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Abstract Place recognition is an essential task in many robotics applications.
Recognizing if the robot is crossing an already visited place may be used to
improve its localization and map estimation. A place recognition strategy must
be as accurate as possible, despite the challenges related to environment dy-
namicity. It should avoid generating false positives since even a few erroneous
matches may be enough to cause the degradation of the SLAM process. We
propose a novel approach for place recognition inspired by interval analysis
theory. Our approach models the known world as a set of intervals based on
the robot’s observations. The search to determine whether the current robot
location is new or known begins as the robot explores its surroundings. Our
approach has three main steps. First, it selects a set of nearest neighbors based
on the similarity between the current robot observation and the intervals com-
posing the known world. In the second step, our approach uses temporal con-
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straints to select one element of the set. And finally, the third step is to sweep
the selected interval looking for the query best match. We evaluate our pro-
posal by dealing with visual place recognition using only image information
and demonstrate its effectiveness using some challenging public datasets.

Keywords Robotics · Place Recognition · SLAM · Interval analysis

PACS PACS 89.20.Ff Computer science and technology

Mathematics Subject Classification (2010) MSC 68 Computer Science ·
MSC 68T40 Robotics

1 Introduction

The visual place recognition problem also called loop closure detection, consists
of recognizing previously visited places [4]. The ability of identifying already
visited places may improve the robot pose estimation and consequently the
map quality. Despite challenges related to environment dynamicity, a place
recognition strategy must be as accurate as possible. It should avoid the gen-
eration of false positives since few erroneous matches are usually enough to
cause the degradation of the Simultaneous Localization and Mapping (SLAM)
process.

The use of vision as the central sensing modality has shown exciting results
for learning and recognizing places [21]. Nevertheless, challenging aspects such
as vehicle movements, lighting, and natural or human-made structural changes
still require attention. Figure 1 shows examples of challenging situations; each
line presents two images from the same place taken at different instants during
a day, showing a drastic illumination change.

Any place recognition method must have an environment representation,
which is compared to new incoming data to find matches. The goal is to
determine if the current incoming data is from a place previously included in
its representation, and if so, which one [18].

Several methods have been proposed over the years to deal with this prob-
lem. FAB-MAP [6] and SeqSLAM [21] are popular approaches, considered
milestones in the state-of-art due to their results in challenging situations.
These methods introduced the use of visual words and sequence analysis to
the field.

Interval analysis has also been used as a foundation to create algorithms
for the loop closure problem. Interval analysis theory [14] lies in the idea of
enclosing numbers in intervals. It uses constraints of the problem to reduce
the set of candidate solutions. If a candidate satisfies all the constraints, it is
part of the solution. For instance, Simon et al.[26] deals with the loop closure
problem using this approach. However, as with other interval methods for
robotics problems, such as localization and SLAM, the interval represents a
measurement obtained by a ranging sensor anchored in the robot’s workspace
[12][13][23]. To the best of the authors’ knowledge, there is no place recognition
approach based on intervals analysis that are not created from range sensors.
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Fig. 1: Examples of pictures from UofA [27] (top) and GPW [10] (bottom)
datasets presenting day (left) and evening (right) views of the same place.

In this paper, we propose a novel method for visual place recognition under
environmental condition changes using a monocular camera. Our approach is
based on interval analysis theory and uses intervals to represent regions of
the real-world which are not anchored in the workspace. It creates constraints
based on the past searches of the nearest neighbors to reduce the set of possible
matching solutions. Our strategy was tested using public datasets and exhib-
ited encouraging results being able to use interval techniques to find matches
between sets of images.

The paper is organized as follows. We first present the related work about
place recognition methods in Section 2. Section 3 contains our proposal of how
to model the known world as a set of intervals. Section 4 presents the visual
place recognition method inspired by interval analysis theory using the ideas
introduced in Section 3. In Section 5, we evaluate and discuss our method
through the analysis of the experiments performed with public datasets. Fi-
nally, in Section 6, we conclude and discuss future work.

2 Related work

An essential part of the visual place recognition problem is the scene descrip-
tion. The most common ways to represent a scene are using either a set of local
features or the whole image information [18]. Each image can enclose hundreds
of local features, which means that describing a scene and finding a match to
each feature implies a high computational cost. Besides, using local features
under changing conditions can deliver poor results since they are easily missed
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when images suffer from blur effect. On the other hand, using the whole image
information to generate only one descriptor can be faster to describe and search
for similar images than using a set of features. However, changes in point-of-
view can affect the quality of the global descriptor [18]. It is also possible to
use raw images as descriptors [21], once computing the difference between two
images is essentially subtracting the corresponding pixels of each other. Yet,
this approach can be computationally costly and strongly dependent on the
point-of-view. Another kind of approach used to search for features and gen-
erate descriptors are the ones based on deep learning [3][17][24]. Using deep
learning techniques can be computationally expensive [19]. Thus their suit-
ability may depend on the problems that are being addressed and available
resources. Below we discuss some relevant approaches to place recognition in
the literature.

FAB-MAP [6] is a probabilistic approach to place recognition based on
place appearance. It uses the Bag of Words (BoW) image retrieval system [28]
to convert the incoming sensory data into words. It relies on the fact that
some words tend to appear and disappear together in specific combinations
because they are present in the same objects. However, it needs a training
phase to create the BoW vocabulary and does not deal with environmental
changes once it is dependent on features similarity. FAB-MAP is suitable for
applications at the scale of a few kilometers, but it has a high computational
cost. This fact is one of the motivations for the elaboration of a new version
called FAB-MAP 2.0 [7], which keeps the essence of its predecessor exploiting
its characteristics to reduce computation and memory requirements.

