (1) reduce
the size of the code (2) reduce the risk of errors and (3) improve the code
structure. The cycle of development between the model and the code can then
be drastically reduced, leading to what we call continuous modeling.

The code size is reduced because abstractions factorize recognized concepts
so that the code using such concepts is replaced by the use of the abstraction at
the right place. This also reduces the risk of errors since the code is now managed
by the PAMELA framework with all the required checks. Finally, the code
structure is improved since it matches the way the programmer conceptualizes
(models) her/his code.

Here are various conceivable scenarios for PAMELA use:

• Programming use : programmers reuse existing annotations and write
model and code at the same time (the modelers and programmers share
the same artifacts : the Java code). This scenario includes the case where
the model (made by the modelers) is pre-existing.

• Reengineering : programmers start from an existing code base (legacy)
and refactor it while replacing this code by abstract method declarations
in Java interface, reducing risks of errors.

• Aspect-oriented programming : programmers may use or redefine
”patterns” (e.g., Security Patterns [20]) which offers code weaving at run-
time, and runtime monitoring.

• Advanced programmers use : programmers may extend PAMELA
with their own annotations, implementations or patterns.

In this presentation, we focus on the programming use of PAMELA, when
programmers reuse existing annotations. The full power of PAMELA arises
when programmers become modelers defining their own abstractions/annota-
tions.
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Figure 3: PAMELA metamodel

3. Software Framework and Features

PAMELA is composed of one design time component (the PAMELA meta-
model, plus a number of predefined annotations) presented in the next section
and one runtime component (the PAMELA interpreter), described in Section
3.2.

3.1. Design time

The PAMELA metamodel is depicted in Figure 3, and allows, through the
use of annotations, the definition of simple UML-like models directly on the
code.

A PAMELAModel is defined as a set of references to ModelEntity. A Model-

Entity reflects a concept and is encoded in a Java interface. Then, a Model-

Entity only defines an API (Application Programming Interface) without any
implementation for methods. Note that ModelEntities may declare Implementa-
tionClasses, which will be responsible for providing custom code implementing
domain or application-specific behavior. A partially implemented abstract

Java class may be defined as partial base implementation (conforms to imple-
mented interface), as default methods in Java interfaces would be (since Java
8). The PAMELA metamodel allows multiple inheritance: thus ModelEntity

may define a set of parent entities.
A ModelEntity also defines some properties, encoded as ModelProperty. A

ModelProperty is identified by a name, a cardinality (simple or multiple) and
a type, which can be a reference to another ModelEntity, or a Java type (a
primitive or an arbitrary complex Java type). Depending on its cardinality, a
ModelProperty is bound to a set of methods reflecting use of property.

• A read-only single property will define read access of its value using a
getter (a Java method defined in Java interface taking no argument and
returning the desired value).
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• A read-write single property will define a getter and a setter (a Java
method taking the value to be set as unique argument).

• A read-write multiple property will define a getter, an adder (a Java
method taking the value to be added as unique argument), a remover
(a Java method taking the value to be removed as unique argument), and
may define additional methods for extended features such as re-indexing,
for example.

In the following we list the most common Java annotations used in the
context of ModelEntity and ModelProperty definitions:

• @ModelEntity: tag annotating interface as ModelEntity. May also de-
clare an abstract entity.

• @ImplementationClass: tag annotating ModelEntity interface and pre-
cising abstract Java class to be used as base implementation.

• @Implementation: tag annotating a partial implementation (abstract in-
ner class defined in implemented interface), and used in the context of
multiple inheritance.

• @Getter(String): tag annotating method as unique getter for implicit
ModelProperty whose identifier is the declared String value. May also
declares cardinality, eventual inverse property, default value and some
other features.

• @Setter(String): tag annotating method as unique setter for implicit
ModelProperty whose identifier is the declared String value.

• @Adder(String): tag annotating method as unique adder for implicit
multiple cardinality ModelProperty whose identifier is the declared String
value.

