
HAL Id: hal-02270437
https://hal.science/hal-02270437

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimentation of Timed Observers for Avionics
Models Validation

Philippe Dhaussy, J.C. Roger, H. Bonnin, E Saves, J. Honore, J Lohman

To cite this version:
Philippe Dhaussy, J.C. Roger, H. Bonnin, E Saves, J. Honore, et al.. Experimentation of Timed
Observers for Avionics Models Validation. Conference ERTS’06, Jan 2006, Toulouse, France. �hal-
02270437�

https://hal.science/hal-02270437
https://hal.archives-ouvertes.fr

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/6

Experimentation of Timed Observers
for Avionics Models Validation

Ph.Dhaussy1, JC.Roger1, H.Bonnin2, E.Saves2, J.Honoré2, J.Lohman2
1: ENSIETA 2 rue François Verny 29806 Brest CEDEX 9

{dhaussy, rogerje } @ensieta.fr
2: CS-SI - Parc de La Plaine - BP5872 - 31506 Toulouse cedex 5
{hugues.bonnin, eric.saves, julien.honore, julien.Lohman} @c-s.fr

Abstract: Number of avionics systems are designed
with formal specification languages, in order to get a
clear, unambiguous and complete description of the
system. The ATC module, designed with SDL, is a
ground/onboard communication system. The SDL
description of the system is so rigorous that
automatic code generation is used in the system
production process. Verifications based on tests are
realized on the SDL model, through execution
simulation. But SDL mathematical grounds can be
exploited in formal verification too, in order to obtain
ever earlier the highest level of confidence in the
system.
The verification of real-time systems by model-
checking has been extensively studied in the last
years, leading to important theoritical results. Tools
have been applied to verification of real sized
systems. The usual approach relies on a model,
specifications or properties (requirements) and a
model-checking technique to verify the properties on
the model.
The common work between CS and ENSIETA,
reported in this paper, is one of these works. It deals
with industrial challenges related to the adoption of
formal verification: theoritical remaining problems,
tools integration, industrial constraints recognition.
In the experiment reported here, we use the
observer automata operational formalism for
verifying dynamic properties of SDL models.
Intuitively, the observers monitor the behaviour of
the system looking for violation of properties (for
example, safety property). They receive events
generated by the system. The observers are
executed in parallel with the model in a weak
synchronous composition. To ease this composition
and therefore support the properties verification of
an SDL model, we took the option to translate it in a
timed automata based on IF language from Verimag
laboratory (observers are also specified in IF).
Our first experimentation on avionics case studies
was an opportunity to evaluate this technique to
verify some behavioural properties. We found that
observers are adequate to specify the model
behaviour. An appropriate methodology has still to
be identified to help user to manipulate them in
software design process.

Keywords: Model driven engineering, observers,
timed automata, model-checking

1. Introduction

1.1 Study context
Modern avionics integrate an increasing number of
systems, which are more and more complex. In
order to meet stringent safety requirements, these
systems have to be engineered in a rigorous process
supported by methods and tools, better adaptated to
these new challenges.
Communication is one of the enlarging domain in the
aeronautical context: it follows growing circulation in
the air space.
ATC (for Air Traffic Control) data-link applications
are dealing with communications between an Air
Traffic Control Center and an aircraft. It allows
manual (involving the pilot) and automatic
information exchanges such as alerts, position,
speed, weather, etc. ; it is used for certain route and
departure clearances too. These applications can
operate in ACARS or in ATN networks.
The study described bellow has been executed on
the AFN application, one of the ATC applications.
AFN is the "logon" application for all ATC
applications, in the ACARS network.

1.2 Goals
One of the most productive methodology (in terms of
both performance [ie quality, safety] and delays) well
designed for communication applications is Model
Driven Development (MDD), using asynchronous
languages such as SDL (Specification and
Description Language). Indeed this approach, using
a domain specific language, guarantee to obtain
specifications as near as possible of needs. The
second benefit is that this language, as its precise
semantics defines an execution model, allows to use
simulation as a powerful way to early verification.
The model is used to generate the final target code
too.
Today, verification is mainly realized through
dynamic tests: execution of the model in the case of
simulation, or execution of the final product for other
tests (integration, validation). This testing process

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/6

cannot guarantee the exhaustivity of possible paths
coverage. The conclusion of even a huge test
campaign cannot be "this property can never arise".
This point has to be very carefully considered in
more and more complex systems.
It is the reason why we consider it is important to
explore deeper formal verification on model. This
approach allows to formulate properties of the
system, on a exhaustive basis, i.e. properties like
"this can never arise".
The MDD approach allows us to reach this objective:
thanks to model transformation into the best
appropriate language for formal verification, we can
experiment the model verification techniques.

