
HAL Id: hal-02270437
https://hal.science/hal-02270437

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimentation of Timed Observers for Avionics
Models Validation

Philippe Dhaussy, J.C. Roger, H. Bonnin, E Saves, J. Honore, J Lohman

To cite this version:
Philippe Dhaussy, J.C. Roger, H. Bonnin, E Saves, J. Honore, et al.. Experimentation of Timed
Observers for Avionics Models Validation. Conference ERTS’06, Jan 2006, Toulouse, France. �hal-
02270437�

https://hal.science/hal-02270437
https://hal.archives-ouvertes.fr


ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/6 

Experimentation of Timed Observers 
for Avionics Models Validation 

Ph.Dhaussy1, JC.Roger1, H.Bonnin2, E.Saves2, J.Honoré2, J.Lohman2 
1: ENSIETA  2 rue François Verny 29806 Brest CEDEX 9 

{dhaussy, rogerje } @ensieta.fr 
2: CS-SI - Parc de La Plaine - BP5872 - 31506 Toulouse cedex 5 
{hugues.bonnin, eric.saves, julien.honore, julien.Lohman} @c-s.fr 

 
 
 

Abstract: Number of avionics systems are designed 
with formal specification languages, in order to get a 
clear, unambiguous and complete description of the 
system. The ATC module, designed with SDL, is a 
ground/onboard communication system. The SDL 
description of the system is so rigorous that 
automatic code generation is used in the system 
production process. Verifications based on tests are 
realized on the SDL model, through execution 
simulation. But SDL mathematical grounds can be 
exploited in formal verification too, in order to obtain 
ever earlier the highest level of confidence in the 
system. 
The verification of real-time systems by model-
checking has been extensively studied in the last 
years, leading to important theoritical results. Tools 
have been applied to verification of real sized 
systems. The usual approach relies on a model, 
specifications or properties (requirements) and a 
model-checking technique to verify the properties on 
the model.  
The common work between CS and ENSIETA, 
reported in this paper, is one of these works. It deals 
with industrial challenges related to the adoption of 
formal verification: theoritical remaining problems, 
tools integration, industrial constraints recognition. 
In the experiment reported here, we use the 
observer automata operational formalism for 
verifying dynamic properties of SDL models. 
Intuitively, the observers monitor the behaviour of 
the system looking for violation of properties (for 
example, safety property). They receive events 
generated by the system. The observers are 
executed in parallel with the model in a weak 
synchronous composition. To ease this composition 
and therefore support the properties verification of 
an SDL model, we took the option to translate it in a 
timed automata based on IF language from Verimag 
laboratory (observers are also specified in IF).  
Our first experimentation on avionics case studies 
was an opportunity to evaluate this technique to 
verify some behavioural properties. We found that 
observers are adequate to specify the model 
behaviour. An appropriate methodology has still to 
be identified to help user to manipulate them in 
software design process.  

Keywords: Model driven engineering, observers, 
timed automata, model-checking 

1. Introduction  

1.1 Study context 
Modern avionics integrate an increasing number of 
systems, which are more and more complex. In 
order to meet stringent safety requirements, these 
systems have to be engineered in a rigorous process 
supported by methods and tools, better adaptated to 
these new challenges. 
Communication is one of the enlarging domain in the 
aeronautical context: it follows growing circulation in 
the air space.  
ATC (for Air Traffic Control) data-link applications 
are dealing with communications between an Air 
Traffic Control Center and an aircraft. It allows 
manual (involving the pilot) and automatic 
information exchanges such as alerts, position, 
speed, weather, etc. ; it is used for certain route and 
departure clearances too. These applications can 
operate in ACARS or in ATN networks. 
The study described bellow has been executed on 
the AFN application, one of the ATC applications. 
AFN is the "logon" application for all ATC 
applications, in the ACARS network. 
 