• @Remover(String): tag annotating method as unique remover for implicit
multiple cardinality ModelProperty whose identifier is the declared String
value.

• @Reindexer(String): tag annotating method as unique re-indexer for
implicit multiple cardinality ModelProperty whose identifier is the declared
String value.

• @Initializer: tag annotating a method used as a constructor for related
ModelEntity.

• @Deleter: tag annotating a method used as explicit destructor for related
ModelEntity.

• @Finder(String,String): tag annotating method as a fetching request
for a given ModelProperty with a given attribute.
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• @CloningStrategy: allows to customize cloning strategy for a given Mod-
elProperty.

• @Embedded: allows to declare a given ModelProperty as contained.

• @Imports and @Imports: allows to declare some entities to be included in
PAMELA model.

• @XMLElement and @XMLAttribute: used to specify XML serialization for
PAMELA instances.

3.2. Runtime

The aforementioned models are executed at runtime as a combination of
two components as illustrated by the right part of Figure 2: 1) plain Java byte-
code, as the result of the basic compilation of source code; and 2) an embedded
PAMELA interpreter, executing semantics reflected by ModelEntity and Mod-
elProperty declarations (together with custom annotations where available).

The main idea for the approach is to override Java dynamic binding. In-
voking a method on an object which is part of a PAMELA model, causes the
real implementation to be called when existing (more precisely dispatch code
execution between all provided implementations), or the required interpretation
according to the underlying model to be executed.

The PAMELA interpreter will intercept any method call for all instances of
ModelEntity and conditionally branches code execution.

• If the accessed method is part of a ModelProperty (a getter, or a setter,
etc.), and no custom implementation is defined neither in the class declared
as implementation, nor in a class declared as partial implementation in
the context of traits, then, execution is delegated to the related property
implementation (generic code provided by the PAMELA interpreter).

• If the accessed method is defined in a class declared as implementation, or
in a class declared as partial implementation, then this method is executed.
The PAMELA API through the AccessibleProxyObject interface also
provides access to generic behavior (super implementation), allowing the
developer to define an overriding composition.

This general scheme also provides an extension point allowing to instrument
the code. This extension point is used in order to integrate other features such as
notification management, undo/redo stack management, assertion checking at
runtime (support for Design by Contract, aka JML), and dynamic code weaving
in the context of Aspect Programming.

The PAMELA model at runtime is computed dynamically, working on the
classpath of the launched Java application, and starting from a simple Java in-
terface (or a collection of Java interfaces) which is (are) PAMELA-annotated.
From a mathematical point of view, internal representation of the underlying
model is a graph whose vertices are PAMELA ModelEntities (annotated Java
interface), and edges are either inheritance links or reference links (a property
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whose type is another ModelEntity). @Imports and @Import annotations allow
to include some other ModelEntities in the model. An annotation attribute
@Getter(...ignoreType=true) allows to ignore the link. In that context,
PAMELA model computation is a graph closure computation, starting from
a collection of vertices.

A PAMELA model at runtime is represented by a ModelContext.
PAMELA instances (instances of ModelEntity) are handled through the use

of ModelFactory, which is instantiated from a ModelContext.

3.3. Additional Features

Programmers may already reuse a number of advanced programming fea-
tures (some already mentioned) such as: multiple inheritance and traits, con-
tainment management, cloning, fine-grained notification management, object
graph comparison and diff/merge, visiting patterns, clipboard management,
validation, support for design by contract by integrating assertions from Java
Modeling Language (JML), Metaprogramming, Aspect Oriented Programming.
Each of those features is described on a dedicated page that is reachable from the
official web site1. Experienced PAMELA programmers may extend PAMELA
defining new annotations.

3.4. Example

Listing 1 shows a very basic model with two entities: Book and Library.
Entity Book defines two read-write single properties (title and ISBN ) with single
cardinality and with String type. Entity Book also defines a constructor with
initial title value. Entity Library defines a read-write multiple properties books
referencing Book instances. Note that this code is sufficient to execute the
model, while no additional line of code is required (only Java interfaces and
API methods are declared here).

