Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Distributed Competitive Decision Making Using Multi-Armed Bandit Algorithms

Mahmoud Almasri Ali Mansour 1 Christophe Moy 2 Ammar Assoum 3 Denis Le Jeune 1 Christophe Osswald 4
1 Lab-STICC_ENSTAB_CACS_COM
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
4 Lab-STICC_ENSTAB_CID_DECIDE
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (UMR 3192), STIC - Pôle STIC [Brest], Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : This paper tackles the problem of Opportunistic Spectrum Access (OSA) in the Cognitive Radio (CR). The main challenge of a Secondary User (SU) in OSA is to learn the availability of existing channels in order to select and access the one with the highest vacancy probability. To reach this goal, we propose a novel Multi-Armed Bandit (MAB) algorithm called ϵ-UCB in order to enhance the spectrum learning of a SU and decrease the regret, i.e. the loss of reward by the selection of worst channels. We corroborate with simulations that the regret of the proposed algorithm has a logarithmic behavior. The last statement means that within a finite number of time slots, the SU can estimate the vacancy probability of targeted channels in order to select the best one for transmitting. Hereinafter, we extend ϵ-UCB to consider multiple priority users, where a SU can selfishly estimate and access the channels according to his prior rank. The simulation results show the superiority of the proposed algorithms for a single or multi-user cases compared to the existing MAB algorithms.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-ensta-bretagne.archives-ouvertes.fr/hal-03151936
Contributeur : Marie Briec <>
Soumis le : lundi 15 mars 2021 - 10:33:09
Dernière modification le : lundi 12 avril 2021 - 10:29:47

Fichier

 Accès restreint
Fichier visible le : 2021-09-15

Connectez-vous pour demander l'accès au fichier

Identifiants

Citation

Mahmoud Almasri, Ali Mansour, Christophe Moy, Ammar Assoum, Denis Le Jeune, et al.. Distributed Competitive Decision Making Using Multi-Armed Bandit Algorithms. Wireless Personal Communications, Springer Verlag, In press, ⟨10.1007/s11277-020-08064-w⟩. ⟨hal-03151936⟩

Partager

Métriques

Consultations de la notice

62