Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A Hadoop-Based Platform for Patient Classification and Disease Diagnosis in Healthcare Applications

Hassan Harb 1, 2, * Hussein Mroue 3, 4 Ali Mansour 5 Abbass Nasser 1, 5 Eduardo Motta Cruz 3, 4
* Auteur correspondant
2 Lab-STICC_UBO_CACS_COM
IBNM - Institut Brestois du Numérique et des Mathématiques, Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
5 Lab-STICC_ENSTAB_CACS_COM
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : Nowadays, the increasing number of patients accompanied with the emergence of new symptoms and diseases makes heath monitoring and assessment a complicated task for medical staff and hospitals. Indeed, the processing of big and heterogeneous data collected by biomedical sensors along with the need of patients' classification and disease diagnosis become major challenges for several health-based sensing applications. Thus, the combination between remote sensing devices and the big data technologies have been proven as an efficient and low cost solution for healthcare applications. In this paper, we propose a robust big data analytics platform for real time patient monitoring and decision making to help both hospital and medical staff. The proposed platform relies on big data technologies and data analysis techniques and consists of four layers: real time patient monitoring, real time decision and data storage, patient classification and disease diagnosis, and data retrieval and visualization. To evaluate the performance of our platform, we implemented our platform based on the Hadoop ecosystem and we applied the proposed algorithms over real health data. The obtained results show the effectiveness of our platform in terms of efficiently performing patient classification and disease diagnosis in healthcare applications.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02552069
Contributeur : Laurent Jonchère <>
Soumis le : lundi 28 septembre 2020 - 16:15:42
Dernière modification le : lundi 18 janvier 2021 - 11:34:08
Archivage à long terme le : : mardi 29 décembre 2020 - 18:53:43

Fichier

sensors-20-01931.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Hassan Harb, Hussein Mroue, Ali Mansour, Abbass Nasser, Eduardo Motta Cruz. A Hadoop-Based Platform for Patient Classification and Disease Diagnosis in Healthcare Applications. Sensors (basel, Switzerland), 2020, Special Issue Sensor and Systems Evaluation for Telemedicine and eHealth, 20 (7), pp.1931-1 - 1931-20. ⟨10.3390/s20071931⟩. ⟨hal-02552069⟩

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

75