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Abstract

An evaluation of fatigue property determination using numerical simulation
is presented for a variant of the staircase procedure with the reuse of unbroken
specimens. The simulated staircases are analysed with the Maximum Likelihood
Estimation method to obtain the fatigue parameters: the median fatigue limit
and the coefficient of variation. For each condition, 1000 staircases are simulated
and evaluated to obtain a statistical study. The gain on the fatigue scatter
uncertainties with the variant procedure is highlighted. However, an assumption
on the damage accumulation must be stated when reloading specimens up to
their failure. Thus, staircases are simulated with damage consideration.

Keywords: Staircase method, Maximum likelihood estimation, Interval
censoring, Reliability, Weibull model

1. Introduction

Engineering parts are designed to resist fatigue for a certain number of cycles
Nref. In the case of high-cycle fatigue, the design must take into account the
statistical distribution of the fatigue properties of the material for this given
number of cycles. Indeed, in order to obtain the best reliability, the parts are
designed for the highest allowed probability of failure to attain the design life.
The maximum allowable stress is determined with the statistical distribution of
the fatigue properties of the material at Nref cycles (schematically represented
in Fig. 1a). The goal of fatigue test procedures is therefore to characterize this
distribution, thus the median fatigue limit Σ50 and the associated scattering.
The median S-N curve and its dispersion (dotted curves) are also schematically
represented. However, during real fatigue tests, the probabilistic nature is on the
number of cycles performed at given stress amplitudes Σ0, set by the machine
operator (Fig. 1b).
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Several testing strategies can be used, and the staircase (or up-and-down)
method is a very common approach. This procedure was introduced and sta-
tistically analysed by Dixon and Mood in 1948 [1]. The procedure and analysis
are presented in various standards, such as the ASTM [2]. The protocol is sim-
ple: a specimen is tested at a given initial stress amplitude for the specified
number of cycles Nref. If the specimen survives (run-out), the stress amplitude
is increased for the next specimen, likewise it is decreased if the specimen fails.
After testing all the specimens, the Dixon and Mood equations can be applied
to the resulting staircase in order to estimate the median fatigue limit and its
standard deviation for the number of cycles Nref. Because of its simplicity, the
staircase procedure is mainly used in an industrial context. This method is
efficient to estimate the median fatigue limit with few specimens. However the
standard deviation is hardly estimated: the Dixon and Mood condition on the
sample size (around 50 specimens for the determination of the standard devi-
ation using the Dixon-Mood analysis) is rarely fulfilled. In order to increase
the reliability of the parts, it is important to quantify the uncertainies of this
analysis to optimise the fatigue property determination.

Several publications and investigations have been already conducted to quan-
tify the uncertainties as to the standard deviation and to improve the reliability
of its determination, especially for small sample sizes [3, 4]. More recently,
numerical simulations have been performed in order to evaluate the staircase
procedure with the Dixon-Mood analysis [5, 6, 7]. This method is a conve-
nient approximation for the maximum likelihood estimation (MLE), applied to
this particular staircase procedure with a normal distribution. Thus, some au-
thors directly used the MLE in order to quantify the reliability of the staircase
method in different configurations (e.g. influence of the step size or of the initial
stress level) [7, 8, 9, 10]. Other studies focus on the comparison of evaluation
techniques for the classic procedure [7, 11, 12] or on the development of new
staircase procedures and evaluation techniques [10].

In this paper, a simulation-based investigation is performed to evaluate a
new procedure with the reuse of unbroken specimens. The goals are to pro-
pose fatigue determination methods for reloaded specimens and to quantify the
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Fig. 1. Schematic representation of the probabilistic nature of fatigue tests
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Nomenclature

α Scale parameter of the
Weibull model

β Shape parameter of the
Weibull model

Cp Load step coefficient (stair-
case procedure)

Cv Coefficient of variation (ma-
terial property)

Cbd Slope coefficient used for the
fatigue strength calculation
(fatigue analysis procedure)

Cbm Slope coefficient used for the
staircase simulation (mate-
rial property)

Σ0 Stress amplitude during the
procedure

Σ50 Median fatigue limit

σD Randomly selected fatigue
strength

σNref
Allowable stress at the refer-

ence number of cycles

bd Slope of the S-N curve for
the fatigue strength calcula-
tion (fatigue analysis proce-
dure)

bm Slope of the S-N curve for
the staircase simulation (ma-
terial property)

F Cumulative Distribution
Function (CDF)

f Probability Density Func-
tion (PDF)

m Weibull modulus

n Number of specimens in the
sample

Nref Number of cycles defining
the fatigue life

Nr Number of cycles to failure

p Load step in the staircase
procedure

uncertainties of the fatigue distribution parameters with these methods. The
evaluation of the accuracy of a fatigue analysis method is based on two consider-
ations: the median response and the scatter in results. For each condition, 1000
staircases will be simulated and evaluated in order to obtain the distribution
of the fatigue property parameters. The median responses and the scatters in
results can be analysed for the median fatigue limit and for the fatigue scat-
ter parameter, in relation to the procedure (number of specimens, step size...)
and the fatigue determination method (censored data, fatigue strength calcula-
tion...).

The present paper is divided into five parts. The first part of this paper will
focus on the generation of the simulated staircases and their analysis. The sec-
ond part will focus on the influence of the number of specimens per sample on
the fatigue property uncertainties. A comparison between the classic staircase
procedure and the variant with reloaded specimens is then performed. The goal
is to evaluate the possible reduction in uncertainties, as a function of the sample
size. When reloading specimens, possible damage accumulation could affect the
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staircase proceedings. The third part presents the damage consideration in the
staircase simulation in order to perform two different studies. Indeed, two meth-
ods are defined and used to analyse the staircases with reloaded specimens, one
based on censored data (with interval censoring) and the other on the fatigue
strength calculation of each specimen. Consequently, the fourth part presents
a validity domain of the interval censoring method with damage accumulation.
Indeed, this analysis does not take into account the cumulative damage, so a
validity domain should be determined as a function of the material parameters
(initial fatigue scatter and shape of the S-N curve) and the parameter used dur-
ing the staircase procedure (step of the stress amplitude between two levels).
And finally, the fifth part presents the second study on the sensitivity of the pa-
rameter used for the fatigue strength calculation of each specimen with damage
consideration. Then, the different methods are compared and the possibility of
reusing unbroken specimens is examined.

2. Staircase simulation and evaluation technique

For this simulation-based investigation, some hypotheses are required: the
failure of the specimen is supposed to occur from only one failure mechanism,
so the fatigue properties are described with only one distribution. Moreover,
the distribution is assumed to follow a Weibull model, for the simulations and
the evaluation techniques. Usually, this probability distribution is anticipated
when analysing real fatigue tests, the exact shape of the distribution is hard to
evaluate with a small number of specimens. Furthermore, during the simulation
of the staircase, fatigue tests are perfect, meaning that the exact values of stress
amplitude are virtually applied without any noise. With these assumptions,
the uncertainties calculated from the 1000 simulated staircases are idealised.
However, the values still allow the calculation of the possible gain, in perfect
conditions, with the reuse of unbroken specimens in a staircase procedure.

