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Abstract—In the underwater mine warfare context, change
detection is a principle consisting in comparing a newly sensed
seabed area, usually by means of a side scan sonar, to another
one that has potentially been sensed several months or years ago.
In this paper, we propose an approach to simultaneously register
(i.e geometrically align) the reference and the repeated data
while detecting new and missing objects between both datasets
acquisition. This method is first evaluated on data provided by a
simulator based on a model of navigation uncertainty as well as
on error sources due to the imaging sonar, in order to assess its
robustness against different parameters. We also provide results
on datasets acquired at sea and demonstrate its efficiency to solve
the change detection problem.

Index Terms—Image registration, change detection, synthetic
aperture sonar, iterative closest point, mine warfare, side scan
sonar

I. INTRODUCTION

Underwater Mine Warfare operations usually consist, by
means of sonars, in a succession of steps namely the detection,
localization, classification, identification and potentially the
destruction of underwater threats such as manufactured mines
or improvised explosive devices (IED).

While the previously introduced steps are the right pro-
cedure to follow in case of a newly surveyed area, another
approach can be thought of when the surveyed area has
already been sensed in the past. Such an approach, known
as change detection (CD), aims at comparing such previously
acquired data, said as reference data, with newly sensed data,
the repeated ones, in order to detect potential changes arisen
between both acquisitions.

However, the reference and repeated images cannot be
directly compared. Indeed, due to errors from various sources
during the data acquisition, when projected into the Earth
frame, identical features from both datasets will not match
(i.e they will not be geometrically aligned). Thus, a first step,
data registration, which will geometrically align both datasets,
must generally be the very first step of a change detection
processing chain.

In the sonar imaging community, registration methods and
more widely, change detection ones, are usually split into

two groups, namely the image-based (or iconic) and object-
based (or symbolic) ones. While the former directly work
on raw pixel intensities to compute the optimal geometric
transformation [1]-[5] and detect changes [6], [7], the latter
rather independently detect features, such as, for example,
mine-like objects (MILCOs) or homogeneous seabed areas,
within both the reference and repeated tracks before matching
them. Thus, such an optimal transformation can be computed
[8]-[11] and the said change detection step performed [12].

Among the image-based methods, we distinguish between
coherent methods [13]-[18], relying on complex signals, and
incoherent ones, taking as input only the amplitude of the
backscattered signals [6], [16]. However, while coherent meth-
ods are able to detect tiny changes compared to incoherent
ones, they have several drawbacks. Indeed, first, they need
a highly accurate registration step such as one tenth of a
pixel as stated in [18] to achieve sufficient coherence between
the reference and repeated images. Secondly, the time delay
between both tracks sensing must be short enough, from few
hours to few days, to ensure this coherence to be high enough
[19] to allow the use of such coherent methods. As, in our
context, several months can elapse between the acquisition of
the reference and the repeated data, we cannot consider such
methods.

In this paper, we thus propose a framework allowing to
simultaneously perform the registration and change detection
steps from a symbolic perspective. Such an object-based
approach has been chosen in order to overcome limitations
of image-based methods, such as aspect or grazing angles
variability [6], which might potentially yield a high false
alarms rate regarding change detection performances. Indeed,
in the symbolic case, such variabilities can be handled within
the features extractor, namely an automatic target recognition
(ATR), system which works on raw sonar data (i.e. into the
sensor frame).



II. UNDERWATER NAVIGATION AND FEATURES
POSITIONING

A. Underwater navigation devices

As GPS signals are not available underwater, the estimation
of the underwater location of a moving carrier must rely
on other sensors such as inertial navigation systems (INS),
Doppler velocity logs (DVL) or acoustic positioning systems,
just to name a few. Data from such sensors can be fused by
means of state estimators such as, for example, a Kalman filter
[20]. Simultaneous localization and mapping (SLAM), also
known as concurrent mapping and localization (CML)[21],
is another alternative to underwater navigation. SLAM
techniques consist in performing observations (from sensors
equipping the carrier, such as imaging or ranging sonar [22],
[23]), in order to extract features allowing to build a map,
while keeping track of its position by re-observing such
features to estimate its location within the map.

B. DVL-aided INS uncertainty navigation model

In this paper, we focus on an autonomous underwater
vehicle (AUV) equipped with an INS, a DVL, a synthetic
aperture sonar (SAS) sensor and also on a GPS sensor to allow
for surface navigation.

We thus hereafter aim at providing the full navigation model
for such a system.

The trajectory of an AUV relying on a DVL-aided INS for
its navigation will geometrically drift from the expected one,
and such a geometrical transformation can be described by
[24]:

o a scale factor s proportional to the speed (28.8 m.h~*
for a speed of 2 m.s~! mentioned in [25]). This term
can come from a sound speed estimation error, the echo’s
direction of arrival variation because of the carrier motion
or a transducers misalignment during the DVL installation
on the carrier.

 arotational term, ¥, also due to a misalignment between
the DVL and/or the carrier or/and the INS, during the
mechanical installation.