On the other hand, SeqSLAM [21] focuses on environments with perceptual
changes, comparing information collected in the same place but taken at dif-
ferent moments during a day, at distinct types of weather conditions, or even
at different seasons of the year. In unstructured environments or changing con-
ditions, features may not be reliable enough to provide relevant information
to describe precisely a scene. Thus, SeqSLAM considers sequences of images
to match places. The authors claim that looking for matches within sequences
leads to better results than analyzing only single images.

Fast-SeqSLAM [27] is an enhanced version of the SeqSLAM. The method
uses a tree structure to store image descriptors and the nearest neighbor algo-
rithm to speed up the search for matches. Differently from the SeqSLAM that
uses image subtraction, it uses HOG descriptors [8], which apply distribution
of directions of gradients to represent an image. HOG has been used to de-
scribe features or, as shown in Fast-SeqSLAM, whole images. In comparison to
SeqSLAM, Fast-SeqSLAM reduces the computational cost keeping the same
results.

Talbot et al.[30] proposed the OpenSeqSLAM2.0, an open-source toolbox
for visual place recognition based on the SeqSLAM. It uses the same high-level
structure presented in the SeqSLAM method but enables variations to some
steps of the process. Thus, making it possible to alter some of the configura-
tions of the method.
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FAB-MAP and SeqSLAM are the basis for most loop closure methods
and have been used for baseline comparison. A place recognition framework
to deal with viewpoint changes is proposed by Maffra et al. [19]. It uses an
adapted BoW to create a visual vocabulary based on binary features. The
method works in parallel to a vision-based SLAM/odometry system and takes
advantage of the collected features and 3D information of the environment.
Their results are compared with the FAB-MAP 2.0 and DBoW2 [9] methods.

Also inspired by FAB-MAP, a loop closure detection based on BoW with
binary features was presented by Huishen et al. [11]. The method uses co-
visibility graphs to verify loops and considers the temporal consistency of
image sequences.

Bai et al. [3] propose a method to perform place recognition under view-
point and condition changes exploiting the use of images sequences. This
method aims to improve the viewpoint invariance of SeqSLAM using deep
learning techniques to the image representation process. Naseer et al. [24] pro-
posed a visual localization method to run over long periods, which is based only
on monocular image data and exploits sequence information. Their method
uses a semi-dense image descriptor associated with global descriptors gener-
ated by neural networks to compare images. The solution proposed is also
compared with OpenSeqSLAM.

Uy and Lee [1] proposed the PointNetVLAD, a method based on deep neu-
ral networks to deal with place recognition using 3D point-cloud information.
It is a combination of the deep networks PointNet [25] and NetVLAD [2]. The
method can extract global descriptors from 3D point clouds and use end-to-
end training. They also propose functions to reach more discriminative and
generalizable global descriptors.

Merrill and Huang [20] introduced an unsupervised deep neural network
architecture for loop closure detection. The authors propose to address some
recurrent problems associated with the use of convolutional neural networks,
like taking too long to extract features, slow querying, and use of training based
on a large amount of labeled data. The method learns the scene’s geometry
represented by the HOG descriptor, which compresses the image information
preserving salient features and homography.

In [31], Tsintotas et al. presented a loop closure detection method based
on visual words, which converts images descriptors into words, clustering the
images in places according to their similarity. At query time, the method also
converts the images into visual words and searches for a matching candidate
place calculated from a probabilistic function. The next step is to use a voting
system to find the match at the chosen place. Furthermore, their method
applies geometrical and temporal checks on the matching pair aiming for a
performance increasing.

Vysotska and Stachniss [32] proposed a method for visual place recogni-
tion that deals with seasonal changes, different weather conditions, and illu-
mination changes. It relies on sequences and can localize the robot in a map
composed of multiple images sequences. The method uses a combination of
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image features that came from a layer of convolutional neural network with a
graph-based search.

In cases where computational resources are constrained, either there is
not enough data available for training, or in combination with challenging
environmental conditions, techniques based on deep learning may not be the
most suitable option [30]. Despite the emergence of several techniques based
on deep learning, as mentioned before, the traditional visual place recognition
techniques are still relevant to the field.

As mentioned previously, interval analysis is another type of approach that
can be used to deal with the loop closure problem. An interval method to ver-
ify the existence of loops along the uncertain trajectory of a robot is presented
by Rohou et al. [26]. More than detecting the occurrence of possible loops the
method verifies if a loop occurs whatever the uncertainties associated with
the trajectory. It exploits only proprioceptive measurements for proving the
existence of loops, which is demonstrated by experimenting using autonomous
underwater vehicles. The method uses the idea that classical intervals of reals
can be extended to trajectories by means of tubes. It also uses the measure-
ments from common sensors to build a tube from this data by computing a
piecewise linear interpolation. So, the interval represents a measurement an-
chored in the robot’s workspace, which can pose a limitation when no ranging
sensor is used. As we will see later, our proposal does not have the requirement
of representing the environment regions anchored in the real world.

3 Novel interval-based modeling to incoming data

This section presents concepts and operations from interval analysis as well as
our proposal of how modeling the known world using interval theory.

3.1 Interval background

Intervals are useful to represent uncertain values. They may enclose the un-
certainties related to values in a compact representation, which may be ma-
nipulated using Interval Arithmetic to propagate and reduce the associated
uncertainties. Some interval operations necessary for the understanding of the
method proposed in Section 4 are presented. Other interval operations can be
seen in [14].

Considering the operator � ∈ {+,−} and the intervals [x], [y] ∈ IR, where
IR is the set of all possible intervals of real numbers.

[x] � [y]
def
= {x � y | x ∈ [x], y ∈ [y]}.

For instance,

[x−;x+] + [y−; y+] = [x− + y−;x+ + y+].



Interval inspired approach to place recognition 7

It is important to highlight that a scalar number can be treated as a punctual
interval. For instance, number 2 can be represented by the interval [2; 2].