1 @ModelEntity

2 public interface Book extends AccessibleProxyObject {

3

4 @Initializer

5 public Book init(@Parameter("title")String aTitle);

6

7 @Getter("title")

8 public String getTitle ();

9

10 @Setter("title")

11 public void setTitle(String aTitle);

12

13 @Getter("ISBN")

14 public String getISBN ();

15

16 @Setter("ISBN")

17 public void setISBN(String value);

18 }

1https://pamela.openflexo.org
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19

20 @ModelEntity

21 public interface Library extends AccessibleProxyObject {

22

23 @Getter(value = "books", cardinality = Cardinality.LIST)

24 public List <Book > getBooks ();

25

26 @Adder("books")

27 public void addToBooks(Book aBook);

28

29 @Remover("books")

30 public void removeFromBooks(Book aBook);

31

32 @Reindexer("books")

33 public void moveBookToIndex(Book aBook , int index);

34

35 @Finder(collection = "books", attribute = "title")

36 public Book getBook(String title);

37 }

Listing 1: Model creation

The execution and the management of this model may be performed using
the following simple lines of code:

1 // Instantiate the meta -model

2 // by computing the closure of concepts graph

3 ModelContext modelContext

4 = ModelContextLibrary.getModelContext(Library.class);

5 // Instantiate the factory

6 ModelFactory factory = new ModelFactory(modelContext);

7 // Instantiate a Library

8 Library myLibrary = factory.newInstance(Library.class);

9 // Instantiate some Books

10 Book myFirstBook

11 = factory.newInstance(Book.class , "Lord of the rings");

12 Book anOtherBook = factory.newInstance(Book.class , "Holy bible");

13 myLibrary.addToBooks(myFirstBook);

14 myLibrary.addToBooks(anOtherBook);

Listing 2: Model execution/manipulation

The lines 3–4 instantiate a ModelContext by introspecting and comput-
ing the closure of concepts graph obtained while starting from Library entity
and following parentEntities and properties relationships. This call builds
at runtime a PAMELAModel, while dynamically following links reflected by
compiled bytecode. A factory ModelFactory is then instantiated using that
ModelContext, allowing to create Library and Book instances.

Custom code can be easily added to this model as we show in Listing 3. It
shows how to integrate custom code to the fully interpreted Book entity de-
scribed above. The partial custom implementation is offered by a partial class
(note the abstract keyword), declared in the annotation header of model entity.
Custom implementations are defined using classical Java implementation/over-
ride schemes. Here we define the implementation of the read() method, which
has no annotation (and thus, cannot be processed by the PAMELA framework),
and also the implementation of a custom getter for title, returning a default
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value when no value is defined for that property. Note that this implementa-
tion references a default interpreted implementation (call to performSuperGet-

ter(String) method).

1 @ModelEntity

2 @ImplementationClass(BookImpl.class)

3 public interface Book extends AccessibleProxyObject {

4

5 static final String TITLE = "title";

6

7 @Getter(TITLE)

8 String getTitle ();

9 // ... title property declarations ...

10

11 void read();

12 }

13

14 // Provides a partial implementation for Book

15 public static abstract class BookImpl implements Book {

16

17 @Override

18 public String getTitle () {

19 String title = performSuperGetter(TITLE);

20 if (title == null) {

21 return "This book has no title";

22 }

23 return title;

24 }

25

26 @Override

27 public void read() {

28 // do the job

29 }

30 }

Listing 3: Custom Code

4. Implementation

The PAMELA implementation is available online2.

4.1. Exposed API at design time

The model-code integration we advocate requires facilities to encode meta-
data in the source code. This requires an annotation-enabled language. Such
a language supports the attribute-oriented programming if its grammar allows
adding custom declarative tags to annotate standard program elements. The
Java programming language is a good candidate, as it supports annotations.