Virtual specimens are generated. A specimen i is only represented by its fa-
tigue strength σDi at the reference number of cycles Nref. The fatigue strengths
are randomly selected from the statistical distribution of the fatigue properties
represented using a Weibull distribution.

The two staircase procedures are then simulated. No cumulative damage
is considered in the first part of the paper. So, the applied stress amplitude
is directly compared to the fatigue strength of the specimen. If the applied
stress amplitude is lower than the randomly selected fatigue strength, the spec-
imen survives at the Nref cycles. Likewise, a failure occurs if the applied stress
amplitude is greater than the fatigue strength.

The simulated staircases are then evaluated using the Maximum Likelihood
Estimation (MLE). It allows the determination of the fatigue parameters, de-
pending on the hypothesis assumed for the fatigue analysis, thus with censored
data or with calculated allowable stresses.
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Fig. 2. Principle of the uncertainties evaluation of the fatigue distribution parameters -
Example for the classic staircase procedure and n = 10 specimens per sample

2.1. Distribution of fatigue properties

With small samples, the choice of the distribution shape has little effect
on the evaluation of the median endurance limit. However, when dealing with
the fatigue scatter and the low failure probabilities, the tail of the probability
density function is an important consideration and the choice of the distribution
shape will strongly affect the results. With a large number of specimens, some
statistical tests are possible in order to evaluate the shape of the distribution.
However, during real fatigue test analysis, where there are often not enough
data, the shape is usually assumed (from experience of other similar material
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or by choice).
One condition of the Dixon and Mood analysis is that the random variable

must be normally distributed. This condition is not really restrictive: transfor-
mation could be applied and therefore other distribution shapes are possible and
already studied. Müller [7] used a log-normal distribution in order to study dif-
ferent evaluation techniques of the staircase procedure (the MLE with censored
data and the Dixon and Mood analysis for instance). Beaumont [12] simulates
staircases and Locati procedures with normal, log-normal and Weibull distribu-
tions.

In this paper, the Weibull model [13] is chosen to describe the fatigue prop-
erty distribution. This choice was motivated by other studies and more precisely
by the fact that this model can naturally take into account the scale and the
stress heterogeneity effect on the fatigue properties [14, 15]. Moreover, the
Weibull distribution also appears in the self-heating curve modelling [16]. Fur-
thermore, the Dixon and Mood analysis is not used in this paper, the MLE is
directly used. The Weibull distribution will be used for the generation of the
specimens and will also be assumed during the fatigue property determination.

A two-parameter Weibull distribution is used in this simulation-based in-
vestigation. The random variable x is the fatigue strength of the specimen.
The Cumulative Distribution Function (CDF), which also represents the failure
probability for a given stress amplitude, is obtained using

F (x) = 1 − exp

(
−
(x
α

)β)
, (1)

where α is the scale parameter and β the shape parameter. The Probability
Density Function (PDF) is then given by

f(x) =
β

α

(x
α

)β−1

exp

(
−
(x
α

)β)
. (2)

The two parameters chosen to describe the fatigue properties are the median
fatigue limit Σ50 and the coefficient of variation Cv, thus the standard deviation
divided by the mean fatigue limit. The coefficient of variation is only dependent
on the Weibull modulus m and is calculated using

Cv =

√
Γ
(
1 + 2

m

)
− Γ2

(
1 + 1

m

)
Γ
(
1 + 1

m

) . (3)

The shape and scale parameters of the initial distribution are then calculated
using

α =
Σ50

(ln 2)
1/m

(4)

and
β = m. (5)

6



The initial distribution is thus described by the median fatigue limit Σ50

and the coefficient of variation Cv. From the distribution defined by these two
parameters, the fatigue strengths of the specimens σDi

are randomly selected.
The goal is therefore to generate a large number of staircases in order to obtain
statistical distributions of these two fatigue parameters after the fatigue analysis
of the staircases. Indeed, these obtained distributions allow the evaluation of the
median response and the scatter in results, in order to quantify the uncertainties
of the evaluation technique (Fig. 2).

2.2. Staircase procedures

In this section, the simulation of two staircase procedures is presented. No
damage consideration is considered in the first part of the paper. Staircases are
simulated from a sample of n generated specimens.

The choice of the load step between two stress levels is important when
performing a staircase procedure. In this paper, a normalised coefficient is
defined by

Cp =
p

Σ50
, (6)

with p the step size used during the staircase procedure and Σ50 the median
fatigue limit of the initial distribution.

The influence of this step size has already been studied for the classic stair-
case procedure. Dixon and Mood [1] proposed an interval which was also high-
lighted with simulated staircases by Pollak [5]. Indeed, when the step size
decreases, the number of specimens has to be increased to correctly oscillate
around the median endurance limit. The method is then inefficient to determine
the fatigue properties. Conversely, when the step size increases, the number of
different stress levels on the staircase decreases (the specimens will simultane-
ously fail and survive in some extreme cases), and so the determination of the
fatigue properties will be impossible. The acceptable step sizes are linked to
the fatigue scatter. The ratio between the step size and the standard devia-
tion should be considered to be within a range of 0.5 to 2. This ratio closely
corresponds to the Cp/Cv ratio in this paper. Indeed, the Weibull PDF is asym-
metric, the mean and the median of the distribution are not necessarily equal.
The Cp/Cv ratio will be taken as equal to 1 during the first part of the inves-
tigation. Obviously, the standard deviation of the material is usually unknown
before the staircase procedure is conducted. In practice, the step size is chosen
from previous knowledge on a similar material or from the literature.

Moreover, the initial stress level of all simulated staircases is Σ50− 3
2p. Some

studies in the literature show the effect of this initial stress level on the resulting
fatigue property determination [9, 10]. This choice was made to reduce the
number of specimens used to approach the median fatigue limit (first specimens
in a staircase procedure).

The result of the specimen in the staircase, i.e. failure or run-out, only
depends on the comparison between the randomly selected fatigue strength of
the specimen σD and the applied stress Σ0 during the procedure.
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Fig. 3. Staircase procedures with Cv=0.05 and Cp/Cv=1

The tested stress level of a specimen depends on the result of the previous
specimen. Indeed, the stress level is increased if it was a run-out (so a survival
after Nref cycles) or is decreased if a failure occurred. A staircase using the
classic procedure and 15 specimens is presented as an example (Fig. 3a).

For the variant proposed in this paper, all unbroken specimens are tested up
to their failure. Without cumulative damage consideration, the stress level is
increased until the applied stress is higher than the specimen fatigue strength.
An example is presented using the same sample of 15 specimens (Fig. 3b). The
goal is to study the possible gain of this procedure on the uncertainties of the
fatigue property determination. Indeed, during fatigue tests, a broken specimen
brings more possible information than a simple run-out, by analysing the two
interesting load steps, the last run-out and the failure load. The objective of
this staircase procedure is therefore to break all the specimens, to extract the
maximum possible information from each sample.