The paper presents, in section 2, the principles of
the observer-based verification technique and the
implementation with IF language. Section 3
addresses the problem of the manipulation of the
requirements and their exploitation for a necessary
synthesis of the observer automata. Section 4
presents the environment under development.
Conclusions are then given and further works are
briefly discussed.

2. Formal verification by timed observers

2.1 Formal verification context

The proof of behavioral and temporal requirements
implies model based simulation and the transition
system generation on which the analysis of formal
properties can be carried out. In much of academic
approaches, the recommended method is the use of
temporal logic languages, linear or tree structures
(LTL, CTL, etc), and the verification of these logic
formulas, by model-checking (for example [DS03]),
on the behavior graphs. Many reports were done on
the difficulty non specialists engineers have in using
these formalisms. This was certainly one of the
problems of the penetration of the formal proofs
techniques in the industrial engineering processes.
To allow their use in the industrial process, it is
desirable to provide to the software frameworks user
facilities to express logical properties by handling the
objects of the model which are comprehensible for
him. Often, the designer does not wish to have to
learn new specification languages. It is thus
interesting to develop interfaces to translate these
properties into formulas expressed in temporal logic
without the user having to handle them explicitly.
Those can be then exploited in the industrial process
by mature formal verification tools existing in
research centres. Among techniques of expression
of formal property, one is based on the observer
design.

2.2 Observer principle

An observer [ABL98, HLR93] is an entity that follows
the behavior of the system in order to check the
failures of them. It is specified in the form of an
automaton, which is strongly composed with the
system to analyze, in order to generate a reachability
graph. It is built so as to encode a logical property
and has as a role to observe all the significant
events related to the property that we want to check.
The observer automaton executes synchronously
with the system and monitors run-time state and
events of the observed system. It has special nodes
known as reject. If one of these nodes is accessible
during the composition of the observer with the
system to check, then the property is not verified.
More precisely, to check a system S, composed of
several communicating timed automata, with an
observer O, the step is as follows. The observer O is
associated S by means of a synchronous
composition (S||O). An analysis of accessibility of the
reject1 states is carried out on the product of this
composition (S||O --> reject). If one of these states is
accessible, the property is not verified. If, on the
contrary, none is accessible, the property is true.
The expression of an observer in the form of
automaton seems to be a priori an easier way for the
designer. Nevertheless a certain difficulty always
remains when the properties to be expressed
become complex. The possibilities of transcription
errors out of automata comprising many states are
quite real. A considered prospect is the automatic
generation of observers from specifications of higher
level requirements. The goal is to integrate them in
the DSL (Domain Specific Language) development
framework and thus to allow the handling of the
formal concepts via easier constructs use.
The important size of the models also requires to
consider the possibilities of reduction of the space of
the states of the model. One can for example use
observers equipped with "cut" operation which make
it possible to restrict the behavior of the observed
model. A complementary reduction technique of the
behaviors of the models is based on the addition of
process simulating the environment of the observed
model and restricting behaviors. This technique thus
makes it possible to initialize the system in
configurations, which interest the operator and to
identify a desired sequence or a non desired
sequence. We currently evaluate this technique and
try to identify associated methodology by focusing on
systems with important size. We will see thereafter
how, with the IF language, we use the operators of
restriction and specify the execution context of the
analyzed model.