The intersection operation gains special attention in the interval analysis
context [22]. Given two intervals [x], [y] ∈ IR, the intersection between them
is defined by

[x] ∩ [y]
def
= {x | x ∈ [x] and x ∈ [y]}.

This operation helps to find inconsistencies in sets of data. Besides, it narrows
the interval results, reducing uncertainties. Interval approaches are known for
generating guaranteed solution sets, which is true when the problem model and
error bounds are known. However, occasionally it is not possible to predict
all noises of the system, and when this happens, the constraints lead us to
an empty solution. In this case, we can accept that not all intervals have an
overlap and adjust the number of intervals intersecting according to the needs.
This is called q-relaxed intersection [5]. Given a set of intervals

[x]i ∈ IR, 1 ≤ i ≤ n

the q-relaxed intersection denoted by

{q}⋂
[x]i for 1 ≤ i ≤ n,

results in a set of all x ∈ R which belong to all [x]i, except q at most.

3.2 Seeing the known world through an interval-based perspective

In our approach, we consider a robot in a workspace W modeled as a Euclidian
space R3. The robot moves along a path defined as a continuous function

τ : [0, 1]→W,

with τ(0) representing the robot’s initial configuration, and τ(1) representing
the goal, or last configuration of the path assumed by the robot [15][16].

The robot goes through the path collecting information about its surround-
ings, which is represented by the observations set U. We may sort the set U by
the order in which the observations appeared along the path, like a timestamp.
Thus, all observations are mapped to a natural number using the following
function

o : U→ N.

Using this function we define the set of labels O as

O =
{
o(u) | u ∈ U

}
,

and the o-distance between two observation as

ρ : U× U→ N.
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For instance, given the observations u, v ∈ U, the o-distance between them
is

ρ(u, v) = |o(u)− o(v)|.

Note that the o-distance is related to the order that the robot collected the
information; it does not consider the information contained in the observation
itself.

When we do consider the information that observations contain, we can
measure the similarity between them, which represents how much alike two
observations are. The similarity function is defined by

α : U× U→ [0, 1],

where α represents a generic similarity function that depends on the kind of
information used. When working with laser or sonar is common to use the sum
of absolute differences. If the observations are images, a common approach is
to use the hamming distance between descriptors to compute the similarity.

The definitions of o-distance and similarity analyzed together may indicate
that:

– the observations u, v ∈ U are from contiguous points of the path, if

α(u, v) ≥ θ0α ∧ ρ(u, v) ≤ θ0ρ,

where θ0α and θ0ρ are predefined thresholds used to indicate minimum simi-
larity and maximum o-distance between observations collected in contigu-
ous points, respectively.

– the observation u ∈ U was collected during a revisit when there is at least
one v ∈ U where

o(u) > o(v) ∧ α(u, v) ≥ θ0α ∧ ρ(u, v) ≥ θ1ρ,

given that θ1ρ is a predefined threshold used to indicate the minimum o-
distance between observations during a revisit.

– the robot is not moving, or it is in some symmetric region at the moment
it collects a set of observations U′ ⊆ U, that for all pairs u, v ∈ U′

the
following condition holds

ρ(u, v) < |U
′
| ∧ α(u, v) ≥ θ0α,

where the order labels of the elements of U are inherited by U′
.

Observations collected in contiguous points of the path usually share a
large amount of information. Thus, we can join them to represent a more
significant region, creating a simplified version of the environment. Analyzing
the collected information based on the o-distance and similarity functions, we
can represent portions of the path through intervals.

Given two observations u, v ∈ U, where u 6= v, there is a path between the
positions where u and v were collected. Even in the case of u and v have been
collected consecutively, there is a multitude of possible observations between



Interval inspired approach to place recognition 9

these points that were not collected and are not in U. However, an interval can
still represent this part of the world. Considering, for instance, the interval [x]:

[x] = [o(u); o(v)].

Setting up an interval, according to the previous definitions, shall respect
some conditions as enumerated as follows. Each interval [x] has an anchor
element A[x] used to define whether an observation is in [x] or not. A[x] may
be, for instance, the first element of the interval. Thus, o(u) ∈ [x] if:

1. u ∈ U;
2. α(u,A[x]) ≥ θ1α, i.e. the similarity measure between A[x] and u must be

higher than a threshold θ1α;
3. ρ(u,A[x]) ≤ θ2ρ, i.e. the o-distance measure between A[x] and u must be

smaller than a threshold θ2ρ;
4. the elements of U, which have order labels between o(A[x]) and o(u) are in

[x].

After creating a new interval, it is necessary to represent the information
enclosed by it. So, each interval [x] has a global representation G[x] of all
observations it contains. G[x] can be equal to A[x]. However, we propose a
different structure to be used as set of intervals global representation in the
next section. Table 1 summarizes the thresholds presented in this session.

Table 1: Thresholds

Symbol Meaning
θ0α indicates the minimum similarity between two observations collected in con-

tiguous points
θ1α indicates the minimum similarity between an interval anchor and all element

of its interval
θ0ρ indicates the maximum o-distance between two observations to be considered

as contiguous points
θ1ρ indicates the minimum o-distance between two observations to be considered

as a revisit
θ2ρ indicates the maximum o-distance between an interval anchor and all elements

of its interval

4 Interval inspired approach for place recognition

We propose a novel approach to deal with the place recognition problem using
interval analysis theory. The presented scenario uses images as observations
and is based on two sets of images - a reference and a query - from two traver-
sals of the same environment at different times and under different conditions
[21]. Our method uses these sets to identify matches and determines if the
robot is crossing an already visited place.
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4.1 Dealing with images

First, we need to deal with the images collected by the robot. The following
definitions about how our method deals with the images are valid to both ref-
erence and query sets. When using images as the main source of information
it is common to apply description methods to generate a more compact rep-
resentation. Among the available methods, we adopted the Local Difference
Binary (LDB) descriptor [33], which was developed to be more robust, more
distinctive, and faster to compute than other state-of-art binary descriptors.
LDB can be used to describe feature patches or whole images, and we have
chosen it due to its low memory requirements and fast comparison process
based on Hamming distance. However, our method may support any binary
descriptor.