2.3. Estimation of the fatigue properties

The Maximum Likelihood Estimation (MLE) is used in this paper to analyse
the fatigue test results. This method is commonly used to analyse staircases [8,
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7, 10, 12, 17] and more generally fatigue tests [18, 19, 20]. Moreover, the Dixon
and Mood analysis [1] was determined from the MLE for a normal distribution.
The comparison of the different evaluation techniques performed by Müller [7]
shows that the results of the Dixon and Mood determination are similar to the
MLE, for a classic staircase procedure with only censored data and for different
distribution shapes.

The goal of the MLE is to combine the observations of each specimen in order
to estimate the initial distribution. A likelihood function is created to evaluate
the parameters of this distribution. Consequently, the distribution shape should
be assumed.

In the general case, when the fatigue strengths of the n specimens are known
and no censoring is performed, the likelihood function L is defined as

L(α, β) =

n∏
i=1

f(σDi
), (7)

where σDi is the fatigue strength of the specimen i, f the PDF of the Weibull
model, depending on the two parameters α and β (Eq. 2). The evaluation of
the two distribution parameters is performed by maximizing this function. So,
the determined Weibull distribution is the one with maximum likelihood from
which the sample of specimens was randomly selected. In this paper, this result
is then compared to the initial distribution, used for the specimen generation.

When performing real tests, the fatigue strengths of the specimens are ob-
viously unknown. They could be estimated with assumptions on the fatigue
curve shape and from the load history of the specimen (damage accumulation
consideration). However, during a classic staircase, only run-out and failure
are observed, and no fatigue strength calculation is performed on the broken
specimen. For each specimen, the result from the staircase procedure brings
some information on its fatigue strength. The observed probability Pi of the
specimen i replaces the PDF in the MLE and corresponds to censored data. Pi
is calculated using the CDF according to the result of the specimen i in the
staircase.

Indeed, if the specimen i does not fail at the stress level Σ0i
, the only in-

formation we derive from the test is that Σ0i ≤ σDi . It corresponds to a right
censoring and the observed probability is then described using the CDF as

Pi(x ≥ Σ0i) = 1 − F (Σ0i). (8)

Likewise, if the specimen i fails at the stress level Σ0i , the only information we
derive from the test is Σ0i

≥ σDi
(left censoring) and the observed probability

is given by
Pi(x ≤ Σ0i

) = F (Σ0i
). (9)

When reloading specimens, another censoring is possible. Indeed, more in-
formation could be derived from the reloaded specimen i: its fatigue strength
σDi

is inevitably greater than the stress levels with run-out (survival for Nref

cycles), and if no damage accumulation is considered, lower than the stress level
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Σ0i for which the failure occurs. So, an interval censoring can be performed
[21, 22, 23] and the observed probability on the specimen i is thus

Pi(Σ0i − p ≤ x ≤ Σ0i) = F (Σ0i) − F (Σ0i − p). (10)

With no censoring data, the MLE is used with the most possible information
from the sample, meaning that the uncertainties only come from the number of
specimens in the sample (if we only include the uncertainties from the determi-
nation method, and not the uncertainties of the fatigue strength calculations).
Moreover, with the MLE, the censoring data are clearly taken into account.
The first question now concerns the minimum number of specimens required
to determine the fatigue distribution parameters, with acceptable uncertainties.
Indeed, in statistics, estimating the fatigue scatter with a small sample size,
which is often the case when analysing real fatigue tests, is known to be an
ambitious task and could lead to really large uncertainties.

3. Influence of the number of specimens per staircase on the fatigue
property determination

In this section, the MLE is used to analyse the fatigue tests under multiple
considerations. In order to obtain a statistical analysis, 1000 samples are gener-
ated, and staircases are simulated. For each sample, a median fatigue limit Σ50

and a coefficient of variation Cv are determined with the MLE. Consequently,
distributions of these two parameters are obtained from the 1000 samples. The
median response of the evaluation technique is obviously analysed with the medi-
ans of these distributions. The scatter in results, representing the uncertainties
of the method, is evaluated with the 5th percentile and the 95th percentile of
the distributions of the two fatigue parameters.

First, the ideal case is investigated, where all the fatigue strengths of the
specimens are perfectly known. No censored data are considered. It represents
the best case for which the maximum amount of information is extracted from
the sample of n specimens. Consequently, it corresponds to the lowest achievable
uncertainties for these n specimens. Then the classic staircase procedure is
evaluated using only censored data (which mainly correspond to the Dixon and
Mood analysis) and will represent the reference results. Next, the staircase
procedure with reloading is also evaluated using only censored data. Finally,
the different procedures are compared and the interest in reusing unbroken
specimens is highlighted.

3.1. Ideal case: sample entirely known

This is the case without censored data, so where the maximum information is
extracted from the sample. For each condition of initial distribution and number
of specimens, 1000 samples are simulated and are directly analysed using the
MLE, without censored data. The results with three different conditions of
fatigue property dispersion (Cv = 0.025, Cv = 0.05 and Cv = 0.1) are presented
(Fig. 4) and normalised using the parameters of their initial distributions.
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The uncertainties on the median fatigue limit (Fig. 4a), analysed with the
interval between the 5th and the 95th percentiles, depend on the fatigue scatter
of the initial distribution. The higher the coefficient of variation, the greater the
uncertainties for the same number of specimens. However, the median response
is always equal to the expected Σ50. Logically, for the same initial distribution,
when the number of specimens increases, the uncertainties decrease.

Concerning the distributions of Cv (Fig. 4b), the median response tends
to be lower than the expected coefficient of variation for small size samples.
Indeed, with a small number of specimens, the distribution tails are not correctly
represented during the random selection. The determined coefficient of variation
tends to be underestimated. The uncertainties can be united by normalising
using the coefficient of variation of the initial distribution. Consequently, they
only depend on the number of specimens n. Without surprise, the scatters
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in results are quite large for a small number of specimens, even for this ideal
case. This is not a new result, but at least the lower achievable uncertainties
are quantified for the two fatigue parameters as a function of the number of
specimens n in the sample.

3.2. Classic staircase procedure

In this section, staircases are generated using the classic procedure and a
load step of Cp/Cv=1. Only censored data are used for the fatigue determi-
nation. From the simulated staircases (Fig. 3a), there are two possible results
for the specimens: run-out, so a right censoring (Eq. 8), or failure, and so a
left censoring (Eq.9). This analysis closely corresponds to the Dixon and Mood
method, for which the equations were determined using a normal distribution
for the MLE [1, 7].

The results with three initial distributions are presented (Fig. 5). The Σ50

distributions are similar to the ideal case. Indeed, the median response tends
to be the expected value and the uncertainties depend on the coefficient of
variation of the initial distribution. Moreover, the uncertainties decrease when
the number of specimens increases. Logically, the scatters in results seem to
be greater than the ideal case. Indeed with censored data, less information is
obtained from the sample and the uncertainties are therefore more numerous
(for the same number of specimens).