1.2  Goals 
One of the most productive methodology (in terms of 
both performance [ie quality, safety] and delays) well 
designed for communication applications is Model 
Driven Development (MDD), using asynchronous 
languages such as SDL (Specification and 
Description Language). Indeed this approach, using 
a domain specific language, guarantee to obtain 
specifications as near as possible of needs. The 
second benefit is that this language, as its precise 
semantics defines an execution model, allows to use 
simulation as a powerful way to early verification. 
The model is used to generate the final target code 
too. 
Today, verification is mainly realized through 
dynamic tests: execution of the model in the case of 
simulation, or execution of the final product for other 
tests (integration, validation). This testing process 
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cannot guarantee the exhaustivity of possible paths 
coverage. The conclusion of even a huge test 
campaign cannot be "this property can never arise". 
This point has to be very carefully considered in 
more and more complex systems.  
It is the reason why we consider it is important to 
explore deeper formal verification on model. This 
approach allows to formulate properties of the 
system, on a exhaustive basis, i.e. properties like 
"this can never arise". 
The MDD approach allows us to reach this objective: 
thanks to model transformation into the best 
appropriate language for formal verification, we can 
experiment the model verification techniques. 
 
The paper presents, in section 2, the principles of 
the observer-based verification technique and the 
implementation with IF language. Section 3 
addresses the problem of the manipulation of the 
requirements and their exploitation for a necessary 
synthesis of the observer automata. Section 4 
presents the environment under development. 
Conclusions are then given and further works are 
briefly discussed.   
 

2. Formal verification by timed observers 

2.1 Formal verification context 
 
The proof of behavioral and temporal requirements 
implies model based simulation and the transition 
system generation on which the analysis of formal 
properties can be carried out. In much of academic 
approaches, the recommended method is the use of 
temporal logic languages, linear or tree structures 
(LTL, CTL, etc), and the verification of these logic 
formulas, by model-checking (for example [DS03]), 
on the behavior graphs. Many reports were done on 
the difficulty non specialists engineers have in using 
these formalisms. This was certainly one of the 
problems of the penetration of the formal proofs 
techniques in the industrial engineering processes. 
To allow their use in the industrial process, it is 
desirable to provide to the software frameworks user 
facilities to express logical properties by handling the 
objects of the model which are comprehensible for 
him. Often, the designer does not wish to have to 
learn new specification languages. It is thus 
interesting to develop interfaces to translate these 
properties into formulas expressed in temporal logic 
without the user having to handle them explicitly. 
Those can be then exploited in the industrial process 
by mature formal verification tools existing in 
research centres. Among techniques of expression 
of formal property, one is based on the observer 
design. 
 

2.2 Observer principle 
 
An observer [ABL98, HLR93] is an entity that follows 
the behavior of the system in order to check the 
failures of them. It is specified in the form of an 
automaton, which is strongly composed with the 
system to analyze, in order to generate a reachability 
graph. It is built so as to encode a logical property 
and has as a role to observe all the significant 
events related to the property that we want to check. 
The observer automaton executes synchronously 
with the system and monitors run-time state and 
events of the observed system. It has special nodes 
known as reject. If one of these nodes is accessible 
during the composition of the observer with the 
system to check, then the property is not verified. 
More precisely, to check a system S, composed of 
several communicating timed automata, with an 
observer O, the step is as follows. The observer O is 
associated S by means of a synchronous 
composition (S||O). An analysis of accessibility of the 
reject1 states is carried out on the product of this 
composition (S||O --> reject). If one of these states is 
accessible, the property is not verified. If, on the 
contrary, none is accessible, the property is true.  
The expression of an observer in the form of 
automaton seems to be a priori an easier way for the 
designer. Nevertheless a certain difficulty always 
remains when the properties to be expressed 
become complex. The possibilities of transcription 
errors out of automata comprising many states are 
quite real. A considered prospect is the automatic 
generation of observers from specifications of higher 
level requirements. The goal is to integrate them in 
the DSL (Domain Specific Language) development 
framework and thus to allow the handling of the 
formal concepts via easier constructs use.  
The important size of the models also requires to 
consider the possibilities of reduction of the space of 
the states of the model. One can for example use 
observers equipped with "cut" operation which make 
it possible to restrict the behavior of the observed 
model. A complementary reduction technique of the 
behaviors of the models is based on the addition of 
process simulating the environment of the observed 
model and restricting behaviors. This technique thus 
makes it possible to initialize the system in 
configurations, which interest the operator and to 
identify a desired sequence or a non desired 
sequence. We currently evaluate this technique and 
try to identify associated methodology by focusing on 
systems with important size. We will see thereafter 
how, with the IF language, we use the operators of 
restriction and specify the execution context of the 
analyzed model. 
 