LDB method divides the area of interest into a grid and computes the
intensity and the gradient of each grid’s cells. After that, it performs binary
tests comparing the intensity and gradients of the cells among each other. The
method uses multiple granularities of grids, capturing the scene structure with
different levels of details. The final descriptor is composed of the concatenation
of the descriptors from all level grids.

We opted to divide the images into four parts, where each quadrant gener-
ates one descriptor to minimize problems related to partial occlusions. Figure
2 shows the steps to generate an image descriptor. First, the robot collects an
image, Figure 2a, after, the image is split in four patches, one to each quad-
rant, Figure 2b, and for each patch a LDB descriptor of 346 bits is computed,
Figure 2c. Finally, we concatenate the descriptors in one single descriptor that
represents the whole image, Figure 2d.

4.2 Modeling the known world as a set of intervals

We based our approach on the idea of modeling the known world as a set
of intervals, as shown in Section 3. All we know about the environment are
the observations collected by the robot, which in our experiments are images.
From now on, we are not dealing with raw images, but their descriptors, as
presented in Section 4.1.

Our method encloses images in intervals according to the similarity of the
environment regions. Figure 3 illustrates the intervals creation, considering the
presented images came from the reference set. Each of them has a label from
the set O according to their order. Supposing the images labeled from 0 to 2
respect the four conditions presented in Section 3.2, the method creates the
interval [0; 2] to represent that region of the environment. Notice that while
the robot is collecting the images, the intervals set is updated.

The reference set of images is the robot’s known world. Our method rep-
resents it as a set of intervals by adapting the four conditions presented
previously to the given scenario as follows.
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(a) Original image (b) Splitting image on 4 patches

(c) Describing patches

(d) Concatenating the patch descriptors into one

Fig. 2: Steps to describe an image.

Fig. 3: Generating intervals to represent the robot observations.

In agreement with the first condition, all images to be included in an
interval are from the reference set. According to the second condition, an
incoming image can be represented by an interval [x] only when the similarity
between it and the interval anchor A[x] is higher than a threshold θ1α. This
similarity is measured based on the hamming distance between the descrip-
tors generated by the anchor and the incoming image. We consider the first
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image represented by the interval as A[x], and θ1α as a dynamic value com-
puted during the execution. It represents the average similarity between all
consecutively captured images, except in case of the difference is not signifi-
cant. By not significant, we mean similarities higher than 90%, i.e., there is
a strong indication that the robot is not moving. The method updates the
average similarity during each new iteration and uses this value to represent
the θ1α threshold.

The images from the reference and query sets are sorted based on the
order they were taken. This information helps the method to keep the third
and fourth conditions valid. The third condition is used to limit the interval
width, which can be unlimited by not forcing a threshold θ2ρ lower than the
reference set size. In practice, this means that to a dataset with 100 images and
θ2ρ = 100 if the images have high similarity among all of them, our method may
create just one interval [0; 99] to represent it. This may happen in long corridors
that look the same at all points of the path, which is an open challenge that
we currently do not address.

Finally, about the fourth condition, each new image is either part of the
last created interval or the first image of the new one. After an interval [x] is
created, it is necessary to generate a global representation of the information
contained by it, called G[x]. It is possible to use the anchor A[x] to represent
the interval information. However, we propose a new structure that takes into
account all elements of the interval.

Figure 4 shows an example of how the new structure is created. The inter-
vals in Figure 4 are only examples to facilitate the computation. Considering
an interval [x] = [7; 10] that is associated with four images, thus, to four de-
scriptors. The global representation of [x], denoted by G[x] = (GM[x], G

F
[x]), is

a pair of vectors representing majority and frequency. Where the first vector
GM[x] (majority) represents the most frequent values to each position in the

interval’s descriptors and the second one GF[x] (frequency) stores the frequency
that they appear. In the example, the first position of all descriptor vectors
is 0, so the first position of the vectors of GM[x] and GF[x] are 0 and 1. Zero
because it is the most frequent among the first positions of the descriptor vec-
tors, and one represents a frequency of 100%. In the case of a tie, the method
uses 0 associated with a frequency of 50%, as seen in the second position of
the vectors.

Interval [x]

[x] = [7; 10]

Descriptors in [x]

[0 1 0 0 ... 1 0 1 0]

[0 0 1 0 ... 1 0 0 0]

[0 0 1 0 ... 1 0 0 0]

[0 1 1 1 ... 1 1 1 0]

Global representation G[x]

GM
[x]

= [0 0 1 0 ... 1 0 0 0]

GF
[x]

= [1 0.5 0.75 0.75 ... 1 0.75 0.5 1]

Fig. 4: Representing an interval [x] through G[x].
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Based on all these concepts, the method transforms the reference set into
a set of intervals. This set is essential to the searching for matches presented
in the next section.

4.3 Searching for matches

Streams of incoming images are the only information we have, i.e., no proprio-
ceptive sensors are available. Thus, we match known images (reference set) to
the new ones collected during the robot navigation (query set). Even though
we do not use or compute the robot orientation, our method can deal with
a slight orientation change when searching for matches. Figure 5 presents a
flow scheme of the proposed method. Until now, we described the first part
(light green), dealing with the reference set of images and creating the set
intervals that represent the known world. From now on, we will focus on the
second part (light blue) dealing with the query images and the process of find-
ing their correspondent matching on the reference set. Note that the image
description process is common to both part, and the set of intervals created
in the first part is used in the second part.