The PAMELA API exposed to the developer mainly consists of: 1) a set of
annotations; and 2) a set of unimplemented Java interfaces exposing required
features.

2https://github.com/openflexo-team/pamela
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The org.openflexo.pamela.annotations package exposes the set of anno-
tations which were presented in Subsection 3.1.

The org.openflexo.pamela package contains the following feature-related
Java interfaces:

• AccessibleProxyObject is the interface that PAMELA objects should
extend in order to benefit from base features such as generic default im-
plementation, containment management, notification, object graph com-
parison and diff/merge, visiting patterns, etc.

• CloneableProxyObject exposes features related to cloning.

• DeletableProxyObject exposes features related to deletion management.

• SpecifiableProxyObject exposes dynamic assertion checking features in
the context of JML (contract management) use.

4.2. PAMELA interpreter

The package org.openflexo.pamela.factory contains the PAMELA inter-
preter implementation. The core of the interpreter is implemented in the class
ProxyMethodHandler.

From a technical point of view, the PAMELA implementation uses the javas-
sist reflection library (see [9]) which provides the MethodHandler mechanism,
which is a way to override the Java dynamic binding. Invoking a method on
an object which is part of a PAMELA model, causes the real implementation
to be called when existing (more precisely dispatch code execution between all
provided implementations), or the required interpretation according to the un-
derlying model to be executed. This also provides an extension point allowing
to instrument the code, which is used for other features such as undo/redo
stack management, and assertion checking at runtime (support for Design by
Contract, aka JML).

The PAMELA framework is a 100% pure Java (≥1.8), compilable by a clas-
sical Java compiler and executable in a classical Java Virtual Machine.

4.3. PAMELA code base metrics

The PAMELA implementation is modularized.

• Core implementation (pamela-core) provides all base features. It contains
20k lines of code involving 184 classes. This code is covered with unit tests
(6k lines of code, 112 classes). Reached code coverage is about 66%.

• pamela-security-patterns is an add-on library containing some security-
pattern implementations.

• pamela-perf-tests contains benchmarking tools whose purpose is to
quantify PAMELA performances.
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4.4. Performance analysis

Compared to a basic POJO implementation, the use of PAMELA implies a
CPU and memory footprint overhead. This is due to the partially interpreted
nature of some of its features. We have developed a performance workbench in
order to measure it 3.

We first defined a base model composed of four entities declaring four to
five properties (single and multi-valued) each. From this simple model, two
Java implementations have been derived using code generation. The first im-
plementation uses fully implemented Java classes (POJO), while the second one
is fully interpreted (it uses the PAMELA framework and defines only interfaces
and API methods). Then, for each implementation, we have instantiated the
base model (by creating 1010101 objects with their properties initialized to de-
fault values) and carried out performance measures. As expected, we measured
a CPU overhead for the fully interpreted implementation (from ×20). This is
due to MethodHandler mechanism which is fully interpreted and contains many
hooks. Therefore, it cannot be compared to a fully compiled and optimized Java
dynamic binding. We also measured a memory footprint overhead, but of a less
important weight that the CPU overhead (×5 factor).

Note, however that the measured overhead only applies to a very small por-
tion of the code (mostly property accessors methods). A ”real-world” model
implementation generally involves a bigger ”business code” part, which is gen-
erally the first CPU-time consumer. Using PAMELA won’t increase CPU use
on ”business code” if this code is implemented with plain Java code (which is
generally the case). We have used the Yourkit Java Profiler4 on PAMELA based
applications and, as expected, the time passed on accessors was negligible com-
pared to the time used on methods implementing business logic. As we will see
in the next section, PAMELA has been successfully applied to many industrial
projects, with no performance issues reported. Moreover, the PAMELA im-
plementation offers many functional features which are not present in the base
implementation (such as undo/redo, clipboard management, runtime monitor-
ing and weaving, etc.) which outweigh the performance overhead.