                                                           
1 A reject state is a state of accessibility graph corresponding in a 
reject node of the observer automaton. 
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2.3 Implementation of the observers 
 
Usually, the use of this verification technique deals 
with two kinds of observers and an automaton 
specifying the simulation environment. The first type 
of observer, named property observer, is used to 
express a property. The second one, named 
restriction observer, allows to express constraints on 
a system. The automaton that specifies the 
environment of simulation is named context 
automaton.  The two types of observers are 
implemented with different observation mechanisms: 
On one hand, the property observers are non 
intrusive observers which observe and do not modify 
the behavior of the system. Their expressiveness is 
limited to safety and bounded liveness [ABBL98]. 
We show below examples of properties, P1 and P2, 
for the analyzed avionic protocol. 
On the other hand, the restriction observers are 
restrictive observers. They can stop the reachability 
analysis on some uninteresting paths of exploration. 
These paths can correspond in not-in conformity or 
not existent behaviors of the system or environment. 
Restriction R1 and R2 are two examples of behavior 
restriction for the protocol. 
The context automata are intrusive and interact 
actively with the system. They highly communicate 
with the system, in the manner to lead it in an 
interesting configuration. The context automata are 
implemented using classical communicating 
automata. They replace the simulation environment. 
When the input data set of the system is well too 
broad to be enumerated, such as for example in the 
case of real numbers or character strings, the graph 
of the accessible states is infinite thus not exploitable 
(it is an undecidable problem). An intrusive 
automaton makes it possible to redefine and limit the 
input set of the system. The exhaustive exploration 
of the system thus becomes decidable. The example 
Context C1 presents a possible environment for the 
analyzed system. 
We will see, in section 2.4, that each kind of 
observer or automaton is written in IF language 
using annotations and particular operators. 
We illustrate here their pragmatic use for the 
avionics protocol example. The first example is a 
property observers.  
 
Property P1 : 
When a plane has checked-in, if the 
acknowledgement comes after TimeOut units of 
time, the property will be failed. 

 
 
Property P2 :  
All check-in will receive an acknowledgement (ok or 
failed). 

 
Next examples concern restriction observers. 
 
Restriction R1 :  
A plane won’t check-in more than 3 times. 

 
 
Restriction R2 :  
A plane won’t change of zone more than 3 times. 

 
 
The context of an avionic protocol is too big to be 
enumerated. Considering this, it is important to 
create a reasonable operational context.  
Context C1:  
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This context considers a plane which can check-in 
on two stations S1 and S2, and from this two 
stations it can change from one to the other.  

 
 
2.4 Implementation with IF language 
 
The choice of the implementation language of the 
models formal verification and the observers was the 
IF language [BoGr02] for which many tools were 
developed. They allow the programs IF and state 
graph to be generated from higher level and more 
user level languages (for example SDL, LOTOS, 
etc.) in order to carry out formal properties checks. 
The IF processes are communicating by messages 
buffers timed automata. The communication 
channels implemented in this language can be 
parameterized, to specify the type of communication 
(multicast, unicast, peer), the quality of the media 
(reliable, lossy), the type of plug (fifo, multiset) and 
the temporization of the communication (urgent, 
delay, rate). Advanced data structures allow a fine 
description of the systems in IF. The simulator of 
models IF makes it possible to generate an 
accessibility graph representing the set of all the 
possible executions of the model. Time in these 
graphs can be represented in two manners: with 
discrete time, where the progression of time is 
implemented by tics of time and each clock has a 
value. In dense time, the progression of time is 
implemented by a progression transition and the set 
of the clocks is characterized by DBMs (Difference 
Bound Matrices) [AD94]. VERIMAG developed tools 
with IF for static analysis of the models such as slice 
or live, able to carry out a consequent reduction of 
the models before even the execution of the system. 
The toolkit CADP [Fern96] developped by INRIA 
carries out analyses (evaluator, xtl), bisimulations, 
reductions and abstractions (Aldebaran) on the 
generated graphs of accessibility. VERIMAG 
provided libraries, model and simulator, which 
makes it possible to the users to adapt the design of 
utilities like code generators or accessibility graphs 
explorers. Model makes it possible to read a system 
written in IF and to manage a syntactic tree in 
memory. Simulator is an essential tool for the 

