Abstract : This paper deals with the localization problem of a robot in an environment made of indistinguishable landmarks, and assuming the initial position of the vehicle is unknown. This scenario is typically encountered in underwater applications for which landmarks such as rocks all look alike. Furthermore, the position of the robot may be lost during a diving phase, which obliges us to consider unknown initial position. We propose a deterministic approach to solve simultaneously the problems of data association and state estimation, without combinatorial explosion. The efficiency of the method is shown on an actual experiment involving an underwater robot and sonar data.
https://hal.archives-ouvertes.fr/hal-02904517
Contributeur : Simon Rohou <>
Soumis le : mercredi 22 juillet 2020 - 11:59:51 Dernière modification le : vendredi 9 avril 2021 - 16:59:31 Archivage à long terme le : : mardi 1 décembre 2020 - 04:20:23
Simon Rohou, Benoît Desrochers, Luc Jaulin. Set-membership state estimation by solving data association. IEEE International Conference on Robotics and Automation (ICRA), May 2020, Paris, France. ⟨hal-02904517⟩