When fewer specimens are used, the determination of the coefficient of vari-
ation is often impossible. Indeed, the MLE has insufficient information to eval-
uate the fatigue scatter. The calculated value is a bound of the numerical reso-
lution, which is obviously not taken into account. Table 1 shows the proportion
of Cv calculation for the three initial distributions as a function of the number
of specimens n. The proportions of possible calculation are similar for the three
initial distributions. The distributions of Cv are represented with only the rele-
vant obtained values. So, they do not have the same amount of data depending
on the number of specimens. The distributions (Fig. 5b) should be analysed
with this consideration and thus with the knowledge of the proportion of Cv
calculation (Table 1). The results can also be united by normalising using the
coefficient of variation of the initial distribution. For samples with 10 specimens
or less, the proportion of calculation is less than 50% and the median response
of the evaluation technique tends to be overestimated. The scatter in results
is very large, even with large samples (at least 50 specimens recommended by
Dixon and Mood for the fatigue scatter determination).

This procedure and evaluation method are really robust to determine the
median fatigue limit using a few specimens. However, the fatigue scatter is
hardly evaluated. This is not a new result, but this study allows the quantifi-
cation of the uncertainties and sets the reference result for the comparison with
the staircase procedure using reloaded specimens.

3.3. Staircase procedure with reloading

In this section, the staircases are also simulated with a load step of Cp/Cv=1.
There are two possible results for the specimens (Fig. 3b): failure at their first
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Fig. 5. Distributions of the fatigue parameters determined using 1000 simulated staircases,
depending on the number of specimens per simulation - Classic procedure with three
different Cv for the initial distribution and Cp/Cv=1

loading level, so left censoring (Eq. 9), or failure after several loading levels, so
an interval censoring (Eq. 10).

The results with three initial distributions are presented (Fig. 6). The
proportion of Cv calculation is also shown (Table 2). The same conclusions
as previously can be drawn on the median fatigue limit Σ50. However, the
uncertainties seem to be lower than for the classic procedure, but still more
numerous than the ideal case. Indeed, the amount of information derived from
the samples is higher than when using the classic procedure for the same number
of specimens.

Likewise, the same conclusions as previously can be formulated for the co-
efficient of variation Cv. The proportion of possible Cv calculation is increased
as compared to the classic procedure (Table 1 and Table 2) because more in-
formation is obtained using the interval censoring method than with a simple
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Table 1
Proportion of possible Cv determination for the 1000 simulated staircases using the classic
procedure depending on the number of specimens per simulation

n Proportion of Cv calculation
Cv=0.025 Cv=0.05 Cv=0.1

6 0.24 0.24 0.23
8 0.40 0.35 0.36

10 0.49 0.51 0.52
15 0.71 0.73 0.75
25 0.90 0.91 0.91
50 0.99 0.99 0.99

100 1 1 1

right censoring for unbroken specimens. The uncertainties of the coefficient of
variation are still numerous but are significantly reduced in comparison with
the classic procedure (Fig. 5b and Fig. 6b).

Table 2
Proportion of possible Cv determination for the 1000 simulated staircases with reloading of
unbroken specimens and the censoring interval depending on the number of specimens per
simulation

n Proportion of Cv calculation
Cv=0.025 Cv=0.05 Cv=0.1

6 0.70 0.70 0.71
8 0.84 0.82 0.85

10 0.87 0.91 0.92
15 0.97 0.97 0.98
25 1 1 1
50 1 1 1

100 1 1 1

3.4. Interest in reusing unbroken specimens

The interest in reusing unbroken specimens could already be highlighted in
the previous part. To help the comparison along, the results of the ideal case
and of the two staircase procedures are plotted on the same graph for one initial
distribution (defined with Cv=0.05) and using the step size Cp/Cv=1 (Fig. 7).

The results for the normalised median fatigue limit Σ50 (Fig. 7a) show
that the uncertainties are reduced when the reloading is performed. This is
linked again to the amount of data extracted from the sample. The gain on the
uncertainties of the median fatigue limit is not so high and is mainly observed
for small sample sizes. This is still linked to the initial distribution: with a more
dispersive distribution, the observed gain would be much higher.
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Fig. 6. Distributions of the fatigue parameters determined using 1000 simulated staircases,
depending on the number of specimens per simulation - Staircase with reloading and the
interval censoring method with three different Cv for the initial distribution and Cp/Cv=1

Concerning the normalised coefficient of variation Cv (Fig. 7b), the results
are not dependent on the coefficient of variation of the initial distribution. The
results have to be analysed with the knowledge of the proportion of Cv calcu-
lation (Table 3). The interest in reusing unbroken specimens is highlighted -
meaning that with a small sample size the Cv calculation is more often possible,
and the uncertainties are significantly reduced for the same number of specimens
used. The uncertainties become closer to the ideal case.

However, an assumption on the damage accumulation should be considered
when reloading unbroken specimens. Indeed, the interval censoring does not
take into account the cumulative damage and a validity domain should be de-
fined to use this method with damage consideration (Section 5).

Another advantage of the reloading procedure is that all the specimens are
broken. If relevant assumptions can be stated on the shape of the S-N curve,
and possibly on the cumulative damage when unbroken specimens are reloaded,
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Fig. 7. Distributions of the fatigue parameters determined using 1000 simulated staircases,
depending on the number of specimens per simulation - Comparison of the procedures and
determination methods with Cv=0.05 and Cp/Cv=1

the number of cycles at failure can be used to evaluate the allowable stress
of the specimens. More information is extracted from each specimen and if
this allowable stress is assimilated to the fatigue strength of the specimen, the
MLE could be used without data censoring (Eq. 7). The uncertainties are thus
minimised for the estimation method (without censoring), but others appear
for the calculation of this allowable stress. If the assumptions are correct, the
fatigue strengths are perfectly known, which corresponds to the ideal case. The
effect of an incorrect fatigue strength determination is also studied in this paper
using a certain cumulative damage law (Section 6). A sensitivity study is then
performed on the parameter describing this fatigue strength determination.

But first, a cumulative damage law has to be defined and staircases with
damage consideration must be simulated.
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Table 3
Comparison of the proportion of possible Cv determination for the 1000 simulated staircases
with the different determination methods depending on the number of specimens per
simulation

n Proportion of Cv calculation
Classic Reloading Ideal

6 0.24 0.70 0.97
8 0.35 0.82 0.99
10 0.51 0.91 1
15 0.73 0.97 1
25 0.91 1 1
50 0.99 1 1
100 1 1 1

4. Damage consideration in the staircase simulation

During the simulation of reloaded specimens with damage consideration, the
applied stress is no longer directly compared to the randomly selected fatigue
strength. A number of cycles at failure Nri is calculated for each specimen, as
a function of its fatigue strength and its previous loading. This number is then
compared to the reference number of cycles Nref to determine the result of the
specimen in the staircase procedure at a certain stress level (run-out or failure).

In order to perform the calculation, a cumulative damage law should be
assumed. The shape of the S-N curve should be stated to determine the link
between the applied stress and the number of cycles at failure.