1 A reject state is a state of accessibility graph corresponding in a
reject node of the observer automaton.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/6

2.3 Implementation of the observers

Usually, the use of this verification technique deals
with two kinds of observers and an automaton
specifying the simulation environment. The first type
of observer, named property observer, is used to
express a property. The second one, named
restriction observer, allows to express constraints on
a system. The automaton that specifies the
environment of simulation is named context
automaton. The two types of observers are
implemented with different observation mechanisms:
On one hand, the property observers are non
intrusive observers which observe and do not modify
the behavior of the system. Their expressiveness is
limited to safety and bounded liveness [ABBL98].
We show below examples of properties, P1 and P2,
for the analyzed avionic protocol.
On the other hand, the restriction observers are
restrictive observers. They can stop the reachability
analysis on some uninteresting paths of exploration.
These paths can correspond in not-in conformity or
not existent behaviors of the system or environment.
Restriction R1 and R2 are two examples of behavior
restriction for the protocol.
The context automata are intrusive and interact
actively with the system. They highly communicate
with the system, in the manner to lead it in an
interesting configuration. The context automata are
implemented using classical communicating
automata. They replace the simulation environment.
When the input data set of the system is well too
broad to be enumerated, such as for example in the
case of real numbers or character strings, the graph
of the accessible states is infinite thus not exploitable
(it is an undecidable problem). An intrusive
automaton makes it possible to redefine and limit the
input set of the system. The exhaustive exploration
of the system thus becomes decidable. The example
Context C1 presents a possible environment for the
analyzed system.
We will see, in section 2.4, that each kind of
observer or automaton is written in IF language
using annotations and particular operators.
We illustrate here their pragmatic use for the
avionics protocol example. The first example is a
property observers.

Property P1 :
When a plane has checked-in, if the
acknowledgement comes after TimeOut units of
time, the property will be failed.

Property P2 :
All check-in will receive an acknowledgement (ok or
failed).

Next examples concern restriction observers.

Restriction R1 :
A plane won’t check-in more than 3 times.

Restriction R2 :
A plane won’t change of zone more than 3 times.

The context of an avionic protocol is too big to be
enumerated. Considering this, it is important to
create a reasonable operational context.
Context C1:

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/6

This context considers a plane which can check-in
on two stations S1 and S2, and from this two
stations it can change from one to the other.

2.4 Implementation with IF language

The choice of the implementation language of the
models formal verification and the observers was the
IF language [BoGr02] for which many tools were
developed. They allow the programs IF and state
graph to be generated from higher level and more
user level languages (for example SDL, LOTOS,
etc.) in order to carry out formal properties checks.
The IF processes are communicating by messages
buffers timed automata. The communication
channels implemented in this language can be
parameterized, to specify the type of communication
(multicast, unicast, peer), the quality of the media
(reliable, lossy), the type of plug (fifo, multiset) and
the temporization of the communication (urgent,
delay, rate). Advanced data structures allow a fine
description of the systems in IF. The simulator of
models IF makes it possible to generate an
accessibility graph representing the set of all the
possible executions of the model. Time in these
graphs can be represented in two manners: with
discrete time, where the progression of time is
implemented by tics of time and each clock has a
value. In dense time, the progression of time is
implemented by a progression transition and the set
of the clocks is characterized by DBMs (Difference
Bound Matrices) [AD94]. VERIMAG developed tools
with IF for static analysis of the models such as slice
or live, able to carry out a consequent reduction of
the models before even the execution of the system.
The toolkit CADP [Fern96] developped by INRIA
carries out analyses (evaluator, xtl), bisimulations,
reductions and abstractions (Aldebaran) on the
generated graphs of accessibility. VERIMAG
provided libraries, model and simulator, which
makes it possible to the users to adapt the design of
utilities like code generators or accessibility graphs
explorers. Model makes it possible to read a system
written in IF and to manage a syntactic tree in
memory. Simulator is an essential tool for the

realization of explorer of accessibility graphs of
models IF.
The different kinds of observers described in section
2.2 are established by annotated processes IF
observers [ObGr03]. Both kind of observers,
property or restriction, defined previously are
characterized in IF by the key words: pure for the
first one and cut for the second (restrictive). They
monitor the system with the match instruction able to
detect the occurrences of the signals of the system.
It is important to note that the processes observers
have priority upon system to validate. Indeed, the IF
automata communicate using buffers, however
observers need to be strongly synchronized with the
system. Their priority level thus allows this
synchronous composition. Moreover, IF allows
nodes error and nodes success to be defined. The
properties observers are defined with IF pure
observers. The marked nodes error make it possible
to give a verdict, while the nodes success make it
possible to stop the reachability analysis (as a
restriction) in a path when arrived in a state
considered successful (option "cut on success" of
the simulator). The restrictions are expressed in IF
with cut observer. These observers can block the
reachability analysis in some path using the cut
instruction, but they don't contain either error or
success nodes. Their role is to reduce the
reachability graph, and not to check a property. So,
the context automata are described using classic IF
process, transforming an open system to a closed
one.