realization of explorer of accessibility graphs of 
models IF.  
The different kinds of observers described in section 
2.2 are established by annotated processes IF 
observers [ObGr03]. Both kind of observers, 
property or restriction, defined previously are 
characterized in IF by the key words: pure for the 
first one and cut for the second (restrictive). They 
monitor the system with the match instruction able to 
detect the occurrences of the signals of the system. 
It is important to note that the processes observers 
have priority upon system to validate. Indeed, the IF 
automata communicate using buffers, however 
observers need to be strongly synchronized with the 
system. Their priority level thus allows this 
synchronous composition.  Moreover, IF allows 
nodes error and nodes success to be defined. The 
properties observers are defined with IF pure 
observers. The marked nodes error make it possible 
to give a verdict, while the nodes success make it 
possible to stop the reachability analysis (as a 
restriction) in a path when arrived in a state 
considered successful (option "cut on success" of 
the simulator). The restrictions are expressed in IF 
with cut observer. These observers can block the 
reachability analysis in some path using the cut 
instruction, but they don't contain either error or 
success nodes. Their role is to reduce the 
reachability graph, and not to check a property. So, 
the context automata are described using classic IF 
process, transforming an open system to a closed 
one. 
 
2.5 Some results 
 
For the avionic protocol, some properties have been 
verified using this observer technique. As an 
example, we summarize in table 1 the results for two 
properties, P1 and P2, given in section 2.2. The 
protocol has been simulated with the Context 1 and 
the two restrictions R1 and R2. For Property P1 
(resp. Property P2) the protocol system has been 
composed with the context automaton, the 
restrictions observers R1 and R2 and  the P1 (resp. 
P2) observer  and then simulated. 
 
 
 
 

 Protocol 
and R1, R2, 

C1  

with Property 
P1 

with Property 
P2 

States nb 4423 5342 5742 
Transitions nb 4424 5343 5773 

Simulation 
time (sec) 

26 28 28 

Table 1 
The property P1 and the property P2 are both 
validated in this case. 
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3. Translation of requirements into IF observers 

 One of the motivations of the approach based on 
the model engineering is to be able to formalize the 
concepts of requirement and architecture of systems 
by a set of models. A first difficulty of this step is the 
taking into account and the handling of the 
requirements to be validated. A second is the 
diagnostics exploitation provided by the formal 
analysis tools, which must be presented at the 
system designer in specific views and 
understandable by him, independently of the formal 
techniques and implemented languages.  For the 
moment, we do not have studied this second aspect. 
For the requirements handling, the objectives that 
we fix ourselves are thus to identify the concepts to 
be introduced into requirements meta-models 
according to certain points of view of analysis 
(performance, reliability, etc). Then the translation 
mechanisms of the requirements models into proof 
requirements exploited by the formal analysis tools 
are to be studied.  
In the current development, the properties and 
restriction observers or automata context can be 

generated from higher-level descriptions. For 
example, we currently transform sequences 
diagrams into context process or we generate 
property observers from a more abstract observers 
formulation. The figure (1) presents a context 
automaton automatically generated for a case of 
study of a communication avionics protocol from a 
sequence diagram. This context present the 
necessary sequence allowing to configure the state 
of a communication protocol. The figure (2) presents 

a property observer generated for the same 
communication protocol. This is a bounded liveness 
property expressing, in some case, an error 
message is sent after a waiting time. 