In this paper, the Basquin model [24] has been chosen to describe the fatigue
curve around the reference number of cycles Nref. This is a simple model as it is
a straight line in a logS-logN plan (Fig. 1) and every S-N curve could be locally
approximated using this model. It is defined as

NriΣ0i

bm = A, (11)

with Nri the number of cycles at failure for the stress level Σ0i
, and where A

and bm are two material parameters.
During the simulation, the number of cycles at failure for the specimen i at

its first applied stress level could be determined using

Nri = Nref

(
σDi

Σ0i

)bm
. (12)

Only the parameter bm is required and it simply represents the slope of the
S-N curve around Nref. Obviously in this case, the comparison between the
calculated number of cycles Nri and the reference number of cycles Nref is
identical to the comparison between the randomly selected fatigue strength σDi

and the applied stress Σ0i
.
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If a run-out occurs, the unbroken specimen is then reloaded on the next stress
level. To evaluate the damage accumulation, the basic linear rule of Miner [25]
has been chosen and using the Basquin model (Eq. 11) for the S-N curve, the
damage is calculated using

D =
∑ ni

Ni
=
∑

ni
Σ0i

bm

A
. (13)

In practice and for this paper, an assumption is formulated: the damage accu-
mulation only occurs for the last two stress levels. Thus, the number of cycles
at failure for the stress level Σ0i

is obtained using

Nri = Nref
σDi

bm − (Σ0i
− p)

bm

Σ0i

bm
. (14)

The slope bm of the S-N curve and the step size p are the two parameters
impacting the damage accumulation. In order to make the analysis easier, a
linear coefficient Cbm is created from the slope of the S-N curve. It represents
the decrease in the median fatigue strength on one decade of cycles and is
calculated using

Cbm = 101/bm − 1. (15)

Two staircases with damage consideration are presented (Fig. 8). They are
generated from the same sample as previously (Fig. 3) and the same parameters:
Cv=0.05 and Cp/Cv=1.

The damage accumulation logically impacts the staircase proceedings. For
example, with Cbm=0.1, the failure of Specimen 7 occurs for a stress level under
its randomly selected fatigue strength (Fig. 8a). This will have an effect on the
stress level on which the censored data occur. Moreover,the simulated number of
cycles will be different and thus have an effect on the fatigue strength calculation.
In a more extreme case with Cbm=0.2, the simulated staircase is completely
different. The use of the interval censoring method is then questioned, and a
validity domain should be defined, i.e. the values of Cv, Cp and Cbm for which
the cumulative damage does not affect the staircase proceedings, and thus for
which the interval censoring can still be used (Section 5). In the extreme case
with Cbm=0.2, the calculation of all fatigue strengths seems to be preferable.
However, many more assumptions are required in order to achieve that. A
parametric study is presented in Section 6 on the effect of an incorrect fatigue
strength determination.

5. Validity of the interval censoring method with damage considera-
tion for the staircase simulations

The objective of this section is to quantify the bias induced with the cumula-
tive damage on the interval censoring method. The goal is therefore to evaluate
the set of parameters (Cv, Cp and Cbm) for which the cumulative damage has
little effect on the staircase proceedings.
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Fig. 8. Staircase simulations with damage consideration for reloaded specimens - Influence
of the simulation parameter Cbm, with Cv=0.05 and Cp/Cv=1

First, this domain of validity is investigated for a large number of specimens
(n = 100) assuming that if the predictions are incorrect, there is no reason that
they would be correct for a smaller sample size. The effect of the step size is
studied and a relation between Cp and the coefficient of variation Cv of the
initial distribution is proposed. Then, the effect of the damage accumulation
(through the parameter Cbm) is evaluated. Finally, the influence of the number
of specimens is investigated in order to validate the defined domain.

5.1. Effect of step size

For the classic procedure, Dixon and Mood [1] proposed the range

2 ≥ Cp
Cv

≥ 0.5. (16)

This result was also found by Pollak [5] with simulations for different numbers
of specimens per staircase.

As previously, the results of the 1000 simulations are presented with the me-
dian and the scatter in results with the 5th and the 95th percentiles. Simulations
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are performed for two initial distributions (Cv=0.05 and Cv=0.1) with a sample
size of n = 100 specimens. The effect of the step size is evaluated by performing
simulations with different Cp/Cv ratios. The results for the normalised median
fatigue limit (Fig. 9) and for the normalised coefficient of variation (Fig. 10)
are presented.

For smaller step sizes, the median response of Σ50 is reasonably affected by
the step size due to the fact that the damage calculation is only performed on
the last two levels. However, the median response of Cv is strongly affected with
the diminution of the step size and the increase in Cbm. The lower boundary of
Cp/Cv = 0.5 proposed by Dixon and Mood for the classic procedure is linked to
a minimal number of specimens in order to correctly oscillate around the median
fatigue limit. Indeed, with a small step size, more specimens are required to
increase or decrease the loading step Σ0 rapidly in the staircase procedure [5].
In the case of staircases with reloaded specimens, a similar boundary can be set
due to the damage consideration.

Above Cp/Cv = 2, the scatter in results is affected by the step size. It is
due to the fact that even for a large number of specimens, all of them could be
on the same two or three stress levels. In order to reach a good accuracy on
the staircase analysis, the step size should not be too big so as to have enough
different stress levels and allow the determination of the properties.

In conclusion, the same range (Eq. 16) as the classic procedure could be
defined for the choice of the step size. As mentionned previously, the upper
boundary (2 ≥ Cp/Cv) ensures that there are enough stress levels, thus differ-
ent intervals, to allow the determination of the fatigue properties. On the other
hand, the lower bound (Cp/Cv ≥ 0.5) is set to ensure that the cumulative dam-
age has little effect on the determination of the parameters. It still depends on
the Cbm parameter and another condition has to be set. Indeed, the case with
Cv=0.05 seems more affected by the increase in the Cbm parameter than the
case with Cv=0.1 (Fig. 10).

5.2. Impact of the damage accumulation

The damage accumulation mostly affects the determination of the coefficient
of variation. Indeed, it tends to gather all the specimens on the same stress levels
(Fig. 8b), and so the coefficient of variation is underestimated. As the scatter
in the results for Cv seems to be quite constant (in the correct range of Cp/Cv),
only the median response is studied.

Median values of Cv distribution are determined for three different initial
distributions and for a large range of Cp and Cbm in order to evaluate the
impact of the damage accumulation. The results are represented as a function
of Cp/Cbm (Fig. 11).The trends are clear and all the results for the different
initial distributions are united. Therefore, to avoid the cumulative damage
having an effect on the staircase proceedings, the step size should also be chosen
in accordance to the slope of the S-N curve such that

Cp
Cbm

≥ 0.5. (17)
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Fig. 9. Effect of the step size (with the Cp/Cv ratio) on the fatigue limit distributions
determined using 1000 simulated staircases of n = 100 specimens and the interval censoring
method - Comparison with and without damage consideration

The domain of validity of the interval censoring is thus defined for the chosen
cumulative law (Eq. 16 and Eq. 17). It means that for some conditions of Cbm
and Cv there is no possible step size to perform a staircase procedure. It
corresponds to really extreme configurations with a low dispersion or a major
slope in the S-N curve (Cbm ≥ 4 Cv), which is generally not the case in the HCF
domain.