Fig. 5: Method flow scheme.

After receiving and describing an image from the query set the method
executes five steps. First, it defines if the robot was moving or not and stores
this information for later use. Second, it searches on the set of intervals (pre-
sented in Section 4.2) for the best match, which are also stored to be used in
the next steps. On the third step, the method uses the computed motion set,
based on the first step to propagate the set of best intervals of each iteration.
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The fourth step is in charge of finding a matching region to the query image
among the propagated intervals. Based on this region, the fifth step defines an
image matching from the reference set to the query image. More details about
each of these steps are presented as follows.

4.3.1 Step one, robot motion detection

The information we use about the robot motion is binary, i.e., we assume
either the robot is moving (1) or not (0). We keep the information about the
average similarity between consecutive images from the query set. We say that
the robot is not moving if the last four iterations do not present a similarity
between the images lower than 95% of the computed average. Summing up,
not detecting significant changes on the robot sensing is an indication that the
robot is not moving. The method stores the motion information in a set M.
The maximum size of this set is defined by w-1. In the case of |M| = w−1 and
new information needs to be stored, the oldest information in M is discarded.

4.3.2 Step two, finding interval best matches

Our method uses the descriptor of the current query image to search for k
interval nearest neighbors. These intervals represent regions of the environment
that are most probably to contain the place where the query image was taken,
Figure 6 illustrates this process supposing k = 4. Given a observation u, the
four nearest neighbors more similar to u are [a], [b], [c] and [d].

u

[a] [b] [c] [d]

Current observation

Known world of intervals

Fig. 6: Selecting the k intervals most similar to the current observation.

The method creates a set V = {v1, v2, ..., vk} of nearest neighbors at each
iteration. These sets are kept in a set Y = {V1,V2, ...,Vw}, which has the
maximum size limited by w. If |Y| = w, when new information needs to be
stored, the oldest V ∈ Y is discarded. This information will be essential to
compute the next steps.

As cited above, the method needs to be able to compare intervals. So we
need to define a similarity function β to determine how similar an interval is
from an upcoming observation:
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β : U× U→ [0; 1].

Notice that to perform this comparison it is necessary to transform the
upcoming observation into a punctual interval. In this case, the global repre-
sentation of the created interval will be based on the descriptor of the only
observation it contains. Then, the global representation of this interval may
be compared with the global representation of any other interval. For our
proposal, we define the function β as follows:

β = η
∑
i

r(i)

where η is a normalizing constant and r is given by:

r(i) =

{
GF[x](i) +GF[y](i) if GM[x](i) = GM[y](i),

2−GF[x](i)−G
F
[y](i) Otherwise.

An example of how to compute the function β may be seen in Figures 7
and 8. Considering two intervals [x] and [y] represented by G[x] and G[y] re-
spectively. Our method sweeps through the first vector (majority), comparing
the values of each index. If the values of an index are equal, the method sums
their frequencies’ values (Figure 7).

Majority Frequency

[ 0 0 1 0 1 ] [ 1 0.5 0.75 0.75 1 ]

[ 0 1 0 0 0 ] [ 1 1 1 1 1 ]

1 + 1

[ 2 0.5 0.25 1.75 0 ]

G[x]

G[y]

Fig. 7: Computing β. Case 1: entries with the same value.

On the other hand, if the values in an index are different, the method sums
the result of 1 minus the frequency (highlighted in Figure 8). So, even though
being different, their frequencies contribute to the computation.

Finally, the function sums and normalizes these partial results. Thus, the
similarity value between [x] and [y] of the presented example is

2 + 0.5 + 0.25 + 1.75 + 0

10
= 0.45.
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Majority Frequency

[ 0 0 1 0 1 ] [ 1 0.5 0.75 0.75 1 ]

[ 0 1 0 0 0 ] [ 1 1 1 1 1 ]

(1 − 0.5) + (1 − 1)

[ 2 0.5 0.25 1.75 0 ]

G[x]

G[y]

Fig. 8: Computing β. Case 2: entries with different values.

4.3.3 Step three, robot motion propagation

In this step, each interval in Y is added with a given δ, computed according to
values in set M. The resulting intervals are included in a set C of candidates
to the current iteration, as shown below. For all Vi ∈ Y,

C = C
⋃{

[x] + δi | [x] ∈ Vi
}

where

δi =

|M|∑
j=i

mj .

Notice that [x] encloses references to the order/index of the images. Cre-
ating the set C is an important step to incorporate to the intervals the robot
motion. Figure 9 presents an example of how to propagate the intervals in
Y = {V1,V2,V3,V4}, considering w = 4, k = 2 and a set M = {0, 1, 1}. At
each iteration (represented by gray rectangles), k intervals are selected and
propagated according to the robot motion. Iteration t − 3 do not consider
previous candidates since w = 4. But a pair of candidates V1 is selected. At
iteration t − 2, no robot motion was detected, and two new candidates are
selected. From iteration t− 2 to iteration t− 1, the robot moves and the pre-
vious selected candidates (V1 and V2) are moved accordingly. Still at t − 1,
new candidates are selected. At iteration t, all candidates (V1, V2, and V3)
are moved given the detected robot motion, and new candidates are selected.
Thus, the method creates the current set C, represented in Figure 10.

4.3.4 Step four, finding a matching interval

Now we need to find the most similar interval to the current image query.
Assuming that set C contains the solution, it is the input to the q-relaxed in-
tersection method presented in Section 3, where the q parameter is the smallest
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no motion detected

t

t-1

t-2

t-3

motion detected

motion detected

Selecting V4

Selecting V3

Selecting V2

Selecting V1

No intervals previously selected

Fig. 9: Intervals propagation to create set C.

