Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

One-Class based learning for Hybrid Spectrum Sensing in Cognitive Radio

Mohammad Jaber 1 Abbass Nasser 1 Nour Charara 1 Ali Mansour 2 Koffi-Clément Yao 3
2 Lab-STICC_ENSTAB_CACS_COM
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
3 Lab-STICC_UBO_CACS_COM
IBNM - Institut Brestois du Numérique et des Mathématiques, Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : The main aim of the Spectrum Sensing (SS) in a Cognitive Radio system is to distinguish between the binary hypotheses H0: Primary User (PU) is absent and H1: PU is active. In this paper, Machine Learning (ML)-based hybrid Spectrum Sensing (SS) scheme is proposed. The scattering of the Test Statistics (TSs) of two detectors is used in the learning and prediction phases. As the SS decision is binary, the proposed scheme requires the learning of only the boundaries of H0-class in order to make a decision on the PU status: active or idle. Thus, a set of data generated under H0 hypothesis is used to train the detection system. Accordingly, unlike the existing ML-based schemes of the literature, no PU statistical parameters are required. In order to discriminate between H0-class and elsewhere, we used a one-class classification approach that is inspired by the Isolation Forest algorithm. Extensive simulations are done in order to investigate the efficiency of such hybrid SS and the impact of the novelty detection model parameters on the detection performance. Indeed, these simulations corroborate the efficiency of the proposed one-class learning of the hybrid SS system.
Liste complète des métadonnées

https://hal-ensta-bretagne.archives-ouvertes.fr/hal-03127391
Contributeur : Marie Briec <>
Soumis le : lundi 1 février 2021 - 14:52:56
Dernière modification le : mercredi 21 avril 2021 - 11:18:02

Identifiants

Citation

Mohammad Jaber, Abbass Nasser, Nour Charara, Ali Mansour, Koffi-Clément Yao. One-Class based learning for Hybrid Spectrum Sensing in Cognitive Radio. 2020 28th European Signal Processing Conference (EUSIPCO), Jan 2021, Amsterdam, Netherlands. pp.1683-1686, ⟨10.23919/Eusipco47968.2020.9287326⟩. ⟨hal-03127391⟩

Partager

Métriques

Consultations de la notice

55