2.5 Some results

For the avionic protocol, some properties have been
verified using this observer technique. As an
example, we summarize in table 1 the results for two
properties, P1 and P2, given in section 2.2. The
protocol has been simulated with the Context 1 and
the two restrictions R1 and R2. For Property P1
(resp. Property P2) the protocol system has been
composed with the context automaton, the
restrictions observers R1 and R2 and the P1 (resp.
P2) observer and then simulated.

 Protocol
and R1, R2,

C1

with Property
P1

with Property
P2

States nb 4423 5342 5742
Transitions nb 4424 5343 5773

Simulation
time (sec)

26 28 28

Table 1
The property P1 and the property P2 are both
validated in this case.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/6

3. Translation of requirements into IF observers

 One of the motivations of the approach based on
the model engineering is to be able to formalize the
concepts of requirement and architecture of systems
by a set of models. A first difficulty of this step is the
taking into account and the handling of the
requirements to be validated. A second is the
diagnostics exploitation provided by the formal
analysis tools, which must be presented at the
system designer in specific views and
understandable by him, independently of the formal
techniques and implemented languages. For the
moment, we do not have studied this second aspect.
For the requirements handling, the objectives that
we fix ourselves are thus to identify the concepts to
be introduced into requirements meta-models
according to certain points of view of analysis
(performance, reliability, etc). Then the translation
mechanisms of the requirements models into proof
requirements exploited by the formal analysis tools
are to be studied.
In the current development, the properties and
restriction observers or automata context can be

generated from higher-level descriptions. For
example, we currently transform sequences
diagrams into context process or we generate
property observers from a more abstract observers
formulation. The figure (1) presents a context
automaton automatically generated for a case of
study of a communication avionics protocol from a
sequence diagram. This context present the
necessary sequence allowing to configure the state
of a communication protocol. The figure (2) presents

a property observer generated for the same
communication protocol. This is a bounded liveness
property expressing, in some case, an error
message is sent after a waiting time.

To go further on this way, we seek to identify a
language, and thus a meta-model, allowing the
requirements description being able to give place to
the observers and the context automata synthesis.
Many work were invested in this field. For example,
in [JMM99], a graphic modeling language was
proposed and based on requirement patterns. These
requirements are translated into linear temporal logic
formula and checked with the SPIN model-checker
[Hol91]. In [Die96], constraints diagrams, based on
the calculation of durations [ZHR91] are used to
specify properties. [Nef05] presents a refinement
method of requirements towards models. The
requirement language exploited is RDL (or
Requirements Description Language) defined for the
avionics systems within the CAROLL project2
framework.

4. Functionalities of the environment under
development

We exposed until there the guiding principles to build
an environment of models validation. We point out
that the objective is to have a study framework to
experiment the formal techniques to check industrial
models. All the ideas evoked previously were the
subject for the moment of a beginning of
implementation. Nevertheless, the state of the
platform allows us today to lead proofs of an
embedded model of avionics software. Thus, the
environment which we are currently developing
allows: 1) to import models UML or SDL and to
translate them into models IF, 2) to express
behavioral properties coming from the requirements
and to translate them into observer automata IF, 3)

2 Research program of CEA, INRIA, THALES started in 2003.

Figure 1 : Generated context automaton

Figure 2: Generated property observer

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/6

to carry out the properties verification by an analysis
of reachability.