To go further on this way, we seek to identify a 
language, and thus a meta-model, allowing the 
requirements description being able to give place to 
the observers and the context automata synthesis. 
Many work were invested in this field. For example, 
in [JMM99], a graphic modeling language was 
proposed and based on requirement patterns. These 
requirements are translated into linear temporal logic 
formula and checked with the SPIN model-checker 
[Hol91]. In [Die96], constraints diagrams, based on 
the calculation of durations [ZHR91] are used to 
specify properties. [Nef05] presents a refinement 
method of requirements towards models. The 
requirement language exploited is RDL (or 
Requirements Description Language) defined for the 
avionics systems within the CAROLL project2 
framework. 

4.  Functionalities of the environment under 
development 

We exposed until there the guiding principles to build 
an environment of models validation. We point out 
that the objective is to have a study framework to 
experiment the formal techniques to check industrial 
models. All the ideas evoked previously were the 
subject for the moment of a beginning of 
implementation. Nevertheless, the state of the 
platform allows us today to lead proofs of an 
embedded model of avionics software. Thus, the 
environment which we are currently developing 
allows: 1) to import models UML or SDL and to 
translate them into models IF, 2) to express 
behavioral properties coming from the requirements 
and to translate them into observer automata IF, 3) 

                                                           
2 Research program of CEA, INRIA, THALES started in 2003. 

Figure 1 : Generated context  automaton 

Figure 2: Generated property observer 
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to carry out the properties verification by an analysis 
of reachability. 

5. Conclusion and further work  

 
In this on-going experimentation, we want to study 
the verification technique of dynamic properties of 
SDL models. For that, we use an operational 
formalism, observer automata, which represent 
specifications to validate on the model. We seek to 
currently validate the basic principles of our method 
on the analysis of an avionics communication 
protocol (AFN protocol) whose size, although 
reasonable, is that of an industrial study case. The 
first results show us that this technique can be used 
to verify some safety and bounded liveness 
requirements. The complexity of this protocol is such 
that it enables us to be confronted with 
methodological problems: how to describe the 
context automata and the observers ? How to handle 
the restrictions to circumvent the explosion of the 
behaviors number and to ensure the relevance of the 
analyzed executions?  
In this work in progress, we treat the aspects related 
to the abstraction and the reduction of the system 
behavior in the same formalism as that which allows 
the expression of the properties. Indeed, the 
observers and the contexts are automata. Our 
experiment consolidates us in the idea that the 
handling of these automata can be exploited in a 
software engineering process more easily than using 
formal languages like temporal logical ones. The 
condition is to be able to control their synthesis from 
requirements easy handled by the engineer.  
Many academic works explored various formalisms 
or languages and contributed to the design of 
software modeling, simulation and validation tools. 
Many projects were implemented to apply these 
techniques for industrial applications and real cases. 
But we still note today their weak penetration in the 
system and software engineering processes 
comparatively with the drastic reliability and safety 
needs of critical systems. This paradox partly finds 
its causes in the real difficulty to handle theoretical 
concepts and formal methods within an industrial 
framework and the many problems unsolved as for 
the treatment of complex systems subjected to 
strong constraints (real time, criticality, deployment).  
More and more work in industrial contexts are done 
in this area. The common work between CS and 
ENSIETA, reported in this article, is one of these 
works. It deals with industrial challenges related to 
the adoption of formal verification: theoritical 
remaining problems, tools integration, industrial 
constraints recognition. Indeed, one of the main 
remaining problem in the formal verification area, is 
the combinatory explosion of states graphs. Studying 
property observer, restriction observer and context 

automaton techniques is the way we think the more 
suitable for industry applications in terms of 
methodology and capitalization. In the tools area, 
this experiment allowed us to integrate IF tools, in 
the perspective of industrial usage (writing helps, 
guides, scripts, etc). Finally, considering industrial 
constraints such as DO178 or ARP4754 standards, 
CS acts in the working groups to advocate this MDD 
approach with its formal verification aspects. 
We are convinced that these approaches will help 
facing the challenges of high reliability and 
complexity of the present and future critical systems. 
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