Set C

Fig. 10: Intervals in set C at the end of iteration t.

value that returns a non-empty solution. The result of the relaxed intersection
defines the current matching interval.

4.3.5 Step five, finding image matching

After the q-relaxed intersection process, the method has an matching inter-
val that represents a region of the environment. Looking for a more precise
result, our method sweeps the images represented by the interval computing
the similarity between each of them and the query image using the α func-
tion. The weighted average, based on these similarities, defines the final image
matching.
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5 Experiments

This section presents and discusses the experiments performed. It includes the
presentation of the datasets, the methods parametrization, and a comparison
between our method and OpenSeqSLAM2.0 [30].

5.1 Datasets

We selected three public datasets which present environment appearance changes
and slight changes in point-of-view to evaluate our approach. They also have
groundtruth information available, and all images are originally sorted based
on the order they were collected.

1. GPW – Garden Points Walking dataset [10], from the Queensland Univer-
sity of Technology, Brisbane, Australia. The dataset has three traversals.
The images were collected at three different times using a handheld camera.
Figure 11 presents samples of each traversal, each column shows a different
place, first and second lines show images collected under sunlight, holding
the camera in the right and left hand, respectively. The third line shows im-
ages collected at night, holding the camera in the right hand. Each traversal
contains 200 images. For simplification purposes, we will call the traversals
GPW-DR (day-right), GPW-DL (day-left), and GPW-NR (night-right).

Fig. 11: GPW dataset sample. Traversal GPW-DR on the first line, GPW-DL
on the second, and GPW-NR on the third.

2. UofA – University of Alberta dataset [27], from the University of Alberta,
Edmonton, Canada. The dataset was collected at two different times of the
day using a Husky robot. One traversal was made under sunlight and the
other during the evening. Thus, we have two sets of 645 images from the
same places under different conditions. Samples of the sets are presented
in Figure 12, four distinct places (columns) at two different times of the
day (lines). For simplification purposes, we will call the sets generated on
each traversal UofA-D (day) and UofA-E (evening).
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Fig. 12: UofA dataset. Traversal UofA-D on the first line and UofA-E on the
second. Each column shows a different place.

3. NORD – Nordland dataset [29] contains four videos of a 728km train ride
in northern Norway. Each video was taken in a different season, capturing
the appearance differences over time from the same point of view. In our
experiments, we use a sample of the winter, summer, and spring traversals,
1 frame every 10 seconds removing the parts with no perceptual movement.
After sampling, each traversal contains 3052 images. Figure 13 presents
some of these images, where each column shows a different place and each
line one traversal, winter, spring, and summer.

Fig. 13: Nordland dataset sample. Traversal winter on the first line, spring on
the second, and summer on the third.

Figure 14 shows the heatmaps comparing the images from the selected
datasets using the LDB descriptor and hamming distance. The grayscale rep-
resents the similarity level between the traversals, where the darkest points
represent higher similarities than the light ones. The groundtruth in all cases
is a straight line from the top left to the bottom right.

Figure 14a shows the heatmap based on the GPW-DR as a reference and
the GPW-NR as a query. Figure 14b presents the heatmap of the distances
between the GPW-DL and GPW-NR. In both heatmaps, we can see dark
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(a) GPW-DR vs. GPW-NR (b) GPW-DL vs. GPW-NR

(c) UofA-D vs. UofA-E (d) Nordland - Spring vs. Winter

Fig. 14: Heatmap of descriptors distance.

points on the top-right and bottom-left corners (highlighted in red squares).
Despite the high similarity, those regions are not true matches.

The heatmap in Figure 14c presents the distances between the UofA-D
and UofA-E images. The correct matching diagonal is easier to perceive here
than on the other heatmaps. We can see that it is not simple to detect the
correct matches based only on the descriptors’ similarities, all maps present
points with high similarity out of the expected region. Gaps in the groundtruth
diagonal are also common. Even if the images are from approximately the same
place and angle, they may present low similarities. Possible causes are the new
shadows from illumination changes or partial occlusions due to people and
vehicles dynamism on the environment.

Figure 14d shows the heatmap of spring vs. winter traversals from the
NORD dataset. Despite the extreme perceptual differences due to the natural
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changes between seasons, we can see an almost perfect diagonal where is the
groundtruth. However, it is noticeable that lots of regions over the heatmap
indicate high similarities in erroneous places.

5.2 Parametrization

We compare the proposed approach to OpenSeqSLAM2.0 [30] results. Usually,
the method’s parameters have a high impact on the results. Based on this, and
trying to find the best results of OpenSeqSLAM2.0 using the aforementioned
datasets, we varied some parameters and followed the guidelines presented
in the original paper. Their main parameters are Rwindow, ds, searchMethod,
and matchingMethod. The Rwindow value was fixed around 2% of the traversal
size as recommended by the authors, i.e., 13 to the UofA and 4 to GPW
and 61 to Nordland. The original paper shows that the options to set the
matchingMethod have similar performance, so we fixed it to use the score
thresholding method.

We tested some variation of the parameters searchMethod and ds accord-
ing to the limits presented on the origin paper. The searchMethod parameter
is strongly related to the dataset, we tested the cone and the trajectory-based
search. More information about each one can be seen in [30].