5. Conclusion and further work

In this on-going experimentation, we want to study
the verification technique of dynamic properties of
SDL models. For that, we use an operational
formalism, observer automata, which represent
specifications to validate on the model. We seek to
currently validate the basic principles of our method
on the analysis of an avionics communication
protocol (AFN protocol) whose size, although
reasonable, is that of an industrial study case. The
first results show us that this technique can be used
to verify some safety and bounded liveness
requirements. The complexity of this protocol is such
that it enables us to be confronted with
methodological problems: how to describe the
context automata and the observers ? How to handle
the restrictions to circumvent the explosion of the
behaviors number and to ensure the relevance of the
analyzed executions?
In this work in progress, we treat the aspects related
to the abstraction and the reduction of the system
behavior in the same formalism as that which allows
the expression of the properties. Indeed, the
observers and the contexts are automata. Our
experiment consolidates us in the idea that the
handling of these automata can be exploited in a
software engineering process more easily than using
formal languages like temporal logical ones. The
condition is to be able to control their synthesis from
requirements easy handled by the engineer.
Many academic works explored various formalisms
or languages and contributed to the design of
software modeling, simulation and validation tools.
Many projects were implemented to apply these
techniques for industrial applications and real cases.
But we still note today their weak penetration in the
system and software engineering processes
comparatively with the drastic reliability and safety
needs of critical systems. This paradox partly finds
its causes in the real difficulty to handle theoretical
concepts and formal methods within an industrial
framework and the many problems unsolved as for
the treatment of complex systems subjected to
strong constraints (real time, criticality, deployment).
More and more work in industrial contexts are done
in this area. The common work between CS and
ENSIETA, reported in this article, is one of these
works. It deals with industrial challenges related to
the adoption of formal verification: theoritical
remaining problems, tools integration, industrial
constraints recognition. Indeed, one of the main
remaining problem in the formal verification area, is
the combinatory explosion of states graphs. Studying
property observer, restriction observer and context

automaton techniques is the way we think the more
suitable for industry applications in terms of
methodology and capitalization. In the tools area,
this experiment allowed us to integrate IF tools, in
the perspective of industrial usage (writing helps,
guides, scripts, etc). Finally, considering industrial
constraints such as DO178 or ARP4754 standards,
CS acts in the working groups to advocate this MDD
approach with its formal verification aspects.
We are convinced that these approaches will help
facing the challenges of high reliability and
complexity of the present and future critical systems.

6. References
[ABBL98] L.Aceto, P.Bouyer, A.Burgueno, and K.G.

Larsen. The power of reachability testing for
timed automata. In Proc. 18th Conf. of Software
Technology and Theor. Comp. Sci.
FST&TCS'98, Chennai, India, Dec. 1998},
volume 1530, pages 245--256. Springer, 1998.

[ABL98] L.Aceto, P.Bouyer, A.Burgueno, and K.G. Larsen.
Model checking via reachability testing for timed
automata. In Bernhard Steffen, editor,
TACAS'98, volume 1384 of Lecture Notes in
Computer Science, pages 263--280. Springer-
Verlag, 1998.

[AD94] Alur R, Dill D, A Theory of Timed Automata,
Theoretical computer Science, 126(2):183-235,
25 April 1994.

[BoGr02] M. Bozga, S. Graf, and L. Mounier. IF-2.0: A
validation environment for component-based
real-time systems. In Proceedings of
Conference on Computer Aided Verification,
CAV’02, Copenhagen, LNCS. Springer Verlag,
June 2002.

[ObGr03] Iulian Ober , Susanne Graf and Ileana Ober.
Validating timed UML models by simulation and
verification. SVERTS’03, San Francisco, USA,
october 2003.

 [Fern96] JC. Fernandez et al., CADP: A Protocol
Validation and Verification Toolbox, in R.Alur
and T.A. Henzinger, editors, Proceedings of
CAV'96 (new Brunswick, USA), Vol. 1102;
LNCS, August 1996.

 [HLR93] N.Halbwachs, F.Lagnier and P.Raymond.
Synchronous observers and the verification of
reactive systems. 3rd int. Conf. on Algebraic
Methodology and Software Technology,
AMAST'93, June, 1993.

[JMM99] W.Janssen, R.Mateescu, S.Mauw, P.Fennema
and P.Stappen. Model Checking for Managers,
Spin’99, pages 92-107, 1999.

[ZHR91] Z.Chaochen, C.A.R. Hoare and A.P.Ravn. A
Calculus of Durations, IPL, 40/5 pages 269-276,
1991.

[Nef05] C.Nébut, F.Fleurey, Une méthode de formalisation
progressive des exigences basées sur un
modèle simulable, LMO'05, 2005.

[DS03] G.Durrieu, C.Seguin, "Testabilité des logiciels
Embarqués", rapport d'étude ONERA DPAC
2001-2003, 2003.