An illustration of this long term accuracy error, denoted
by erra, is provided in (Fig.1) and can mathematically be
formulated as,

€ITA = D(t)\/l + 52 —2scos W

ey
= KLTA X D(t),

where D(t) is the true (but unobserved) distance, as the
crow flies, from the last GPS measurement (i.e. before the
carrier’s diving) and the current location of the carrier.

Additionally, each pulse emitted by the DVL, with a rep-
etition frequency ﬁ, is also polluted by an error denoted
as €stasingle (2)[26] and depending on the carrier’s speed V.
Thus, the integration of such pulses on a duration AT, will
sum up such errors yielding what is often referred to as a
random walk [27] or a brownian motion process (3).
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Fig. 1: Planned trajectory versus true (unobserved) trajectory.
The misalignment and scale factor are highly exagerated in this
picture. D(t): distance from last GPS measurement to current
location as the crow flies; s: scale factor; ¥: misalignment

angle; eppa: error.
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A value of 2.33 x 107! for Kgra is presented in [25].
2 1 ¢ 2
o5ra(t) = 7/ (OsTA, single X AT)" dr
STA AT o single
= O-gTA, single X AT x ¢ (3)

= Kaa XV X AT x t

Before diving, the AUV location is computed by means of
GPS measurements. Considering our change detection prob-
lem, where two datasets have to be compared, we consider
the GPS measurements from both missions to be independent.
Thus, while, at short term, such measurements are correlated
[28], we assume the elapsed time between both datasets
acquisition to be significant enough (;;1 hour) to make such
an assumption.

This GPS bias, whose standard deviation will depend on the
considered equipment (DGPS, Precise Point Positioning, ...),
is modeled as a Rayleigh distribution, with parameter ogps
and standard deviation rgps related by

2
4—7 @

Both the latitude and longitude components, under an inde-
pendent assumption, can thus be modeled as

oGps = T'Gps

télls ~ N(0, 0ps)- )

The navigation error, in an Earth-centered frame, can thus
be written



B (t) = [U(Q}Ps + 0gra (V) + ofps (D(t))} I. (6
C. Sonar-related position errors

So far, we have only considered error sources due to
the full navigation system. However, in the mine-warfare
context, where we aim at locating objects laid on seabed,
the side-scan sonar itself can also be an error source.
Such errors can mainly come from sound speed estimation,
bearing measurement and altitude estimation. In the far
field assumption we deal with, sound speed and bearing
errors prevail, and they are thus modeled within our simulator.

1) Uncertainty on sound speed estimation: If we consider
a celerity error Ac ~ N(0,02). From (Fig.2) we can write,

\y/ Flat seabed hypothesis

Fig. 2: Effect of a misalignment error on an object position
estimation
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where At is the two-way time delay of the acoustic wave,
thus

AcAt
AR==2 8)
2
that we can write
AR — AcReg Acfco AcReS[ ©)
co + co + Ac co
The grazing angle « is
a—arcsin(i) (10)
B RCSt .
Under a flat seabed assumption, we have
Adseabed = COS(
h
= cos [ arcsin AR
Rest (11)

1_( ) AR
est

The variance on the across-track axis, in the AUV-centered
frame, in terms of ground distance, can thus be written as

h 2R2
O—fccros = (1 - (R t) > 02%‘ (12)
es 0

2) Antenna misalignment: If we now consider, still in the
AUV-centered frame, an angular misalignment of the antenna
(Fig.3) described as O ~ N(0, o2.), we can write

mis )

Omis<<1

Adgiong = Reg sIN(Omis)  ~ Rest Omis, (13)
thus
Tatong = ResTrmis - (14
The covariance matrix is thus
R% .02 0
Ysss = (15)

2 2 2
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Fig. 3: Effect of a misalignment error on an object position
estimation

Finally, the uncertainty model of the location of any sensed
object of interest laid on the seafloor is, in an Earth-centered
frame

210(: = 2:nav + RAUV»EarchSSSRXUV9Eanh ) (16)
where Rauvsgarn 1S the change of frame matrix from the
AUV centered frame to the Earth-centered one.

Nonetheless, we emphasize that such a model is only
an approximation as it does not take into account all the
potential error sources. Indeed, the carrier’s altitude has been
assumed to be exactly measured while the seafloor has also
been supposed to be flat. Another simplification comes from
the estimated position of a mine-like objects. Indeed, such
objects, classically detected by means of an automatic target
detection/recognition algorithm (ATD/R) [29]-[32], are not
isolated points and their estimated positions can thus depend
on the grazing or view angles under which these objects are
sensed.



