Kullback–Leibler Divergence Between Multivariate Generalized Gaussian Distributions

Nizar Bouhlel 1 Ali Dziri 2
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : The Kullback-Leibler divergence (KLD) between two multivariate generalized Gaussian distributions (MGGDs) is a fundamental tool in many signal and image processing applications. Until now, the KLD of MGGDs has no known explicit form, and it is in practice either estimated using expensive Monte-Carlo stochastic integration or approximated. The main contribution of this letter is to present a closed-form expression of the KLD between two zero-mean MGGDs. Depending on the Lauricella series, a simple way of calculating numerically the KLD is exposed. Finally, we show that the approximation of the KLD by Monte-Carlo sampling converges to its theoretical value when the number of samples goes to the infinity.
Liste complète des métadonnées

Contributeur : Claude Morvan <>
Soumis le : jeudi 3 octobre 2019 - 16:13:56
Dernière modification le : mercredi 22 janvier 2020 - 15:00:03



Nizar Bouhlel, Ali Dziri. Kullback–Leibler Divergence Between Multivariate Generalized Gaussian Distributions. IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2019, 26 (7), pp.1021-1025. ⟨10.1109/LSP.2019.2915000⟩. ⟨hal-02304988⟩



Consultations de la notice