The ds parameter affects the method performance and may increase the
execution time. The authors tested ds values between 2 and 40, and their re-
sults suggested that the higher the ds values, the better is the produced result.
However, using high values as ds will deprecate the method time performance.
Given the number of images of the Nordland dataset traversals, we kept the
ds = 20 as suggested by Talbot et al. [30].
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Fig. 15: OpenSeqSLAM2.0 test runs to define best configurations. Parameters
on Table 2.
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Figure 15 shows the precision-recall (PR) of the main test runs we per-
formed with OpenSeqSLAM2.0 using GPW and UofA datasets. The difference
among them are the searchMethod used and the values for the parameter ds,
Table 2 summarizes it. As expected, the higher the ds, the better were the
results. So we use ds = 100 despite the performance dropping. Otherwise, the
OpenSeqSLAM2.0 did not generate competitive results to some of the tested
datasets. It is worth to notice that the GPW (Figure 15a) obtain better results
using the cone search method and the UofA (Figure 15b) using the trajectory
search method. Excepts for the GPW-DL vs. GPW-DR, where all precision-
recall curves presented pour results and the best one were obtained using the
trajectory search method, more information can be seen in the next section.

Table 2: OpenSeqSLAM2.0 test runs parameters from Figure 15.

Search Method ds
— test run 1 trajectory 40
— test run 2 cone 40
— test run 3 trajectory 100
— test run 4 cone 100

Our method has two main parameters that need to be defined, the num-
ber of interval candidates per iteration (k), and the window size (w) of past
iterations taken into account to compute the current matching. So, we present
as follows some variation of our main parameters and their impact on the
obtained result.

Figure 16a shows the effect in the precision-recall curves of different values
for k. The experiments were done using 2, 4, 6, and 10 as values to k. This
parameter depends on the quality of the image descriptor. Let’s consider one
observation and a list of candidates to match with this observation according
to their similarity. When we sort this list by the computed similarity score,
the best match may not be the correct one. This is why our method considers
a set (size k) of best matches and not only the best one. We can see in Figure
16a that the highest k does not present the best result. This happens because
computing more intervals also include more uncertainties.

Figure 16b shows the effect in the precision-recall curves of varying w. This
parameter defines how many past iterations will be considered to compute
the current iteration. The method strategy is to choose intervals based on
how many times they were selected as good matching. A sequence of good
matches indicates that those are possibly the best match. However, as well as
the k parameter, the definition of a high value to w can improve the results,
taking into account more iterations, or include more uncertainties into the
computation.

The tests using the UofA dataset both day vs. evening and evening vs.
day used the same parameters. Despite the light condition changes, there was
a minimal change in point-of-view. Thus, both variations were able to use
the same values to obtain the results presented in Section 5.3. This situation
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(a) k parameter variation using GPW dataset.
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(b) w parameter variation using UofA dataset.

Fig. 16: Precision-recall behavior of the proposed method parameter variation.

was different using the GPW dataset. The changes in point-of-view associated
with the light conditions seem to require a more expensive combination, raising
both the values of past iterations considered and the number of candidates on
each iteration.

In general, we observe that using a w value around 100 generated compet-
itive results. It is worth highlighting that our method analyses past iterations.
Thus the first iterations are less reliable given the little amount of information
collected.

About the k parameter, we note that using only one candidate is not
enough. This parameter is strongly affected by the dataset. In the case of
similar regions distributed along the robot path, most of them must be repre-
sented by some candidate, thus, increasing the chances of choosing the correct
matching as fast as possible when a distinguishable region appears.

Besides the behavior presented in Figures 16a and 16b, these parameters
also affect the method performance. We need to keep in mind that all selected
interval during the defined window will be processed. This means kw intervals
being processed during each iteration. Thus, we need to consider the time
necessary to do it. A promising path to follow in future works is to search for
possible adjusts on the values of w and k in run time. Table 3 presents the
parameters values used during the experiments.

5.3 Comparison

In this section, we present the results obtained by our method and their com-
parison with the OpenSeqSLAM2.0. The method’s parameters are presented in
Table 3. Figure 17 shows the matches found using UofA dataset for our method
(left) and OpenSeqSLAM2.0 (right). The red dots represent the ground truth,
and the blue dots are the selected matches. The dataset has two sets of images
from different traversals, which we tested as reference and query using both
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Table 3: Parameters.

UofA
GPW

NORD
DR vs. NR DL vs. NR
Ours

w 100 100 200 100
k 6 6 20 6

OpenSeqSLAM2.0
Rwindow 13 4 4 61
ds 100 100 100 20
searchMethod trajectory cone trajectory trajectory
matchingMethod thresholding
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(b) OpenSeqSLAM2.0: UofA-D vs. UofA-E
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(d) OpenSeqSLAM2.0: UofA-E vs. UofA-D

Fig. 17: UofA dataset. Groundtruth and matches are depicted in red and blue,
respectively.

methods. The first line presents the day images as reference and the evening
images as query, and the opposite can be seen on the second line.

Despite the changes between the first and second trajectories, both meth-
ods show fitting results, i.e., an almost perfect line over the groundtruth. We
can see a lack of matches at the graphics beginning (top-left) and ending
(bottom-right) when using the OpenSeqSLAM2.0 (Figures 17b and 17d). This
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Fig. 18: Precision-recall comparison between OpenSeqSLAM2.0 e our method
using UofA dataset.

is caused by the way the method uses the ds parameter. When ds = 100, it is
not able to give the first and last 50 matches.

Figure 18 presents the precision-recall curve of our method and OpenSe-
qSLAM2.0 using the UofA dataset. On the left (Figure 18a) are the curves
using UofA-D vs. UofA-E traversals. Our method achieved the perfect score
with a 100% of recall at 100% of precision. The OpenSeqSLAM2.0 presented
82% of recall at 100% of precision. On the right (Figure 18b) are presented
the curves using UofA-E vs. daUofA-D traversals. OpenSeqSLAM2.0 shows a
68% of recall at 100% of precision, while our method kept the total precision
at 96%.