5.3. Influence of the number of specimens per staircase

In order to confirm this validity domain, simulations are performed for an
initial distribution of Cv=0.05 and for Cp/Cv=1. Four conditions are considered:
without damage accumulation and with three different Cbm. The goal is to
evaluate the validity domain for smaller numbers of specimens. The effect of
the Cp/Cbm ratio on the fatigue property determination is represented as a
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Fig. 10. Effect of the step size (with the Cp/Cv ratio) on the coefficient of variation
distributions determined using 1000 simulated staircases of n = 100 specimens and the
interval censoring method - Comparison with and without damage consideration

function of the number of specimens (Fig. 12). The results for the coefficient of
variation (Fig. 12b) have to be interpreted with the proportion of Cv calculation
as a function of the number of specimens used during the staircases (Table 4).

As expected, when the condition stated on the choice of the step size in
accordance to the S-N slope (Eq. 17) is respected, the staircase proceedings
are not affected by the cumulative damage. So, the resulting distributions of
the two parameters are not affected and are close to the case without damage
consideration. When the condition is not respected, the cumulative damage
gathers the specimens on fewer levels for lower stress amplitudes. The median
fatigue limit tends to be underestimated. Moreover, the determination of the
fatigue scatter is less often possible, and the coefficient of variation also tends
to be underestimated.

The interval censoring method is interesting because no assumption is needed
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Table 4
Effect of the Cp/Cbm ratio on the proportion of possible Cv determination for the 1000
simulated staircases depending on the number of specimens per simulation

n Proportion of Cv calculation

Without
Cp

Cbm
=1

Cp

Cbm
=0.5

Cp

Cbm
=0.25

6 0.70 0.70 0.65 0.42
8 0.82 0.83 0.79 0.56

10 0.91 0.89 0.86 0.63
15 0.97 0.98 0.96 0.78
25 1 1 1 0.92
50 1 1 1 0.99

100 1 1 1 1

during the fatigue property determination. However, the step size of the pro-
cedure must be wisely chosen in order to obtain exploitable staircases, with
enough different stress levels, and by minimizing the effect of the cumulative
damage (Eq. 16 and Eq. 17). The coefficient of variation and the slope of the
S-N curve around Nref should be estimated, with prior knowledge or experience
of similar materials.

After performing staircases, it is still possible to evaluate the fatigue strengths
of the specimens, in order to use the estimation method without censoring
data. Important assumptions must be formulated, especially on the cumula-
tive damage rule. However, the uncertainties due to the estimation method are
minimized (no censoring data). A study is presented on the use of the fatigue
strength calculation method, with different S-N curve slopes in order to evaluate
the sensitivity of this parameter.
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Fig. 12. Effect of the Cp/Cbm ratio on the distributions of the two fatigue parameters
determined using 1000 simulated staircases, depending on the number of specimens per
simulation - Interval censoring method with Cv=0.05, Cp/Cv=1 and different simulation
parameters Cbm

6. Determination of fatigue strengths with damage consideration

The goal of this section is to quantify the bias induced with an incorrect
estimation of the fatigue strengths of the specimens. The same damage cumula-
tive rule is used for the simulation of the staircases and for the fatigue property
determination. In order to calculate the allowable stress, some assumptions are
required. First, the S-N curve shape has to be stated, and the cumulative dam-
age rule has to be chosen. Some fatigue analyses use similar assumptions in
order to evaluate the fatigue properties, for example in a Locati procedure [20].

The Basquin model (Eq. 11) was chosen to describe the S-N curve. Indeed,
the slope of the S-N curve can be quite easily estimated using previous knowledge
or experience on comparable material. To calculate the allowable stress of the
reloaded specimens, the Miner linear rule (Eq. 13) is complemented with the
Basquin model. Thus, the allowable stress of each specimen is considered equal
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to its fatigue strength.
Staircase proceedings are generated and for each specimen i, a number of

cycles to failure Nri is calculated from its random selected fatigue strength and
using the bm parameter (Eq. 12 or Eq. 14).

Using a bd slope in order to approximate the S-N curve, an allowable stress
is calculated for each specimen. If the failure occurs during the first stress level
Σ0i , the allowable stress is given by

σNrefi
= Σ0i

(
Nri
Nref

)1/bd

. (18)

Likewise, if the failure occurs after reloading, the allowable stress is evaluated
using

σNrefi
=

(
(Σ0i

− p)
bd +

Nri
Nref

Σ0i

bd

)1/bd

. (19)

If the parameters are perfectly known, meaning that bd = bm, the allowable
stress is exactly the randomly selected fatigue strength of the specimen. It is
therefore the ideal case (see Section 3.1).

In order to perform the analysis more easily, a similar coefficient is created
to represent the decrease in the median fatigue strength on one decade of cycles
and is calculated using

Cbd = 101/bd − 1. (20)

The goal of this section is to determine the sensitivity of the parameter rep-
resenting the S-N curve slope of the fatigue determination method. Staircases
are generated with various Cbm parameters and the fatigue property determi-
nation is performed with different Cbd values. For each condition of Cbm and
Cbd, 1000 simulations are done in order to evaluate the median response of the
determination of the two fatigue parameters.

Firstly, the sensitivity of the S-N curve slope for the fatigue strength cal-
culation is presented for a large number of specimens per sample (n = 100)
for different initial distributions and step sizes. Then, the same analysis is
performed on the determination of the coefficient of variation. Finally, this
sensitivity is evaluated for a smaller number of specimens.

6.1. Sensitivity of the fatigue strength calculation parameter for the fatigue limit
determination

The different simulations allow the representation of mappings, showing the
evolution of the median response of the Σ50 determination (obtained from 1000
simulations of 100 specimens) as a function of the Cbm and Cbd parameters.
The simulations were performed for two initial fatigue distributions, Cv=0.05
(Fig. 13) and Cv=0.1 (Fig. 14). For each of them, three different step sizes were
evaluated. The cases where the normalised fatigue limit equals 1 are highlighted
and match generally the condition Cbd=Cbm. The cases where the normalised
Σ50 are 0.99 and 1.01 are also represented in order to facilitate the sensitivity
analysis.
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When the step size increases, the sensitivity of the parameter is higher (the
surface inside the interval [0.99 1.01] tends to decrease). This is due to the fact
that with a bigger step size and with the chosen cumulative rule, the simulated
numbers of cycles to failure tend to be smaller (the applied stress tends to
be further than the randomly selected fatigue strength). The determination
method is much more affected by an incorrect estimation of the S-N curve slope.

Moreover, the sensitivity increases with the fatigue scatter of the initial
distribution. Indeed, it is a similar effect as with the step size. If the initial dis-
tribution is more dispersive, the applied stress level during the stress procedure
is possibly further from the fatigue strength of the specimen and the simulated
number of cycles is then lower. Consequently, an incorrect estimation of the
S-N curve slope will have a bigger impact on the median response of the Σ50

determination method for more dispersive distribution.
This method is robust in the median fatigue limit determination, the sensi-

tivity is quite low. However, this is a simulation-based investigation with many
assumptions and the results are idealised. Indeed, the damage rule law is per-
fectly known and is assumed to be the same for the simulation and the fatigue
strength determination. In order to reduce the sensitivity, it would not be wise
to reduce the step size because it would increase the damage accumulation. Be-
sides, the acceptable range of the Cbd parameter to result in an error of less
than 1% for the median response of the Σ50 determination is still large with
bigger step sizes.