D. Design of a symbolic simulator

In order to assess the performances of a symbolic registra-
tion and/or change detection algorithm, we felt the need to
design a simulator able to generate inputs to such algorithms.
Indeed, as the change detection issue is strongly imbalanced
(i.e. the absence of change is much more regular than real
ones), relying only on data acquired at sea makes such an
assessment difficult. The simulator functioning, mainly based
on the previously introduced navigation model, is detailed in
(Alg.1), yields two pointsets, by means of two trajectories,
namely the reference and repeated ones which are respectively
denoted by C("¢/) and C("*P). The repeated detection set is
computed after removing a rate of 7y existing objects, to
simulate objects disappearance, and adding a rate of ey, new
objects, to simulate objects appearance.

Algorithm 1 Change detection simulator

Input: Kira, Ksta, 0Gpss Oc, Omiss AUV’s altitude h, objects
density density, rate of new objects ey, rate of objects
disappearance 745

Output: reference and repeated pointsets C™D and CP)

1: Generate a set C of punctual objects on seabed according
to density

2: Draw a first trajectory 7Trr from the navigation model pro-

vided by (16) with parameters Kita, Ksta, TGPS; Oc, Tmiss

AUV’s altitude h

Compute the reference pointset CD from C and Tt

Remove a rate of 74 objects from C to get c

Add a rate of rpe, objects to c

Draw a second trajectory 7., from the navigation

model  provided by (16) with  parameters

KLTA; KSTA7 TGPS; Ocs Omis AUV’s altitude h

7: Compute the repeated pointset C™ from C’ and Teep

8: return C0eD Crep)

Wk w

An example of trajectories Tr and 7Tyr are illustrated in
(Fig.4). A whole reference pointset C™" is also presented in
(Fig.5) while a snippet of an area after the computation of
both C™" and C™P pointsets is illustrated in (Fig.6).

III. ICP-BASED SIMULTANEOUS REGISTRATION AND
CHANGE DETECTION

A. Features extraction

Inputs to our registration and change detection algorithm
are two pointsets (17) denoted C("¢f) and C("*P) respectively
corresponding to the reference and the repeated ones. Each
pointset gather the potentiel objects, laid on the seabed,
detected in a sensed synthetic aperture side-scan sonar image.
In this paper, such detections are obtained through a simple
processing chain consisting of:

o SAS image denoising

o Binary image segmentation, based on the objects pro-
jected shadow, by means of hysteresis thresholding

« Mathematical morphology
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Fig. 4: Example of our simulator output. The expected trajec-
tory is the black dashed plot while the unobserved reference
and repeated ones are respectively represented in blue and
green colors.

o Objects selection based on their dimensions according to
the expecting dimensions of objects of interest

These reference and repeated pointsets are mathematically
described as

clref) — { {pi,Zpi} }ie[[l,M]]

ctr = {{q;,Zq;} } m)

jelL,N]’

where 3 ; represents the covariance matrix, provided
by the carrier navigation system and the ATD algorithm,
associated with the detection localized at k;.

B. ICP formulation

Our simultaneous registration and change detection algo-
rithm (Alg.2) is mainly based on the iterative closest point
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Fig. 6: Zoom on an area illustrating the true but unobserved

objects locations in black while the computed reference and

repeated ones are respectively represented in blue and green

colors, with their respective covariance matrices.

(ICP) algorithm [33]. Indeed, the ICP algorithm iteratively al-
ternates, until convergency, a correspondences estimation step,
between points from the reference and repeated pointsets, and
a pose estimation one to compute the optimal transformation.
Once convergence has been achieved, a last matching and
filtering step yields the final matches thus providing the objects
disappeared and appeared between both tracks acquisition.
The correspondences estimation step makes use of a nearest
neighbors algorithm with the Mahalanobis distance.

As described by (16), the optimal transformation can
roughly be characterized by a rotation matrix R*, a translation
vector t* and a scale factor s*. In other words, we aim at
computing the triplet T* = (R*,t*, s*) optimally aligning
the repeated pointset C("?) onto the reference one C("¢/),

Algorithm 2 Simultaneous registration and change detection
algorithm

Input: pointset C™P pointset C™P), initial transformation T,
threshold #;,cert

Output: optimal transformation T*, set of appeared objects
A, set of disappeared objects D

1: registered <— False

2R I, t"+ 0,51

3: while 1 do

4. for j=1to N do

5: Pi < argmin dmana (P, i)

Pj

6: if dmana (pia Z:P,i7 qi, ZQ,i) > Fq(n =2,p= tincen)
then

7: Delete match (p;,q;)

8: end if

9: end for

10:  if registered == True then

11: Computation of the new objects set A =
{p|p ZCreh pe C(“P)} and the missing objects one
M = {p\p c C(ret)’ P g C(rep)}'

12: break

13:  end if

14: (R, s,t) computation by minimizing (20)
15: for j=1to N do

16: q; +— sRq; +t

17: EQ’Z' — SQREQ’iRt

18:  end for

19: if T ~ I then

20: registered <— True

21:  end if

222 R* < RR*, t* +t* 4+ t, s < s5*
23: end while

24: return R*, t*, s*, A, M

To compute these parameters, we rely on the well-known
Iterative Closest Point (ICP) framework and especially on its
probabilistic variant [34] to take into account the available
covariance matrices.