Figure 19 shows the matches obtained by our method (left) and OpenSeqS-
LAM2.0 (right) using GPW dataset. The first line presents the GPW-DR vs.
GPW-NR, and the second line presents the GPW-DL vs. GPW-NR. The red
dots represent the groundtruth, and the blue dots are the selected matches.
GPW is a challenging dataset, one of the sets was taken using the night mode
generating images with differences such as color scale, shadows, and light re-
flection. Besides, using the GPW-DL vs. GPW-NR we also deal with changes
in point-of-view. Considering Figure 19, we can see that our method found
more matches closer to the groundtruth than OpenSeqSLAM2.0.

The precision-recall curves using GPW dataset are presented in Figure 20.
Both methods obtained worst results than the results using the UofA dataset,
this dataset proved to be more challenging. Considering the GPW-DR vs.
GPW-NR our method presented 30% of recall at 100% of precision, the same
result obtained by OpenSeqSLAM2.0. However, our method kept the precision
higher than 85% until the end. Using the GPW-DL vs. GPW-NR our method
presented 23% of recall at 100% of precision, OpenSeqSLAM2.0 achieves its
higher peak at 45% of precision.

Figure 21 presents the matches of the experiment using the Nordland
dataset. Groundtruth and matches are depicted in red and blue, respectively.
In the first line, we can see the results using the spring and winter traversals.
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(d) OpenSeqSLAM2.0: DL vs. NR

Fig. 19: GPW dataset. Groundtruth and matches are depicted in red and blue,
respectively.
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Fig. 20: Precision-recall comparison between OpenSeqSLAM2.0 e our method
using GPW dataset.
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And in the second line are the summer and winter traversals. Both methods are
most of the time following the groundtruth. Despite some incorrect matches,
the general result is promising, as we can see on the PR curves in Figure 22,
where both experiments presented PR curves with high precision values.

Figure 22a presents the PR curves of our method and OpenSeqSLAM2.0
using the spring vs. winter traversals. Our method shows a 90% of recall at
100% of precision and keeps more than 99% of precision until the end. OpenSe-
qSLAM2.0 shows 20% of recall at 100% of precision, keeping the precision
higher than 99% until 79% of recall too.

The summer vs. winter PR curves, in Figure 22b, shows our method reach-
ing 52% of recall at 100% of precision, but keeping the precision higher than
99% until 79% of recall. Besides, it was never below 90% of precision. In com-
parison, the OpenSeqSLAM2.0 shows a 50% of recall at 100% of precision and
keeps more than 99% of precision until 85% of recall.
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(d) OpenSeqSLAM2.0: Summer vs. Winter

Fig. 21: Nordland dataset. Groundtruth and matches are depicted in red and
blue, respectively.
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Fig. 22: Precision-recall comparison between OpenSeqSLAM2.0 e our method
using Nordland dataset.

5.4 Computational cost

The computational cost of visual place recognition methods may limit their
suitability for some applications. The main issue of our approach in this regard
is to define the size of the set of intervals to be processed in each iteration.
This size is defined by the input parameters k and w discussed on Section 5.2,
i.e., kw.

Table 4 presents a high level comparison of the time spent to run the dif-
ferent configurations presented on Section 5.2. The computer used to perform
all experiments was a laptop with 8GRAM and an Intel Core i7 processor.
About our method, the time presented includes the process of loading the pre-
computed images descriptors. It does not take into account the image loading
process.

We use the OpenSeqSLAM2.0 public code and include a timer starting
exactly before calling the OpenSeqSLAMRun() and stopping the timer right
after to define the time spent by the method. It does not include the loading
configuration. Computing the difference matrix and the processes associated
with it are huge time-consuming for OpenSeqSLAM. As aforementioned, we
use a considerably higher ds parameter to improve the results. Thus, a drop-
ping performance is expected.

Table 4: Approximate time spent running (mm:ss)

GPW-DR vs. GPW-NR GPW-DL vs. GPW-NR UofA Nordland
Ours 00:03 00:04 00:22 12:18

OpenSeqSLAM2.0 00:52 00:41 15:25 31:14
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Taking everything into account, we can see that the proposed approach
is fast, considering the values in Table 4, and presents competitive results as
shown in the experiments on Section 5.3.

6 Conclusions

We propose a visual place recognition method inspired by interval theory
using a monocular camera. The already existing interval approaches for the
robotics problem uses intervals to represent a measurement anchored in the
robot workspace. The novelty of our method is to model the known world as
a set of intervals not anchored in the workspace. Apart from that, it relies on
a relaxed set of constraints based on the search of nearest neighbors from past
iterations.

The method shows a high success rate finding matches even in datasets
with significant perceptual changes. We optimize the search for matches by
computing many steps based purely on the interval information, i.e., using
the order in which the observations were taken, without image comparison.
Furthermore, we presented a different way to use LDB as a global descriptor,
which enhanced the image retrieval rate.

The tested datasets provide one image per second, and our method is ca-
pable of producing a matching result in much less time in an average computer
(Intel Core i7 - 8GiB RAM). Our approach obtained, in few seconds, ≈ 30%
of recall at 100% of precision, keeping the precision higher than 80% until the
maximum recall using a challenging dataset GPW-DR vs. GPW-NR. Besides,
in a more favorable dataset (UofA) it was able to provide a 100% recall at
100% of precision.

Nordland dataset presents the chance of performing a long term visual
place recognition. It is a widely diffused dataset that contains significant visual
changes among its traversals. Our method was able to achieve 90% of recall at
100% of precision and keeps more than 99% of precision until the maximum
recall using the spring vs. winter traversals.

Besides, our approach does not use information corresponding to the future
of the current query to compute a match. These indicate the potential for
online operation tests.

Also, as future work, we intend to improve the motion estimation to work
with datasets with high variability in speed. Another enhancement would be to
calibrate the method parameters during the execution, using the accumulated
information to define the amount of processing necessary to match each query.
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