5. PAMELA industrial use cases and experiments

The PAMELA framework has been successfully applied in a variety of com-
plex programming and modeling scenarios and we continue to use it daily as
part of our modeling toolbox. In the following, we describe three important use
cases in which PAMELA was a core component.

5.1. Openflexo infrastructure

Model Federation [11] is an approach that provides the means to integrate
multiple models conforming to different paradigms, and giving to each stake-

3https://github.com/openflexo-team/pamela/tree/1.6.1/pamela-perf-tests
4https://www.yourkit.com/
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holder a specific view adapted to its needs. Model federation approach is de-
veloped as a possible response to SIMF RFP (Semantic Information Modeling
for Federation) [16] by OMG (Object Modeling Group). This RFP (Request
For Proposal) requests submissions for a standard addressing ”federation of in-
formation across different representations, levels of abstraction, communities,
organizations, viewpoints, and authorities”. Thus model federation allows the
integration of heterogeneous models to develop new cross-concern viewpoints/-
models or to synchronize the models used for designing a system.

Openflexo[24] is a software infrastructure providing support for model fed-
eration across multiple technological spaces. Conceptualization is addressed
through the proposition of a language called FML (Flexo Modeling Language),
which is executable on the platform. Openflexo infrastructure introduces con-
nectors (also called Technology Adapters) to support various technological spaces
and paradigms.

This open source initiative is now mature at the infrastructure level, and
many projects and applications have been developed and powered using Open-
flexo infrastructure. More than 15 technology adapters have been developed,
with various maturity stage regarding their industrialization (Microsoft Word,
Excel and PowerPoint, EMF, OWL, Diagraming, JDBC, XML, OSLC, etc.)

The full Openflexo infrastructure is composed of about 50 components. In
most components, the PAMELA framework is largely used. As an example the
diana component5 (a component providing diagraming features) is composed
of 998 classes. 159 of those classes (mostly the diagraming model) are defined
as Pamela ModelEntity.

The total base of code for Openflexo infrastructure represents around 900 000
lines of Java code. Regarding backend modeling, the PAMELA framework
is extensively used in Openflexo core as well as in most technology adapters,
with very few specific implementations for properties. The observer/observable
pattern is generally used for graphical user interfaces, which also rely on the
PAMELA framework.

An interesting experiment has been done in the context of Openflexo de-
velopment process. When PAMELA was integrated to the code base, a big
portion of the former legacy code has gradually and iteratively been migrated
to PAMELA. Refactoring mainly consisted in removing code, and replacing
method implementation by API method declaration. In some parts of core
model implementation, code has been reduced by 80% (in terms of lines of Java
code), and many bugs disappeared, as they were caused by programming errors.

The PAMELA implementation is now really stable and mature. According to
Openflexo infrastructure developers, maintenance of code base (about 10 years
of development) raises no PAMELA-specific issue, while co-evolution of models
and code is greatly improved compared to a ’code generation’-based solution.

5https://diana.openflexo.org
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5.2. Formose project

The Formose ANR (French National Agency for Research) project (ANR-14-
CE28-0009)[23] aimed to design a formally-grounded, model-based requirements
engineering (RE) method for critical complex systems, supported by an open-
source environment. The main partners were: ClearSy, LACL, Institut Mines-
Telecom, OpenFlexo, and THALES.

The main results of the project are a requirements modeling multi-view lan-
guage, its associated design process and the development of an open-source plat-
form called Formod[2], built using Openflexo infrastructure and the PAMELA
framework. The requirements modeling language is based on KAOS [25] for
goal modeling and SysML for the structural part of a system. The associated
domain modeling language, used to describe system domain knowledge, extends
the two ontology languages OWL [19] and PLIB [17]. The graphical notations
are then translated into Event-B [1], a formal specification method supported
by verification tools.

The Formose method and Formod tool have been evaluated on different case
studies provided by the industrial partners of the project.