6.2. Sensitivity of the fatigue strength calculation parameter for the fatigue scat-
ter determination

The different simulations allow the representation of similar mappings for the
coefficient of variation Cv. The simulations were performed for different step
sizes and for two initial distributions: Cv=0.05 (Fig. 15) and Cv=0.1 (Fig. 16).
These mappings represent the median response of the determination method,
obtained from 1000 staircase simulations of 100 specimens, as a function of the
calculation parameter Cbd and the simulation parameter Cbm. The cases where
the normalised coefficient of variation equals 1 are shown and match the condi-
tion Cbd=Cbm. The acceptable range for the median value of Cv is determined
as being within a 10% margin of error of the target value. Thus, the cases where
the normalised coefficients of variation are 0.9 and 1.1 are highlighted.

The median response of the Cv determination seems only to be affected by
the step size. Indeed, for the same Cp/Cv ratio, the mappings are similar (for
example Figure 15b and Figure 16b).

Unlike the fatigue limit Σ50, when the step size increases, the sensitivity of
the median response decreases. Indeed, it is due to the ”projection” (Basquin
law) used to estimate the allowable stress at the number of cycles Nref. When
the step size increases, there are generally fewer different stress levels, and the
failures occur at lower numbers of cycles. Consequently, the fatigue scatter de-
termination is less affected by this projection, although the fatigue limit deter-
mination tends to be more impacted. Conversely, when the step size decreases,
the number of different stress levels increases. However, the simulated numbers
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of cycles at failure tend to gather around Nref and thus, the sensitivity of the
fatigue scatter determination is increased using this projection.

In any case, the effects of the step size on the sensitivity of the fatigue
strength calculation method are similar. The acceptable range resulting in an
error of less than 10% for the median response can be estimated (for the condi-
tion Cp/Cv=1.0):

1.35 ≥ Cbm
Cbd

≥ 0.77. (21)

For instance, when the simulation is performed with Cbm= 0.15, the Cbd pa-
rameter should be in the range of 0.11 to 0.20. When the Cbm is lower, for
example Cbm= 0.03 then the Cbd should be between 0.022 and 0.04. The sen-
sitivity is thus greater for a lower S-N fatigue slope. However, in this case, the
cumulative damage is reduced, and the interval censoring method is probably
more appropriate, with a large Cp/Cbm ratio (see Section 5.2).

6.3. Influence of the number of specimens per staircase

In this section, the analysis is performed for smaller sample sizes in order to
validate the previous observations on samples of n = 100 specimens. For each
sample size, 1000 staircases are simulated with an initial distribution defined
by Cv=0.05, a step size of Cp/Cv=1 and the cumulative damage parameter
Cbm= 0.05. Then, the fatigue determination is performed using four values of
Cbd. One of these values is Cbd= 0.05 and is thus the ideal case. Cbd= 0.03 and
Cbd= 0.07 correspond to conditions close to the boundaries of the acceptable
range (Eq. 21). The fourth value Cbd= 0.10 is outside the acceptable range.
The distributions of the fatigue parameters are presented for the different Cbd
values (Fig. 17) as a function of the number of specimens.

As previously stated, an incorrect calculation parameter has little impact
on the Σ50 determination (Fig. 17a), even for a small number of specimens.
The scatters in results (represented with the size of the interval between the 5th

and the 95th percentiles) seem to be moderately affected. The median response,
and so inevitably all the values, are just slightly different from the ideal case,
represented by Cbm=Cbd.

Concerning the coefficient of variation (Fig. 17b), the same conclusions can
be formulated, although the scatter in results seems more affected for small
sample sizes. However, the same tendency is observed, and it seems that all the
values are just shifted due to the bad approximation of the S-N curve slope.

In order to complete the analysis, mappings of the sensitivity on the median
response of the determination of the two fatigue parameters are obtained for
a smaller sample size of n = 15 (Fig. 18). The simulations are performed
with an initial distribution Cv=0.05 and a staircase procedure with Cp/Cv=1.
The mapping for the median response on the Σ50 determination (Fig. 18a) can
be compared to that obtained for the same conditions using a larger number of
specimens per simulation (Fig. 13b). In the same way, the mapping representing
the median response of the Cv determination (Fig. 18b) can be compared to
that obtained using n = 100 specimens (Fig. 15b). The median responses
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Fig. 13. Effect of the step size (with the Cp/Cv ratio) on the median value mappings of
Σ50 distributions determined using 1000 simulated staircases of n = 100 specimens -
Sensitivity of the Cbd parameter on the fatigue strength calculation method using an initial
distribution with Cv=0.05 28
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Fig. 14. Effect of the step size (with the Cp/Cv ratio) on the median value mappings of
Σ50 distribution determined using 1000 simulated staircases of n = 100 specimens -
Sensitivity of the Cbd parameter on the fatigue strength calculation method using an initial
distribution with Cv=0.1 29
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Fig. 15. Effect of the step size (with the Cp/Cv ratio) on the median value mappings of Cv

distributions determined using 1000 simulated staircases of n = 100 specimens - Sensitivity
of the Cbd parameter on the fatigue strength calculation method using an initial distribution
with Cv=0.05
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Fig. 16. Effect of the step size (with the Cp/Cv ratio) on the median value mappings of Cv

distributions determined using 1000 simulated staircases of n = 100 specimens - Sensitivity
of the Cbd parameter on the fatigue strength calculation method using an initial distribution
with Cv=0.1
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Fig. 17. Distributions of the fatigue parameters determined using 1000 simulated staircases,
depending on the number of specimens per simulation - Effect of an imperfect fatigue
strength calculation, with different values of Cbd (using Cv=0.05, Cp/Cv=1 and Cbm=0.05)

and the sensitivity are really similar for the two sample sizes. In fact, a slight
difference is only observed for the mappings of the Cv determination (Fig. 18b),
the case where the normalised value is 1 is slightly shifted. It means that the
best calculation parameter with small sample sizes is no longer for Cbm=Cbd,
but for a lower Cbd coefficient (also observed in Fig. 17b). This is explained
by two different effects. For a small sample size, the determined fatigue scatter
tends to be underestimated (Fig. 4b). Indeed, during the random selection of
the fatigue strengths, the distribution tails are not correctly represented. This
phenomenon is compensated by the fact that when the Cbd parameter is lower
than the Cbm parameter, the fatigue scatter tends to be overestimated.

Moreover, with this method, the fatigue scatter calculation is nearly always
possible, and the uncertainties are similar to the ideal case. However, the median
response of the determination method is affected if the slope of the S-N curve
is not correctly determined, even with a large number of specimens. A higher
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(b) Mapping of the median values of Cv distributions

Fig. 18. Effect of the number of specimens on the median value mappings of the
distribution of the two fatigue parameters determined using 1000 simulated staircases of
n = 15 specimens using Cv=0.05 and Cp/Cv=1

Cbd coefficient than a Cbm coefficient tends to underestimate the median fatigue
limit and overestimate the fatigue scatter.

