Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A Deep Neural Network Model for Hybrid Spectrum Sensing in Cognitive Radio

Abbass Nasser 1 Mohamad Chaitou 2 Ali Mansour 3 Koffi-Clément Yao 4 Hussein Charara 2
3 Lab-STICC_ENSTAB_CACS_COM
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
4 Lab-STICC_UBO_CACS_COM
IBNM - Institut Brestois du Numérique et des Mathématiques, Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : Spectrum sensing (SS) is an essential task of the secondary user (SU) in a cognitive radio system. SS monitors the primary user (PU) activity in order to avoid any collision with SU, as the latter should be silent when PU is active on a given channel. Hybrid SS (HSS) is one of the powerful methods used to monitor PU activity. It consists of using different detectors together to make a final decision on the PU status. In this manuscript, artificial neural networks (ANN) are used to perform HSS. Since our data is composed from the test statistics (TSs) of several detectors, thus it can be modeled as tabular. Fully connected neural networks become the most suitable ANN model. We applied cutting-edge techniques in the field of deep learning in order to get the best possible accurate neural network model in our application. These techniques boil down to: embedding, regularization, batch normalization and smart learning rate selection. With the help TSs related to several detectors, ANN is trained to distinguish between two hypotheses, H-0: PU is absent and H-1: PU is active. Numerical results show the effectiveness of our proposed ANN-based HSS, as it outperforms the classical ANN-based energy detector and proves its capability to detect PU signal at very low SNR.
Liste complète des métadonnées

https://hal-ensta-bretagne.archives-ouvertes.fr/hal-03127020
Contributeur : Marie Briec <>
Soumis le : lundi 8 février 2021 - 09:05:40
Dernière modification le : mercredi 21 avril 2021 - 11:18:02

Fichier

 Accès restreint
Fichier visible le : 2022-02-08

Connectez-vous pour demander l'accès au fichier

Identifiants

Citation

Abbass Nasser, Mohamad Chaitou, Ali Mansour, Koffi-Clément Yao, Hussein Charara. A Deep Neural Network Model for Hybrid Spectrum Sensing in Cognitive Radio. Wireless Personal Communications, Springer Verlag, 2021, ⟨10.1007/s11277-020-08013-7⟩. ⟨hal-03127020⟩

Partager

Métriques

Consultations de la notice

81