5.3. SecurityPatterns experiment

A significant experiment in PAMELA is the implementation of security pat-
terns weaved on domain code [20]. In this context, the PAMELA framework is
extended to include the notion of Pattern, i.e. a composition of multiple classes.
Included to this experiment, the security pattern is specified by expected be-
havior defined and formalized by a pattern contract. This contract is defined by
formal properties and the PAMELA framework ensures the property verification
at runtime.

Related to the security pattern implementation, PAMELA enables the defini-
tion of additional security behavior to existing Java code. Patterns are defined
in PAMELA using three classes, each one representing a different conceptual
level PatternFactory, PatternDefinition, PatternInstance.

To declare a Pattern on existing code, pattern elements such as Pattern
Stakeholders and methods need to be annotated with provided security pattern-
specific annotations. These annotations will be discovered at runtime by the
PatternFactory and stored in PatternDefinition attributes.

Summarizing, implementing Patterns with PAMELA provides the ability to
monitor the execution of the application code; the ability to offer extra structural
and behavioral features, executed by the PAMELA interpreter; a representation
of Patterns as stateful objects. Such objects can then evolve throughout runtime
and compute assertions.

6. Related Work

The PAMELA framework can be seen as a CASE tool that focuses on the
design and verification and validation phases of the software development life-
cycle. In that sense, it presents similarities to other existing object oriented
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CASE tools and/or language workbenches such as Kermeta [12] and the Platy-
pus [18] meta-case tool as they permit the definition and manipulation of models,
metamodels and constraints/behavior. Two main features separate PAMELA
from those approaches though: 1) The main artifact for the PAMELA frame-
work is standard java code; and 2) PAMELA does not rely on code generation
but on the interpretation/construction of models at runtime guided by code
annotations. This allows for the seamlessly blending of the metamodeling/pro-
gramming phases.

When the observed artifact is code (e.g., for runtime analysis or verification
of properties) we could see our approach as similar to some contributions apper-
taining to the models@runtime topic [3]. Indeed models@runtime approaches
often rely on the use of the reflection architectural pattern [6] in order to sep-
arate core application logic from a metalevel that contains information about
properties, types, etc. This is also the case of PAMELA. Examples of such
approaches are: AC-Contrat [15] which provides runtime verification of proper-
ties for context-aware applications; Ramses [8] focused on dynamic adaptations;
and [10] that performs feature analysis. [21] wraps running systems in standard
UML-like models in order to perform analysis and management tasks by using
off-the-shelf MDE tools and techniques whereas FAME [13] is a polyglot library
that keeps metamodels accessible and adaptable at runtime (Synchronization of
changes between models and code are, however, limited for languages such as
Java).

Different to the aforementioned approaches, the focus of PAMELA is not on
adapting or observing ever running programs (although it can be used for the
verification of runtime properties as demonstrated in [20]) but on: 1) provid-
ing a mechanism to blend coding and metamodeling so that the code and the
metamodel may be built incrementally without the need for code generation
and thus, avoiding round-tripping issues; and 2) providing default implemen-
tations for frequently used abstractions in order to ease development. In that
sense PAMELA can be seen as a mix between classical CASE tools and the
aforementioned models@runtime approaches.

More similar to PAMELA (as it focus on avoiding round-tripping issues)
in [7] the authors present an approach to keep the (bidirectional) synchronization
between feature-based models and generated code alternatives. They rely on
Pharo[4] reflective capabilities. More recently, in [5] the authors construct and
maintain at runtime model-based views on the data manipulated in object-
oriented code.

In a different approach, UMPLE[14] mixes programming and modeling by
integrating UML constructs into languages such as Java. However, they use
code generation for the runtime part of the system.

7. Conclusion

The PAMELA framework promotes a modeling paradigm where models and
code are jointly developed to provide a continuum between model and source
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code. The support is supplied by Java annotations and the PAMELA interpreter
at runtime.

The different experiments provide efficient examples to argue the benefits of
the PAMELA framework but it is better to make your own experiences through
https://pamela.openflexo.org/.
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