7. Conclusions

This simulation-based analysis has led to the evaluation of a new staircase
procedure with the reuse of unbroken specimens. Firstly, the possible gain has
been demonstrated and two different evaluation techniques have been defined:
using censoring data or fatigue strength estimation.

These fatigue determination methods have been evaluated using damage
consideration. Numerous staircase simulations have been performed in order
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to estimate the effect of the cumulative damage on the median response and
on the scatter in results of the evaluation technique. For the interval censoring
method, a domain of validity is defined. It represents the set of parameters for
which the cumulative damage does not affect the staircase proceedings and so
the censored observations are nearly the same as for the case without damage
consideration. For the fatigue strength calculation method, the sensitivity of
the parameter representing the slope of the S-N curve is studied.

In conclusion, the uncertainties on the fatigue property parameters have
been quantified for a large number of configurations, using normalised and linear
coefficients. The results are idealised, due to the simulation-based investigation
and its assumptions (no noise, distribution shape known, perfect fatigue tests).
The highlights of these studies are listed:

• An ideal case has been studied. It represents the case for which the maxi-
mum amount of information is extracted from the sample of n specimens,
and so, it corresponds to the lowest achievable uncertainties for this sample
size. The classic procedure is also studied to get reference results.

• The new staircase procedure, with the reuse of unbroken specimens, brings
more information from the sample, in comparison with the classic stair-
case procedure. However, the damage accumulation must be taken into
consideration. In order to study its impact, staircases with damage accu-
mulation have been simulated.

• The censored-data method (and more specifically the use of the interval
censoring) is really interesting because almost no assumption is needed
and it is a very simple analysis method. Of course, the step size of the
staircase procedure must be chosen in the validity domain for which the
cumulative damage does not affect the staircase proceedings.

• If the damage accumulation can be estimated, it is possible to make more
assumptions for the fatigue analysis in order to further reduce the uncer-
tainties. Indeed, with a fatigue strength calculation method, the maximum
amount of data is extracted from the sample, and the results are thus close
to the ideal case (if the assumptions are corrects).

In order to compare the two determination methods and evaluate the gain
from the classic procedure, the distributions of the parameters estimated from
1000 samples of 100 specimens are plotted (Fig. 19). The same initial distribu-
tion is used with Cv=0.05 and with the same step size for the staircase procedure
Cp/Cv=1.0. Five conditions of damage accumulation are defined with different
Cbm and are compared to the classic procedure. There is no damage accumu-
lation in the classic procedure because no reloading is performed (method A),
so the results are the same for the five conditions. For the interval censoring
method (method B), no damage accumulation is considered during the analysis.
The five conditions of damage accumulation are chosen to describe a large range
of Cp/Cbm. For the fatigue strength determination method, the coefficient Cbd
is set (method C), and the five conditions describe a large range of Cbd/Cbm.
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Fig. 19. Distributions of the fatigue parameters determined using 1000 simulated staircases
with n = 100, depending on the determination method - The classic procedure is compared
to the interval censoring method and the fatigue strength calculation method with a set
parameter Cbd=0.1 (using Cv=0.05, Cp/Cv=1.0 and different values of the simulation
parameters Cbm)

The scatters in the results are significantly reduced when reloading speci-
mens. Indeed, more data are extracted from the sample with the same number
of specimens. However, when performing reloading on unbroken specimens, the
damage accumulation must be analysed and taken into account. If the condi-
tion Cp/Cbm ≥ 0.5 is not fulfilled, the median responses of the interval censoring
method are lower than the expected values, even for a large number of spec-
imens. Concerning the fatigue strength calculation method (method C), the
median responses are also strongly affected by an incorrect estimation of the
slope of the S-N curve. The ideal case is represented by Cbd/Cbm=1 (method
C3), it represents the lowest possible quantity of uncertainties with this number
of specimens.

However, during real staircase tests, a lower number of specimens is usually
used. The same comparison is presented using 15 specimens per simulated
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staircase (Fig. 20). The resulting distributions for the coefficient of variation
must be analysed with the proportion of possible Cv calculation, shown with
the different characteristic values of the distributions (Table 5).

The same conclusions are formulated. The scatters in results are significantly
reduced when reloading specimens, but the median responses can be affected
by the different determination methods. Moreover, in the domain of validity of
the interval censoring method, the Cv calculation is nearly always possible and
the scatter in results for the determination of the dispersion is reduced. The
fatigue strength calculation method is really interesting in further reducing the
scatter in results. However, more assumptions are required for the S-N curve
shape and the damage accumulation rule.

The uncertainties for the fatigue scatter are still really numerous for a small
number of specimens, even in this simulation-based investigation with idealised
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Fig. 20. Distributions of the fatigue parameters determined using 1000 simulated staircases
with n = 15, depending on the determination method - The classic procedure is compared to
the interval censoring method and the fatigue strength calculation method with a set
parameter Cbd=0.1 (using Cv=0.05, Cp/Cv=1.0 and different values of the simulation
parameters Cbm)
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Table 5
Comparison of resulting distributions of the fatigue parameters for n = 15, depending on the
determination method using Cv=0.05 and Cp/Cv=1.0

Method Normalised Σ50 Normalised Cv

Cbm Median
(5th;95th)
percentiles

Proportion
(1000 sim.) Median

(5th;95th)
percentiles

C
la

ss
ic

p
ro

c
e
d
u
re

A 0.995 (0.967;1.024) 0.73 0.95 (0.53;1.69)

In
te

rv
a
l

c
e
n
so

ri
n
g

B1 0.20 0.978 (0.960;1.002) 0.76 0.72 (0.49;1.16)

B2 0.15 0.988 (0.965;1.009) 0.90 0.77 (0.51;1.21)

B3 0.10 0.995 (0.970;1.017) 0.96 0.83 (0.52;1.27)

B4 0.066 0.997 (0.973;1.019) 0.98 0.87 (0.54;1.35)

B5 0.05 0.999 (0.974;1.021) 0.98 0.89 (0.56;1.37)

A
d
ju

st
e
d

w
it

h
C

b
s
=

0
.1

0

C1 0.20 0.995 (0.976;1.012) 1 0.77 (0.51;1.05)

C2 0.15 0.999 (0.979;1.017) 1 0.84 (0.57;1.14)

C3 0.10 1.000 (0.979;1.018) 1 0.94 (0.63;1.28)

C4 0.066 0.995 (0.971;1.015) 1 1.09 (0.70;1.50)

C5 0.05 0.989 (0.962;1.010) 1 1.23 (0.76;1.76)

results. In an industrial context, the uncertainties for these parameters should
be estimated for the sake of part reliability. A simulation-based investigation is a
good way to estimate the uncertainties linked to a specific fatigue test procedure
and analysis method. Moreover, other parameters can be implemented in the
likelihood estimation function, in order to estimate other aspects such as the S-
N curve shape. It is already the basis of some evaluation techniques, to directly
evaluate the uncertainties on the S-N curve determination [18, 19].
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