To derive our objective function, we introduce the following
residual variable dET) so that

d{™ = p; - Tq;

(18)
~N ([51 —Tq;,Yp; + TEgQ)Tt) .

The maximum likelihood estimator, under the observations
independence assumption, can thus be approximated [35] by



T* = argmax (d(-T)>
g Hp ;

= argmin Z logdet Xp; + TXq,; T'+
T -
i (19)
A" (Zpi + TS, T") " d™

~argmin}_d"" (Sp, + TS, T') ' d™.
T
Thus, in this paper, (19) is explicitly expressed as

R*, t*, s* = argmin
R,s,t

Z (pi — sRq; — t)’

(pi,qi)eM
(Spi + s2REq R " (p; — sRaq; — t).

While a least-squared closed-form solution exists in the
standard ICP formulation [36], [37] and in the case of isotropic
covariance matrices, (20) is usually solved through iterative
procedures [35], [38], [39]. In this paper, we numerically
solved (20) by means of conjugate gradient descent as men-
tioned in the original generalized ICP paper [34]. Indeed, we
initially implemented both [38] and [35] and found out that
they perform identically on datasets output by the previously
detailed simulator. Gradients are also numerically computed
using a finite difference method.

(20)

IV. RESULTS
A. Simulated data

To assess the algorithm previously described in terms of
registration and change detection performances, we rely on the
Monte-Carlo method. Indeed, from a given set of parameters,
corresponding to the inputs to (Alg.1), we draw several pairs of
pointsets C("¢/) and C("*P) and, as the ground truth is perfectly
known, it allows us to compute various statistics such as

« PR (Pairing Rate)

e CMR (Correct Matches Rate)

o EMR (Erroneous Matches Rate)

« MDR (Rate of Missing objects correctly Detected as

missing)

« NDR (Rate of New objects correctly Detected as new),

computed as

number of correct matches

PR =
number of expected correct matches
number of correct matches
CMR = :
number of correct matches - number of erroneous matches
number of erroneous matches
EMR = :
number of correct matches - number of erroneous matches
number of objects detected as missing and really missing
MDR = — -
total number of really missing objects
number of objects detected as new and really new
NDR = .

total number of really new objects

21
We have thus evaluated the robustness of our algorithm
against different parameters as illustrated in (Fig.7). The

results particularly show that our algorithm is fairly robust to
parameters related to the navigation model while being more
sensitive to new and missing objects rates.

B. Evaluation on real data

The proposed algorithm has also been evaluated on real
data. Indeed, we considered two datasets, described below.

1) Homogeneous seabed: The first pair is made of two

high resolution synthetic aperture sonar tracks acquired with
the THALES SAMDIS sensor, mounted on an AUV equipped
with a Teledyne Workhorse DVL and a iXBlue PHINS INS.
These tracks have been sensed three months apart on an
homogeneous seabed, mainly consisting in few mine-like
objects. As some of these objects were added or removed
between both tracks acquisition, it remains a challenge. The
overlapping area is divided into two sub-areas namely the
south and north ones (Fig.10 (a), (b))).
As the ground truth was available for this dataset, change
detection performances can be assessed. These registration
and change detection results are provided in (Fig.10 (c), (d)).
On this dataset, the proposed algorithm has been able to
detect all the new and missing objects except one missing
object (not visible in (Fig.10)). Regarding the registration
result, it visually shows the ability of the algorithm to match
the corresponding detections to visually align corresponding
features.

2) Complex seabed: This second pair is much more
challenging. Indeed, not only these tracks have been sensed
by means of the THALES T-SAS TSM 2054 NG (sold to
the French Navy under the name DUBM-44), consisting in a
SAS sensor mounted on a towed fish, but the repeated track
has been acquired with a strongly rough sea state (estimated
from 4 to 5 on the Douglas scale), thus causing the expected
relative geometric transformation to be strongly non rigid.
Moreover, the seabed can be described as complex as it is
heavily cluttered while rocky structures and sand ripples also
appear. To exploit this data using our algorithm, we only
considered part of the data where the deformation model can
locally be modeled as a rotation and a scale. However, as
no ground truth was available for this dataset for the change
detection task, only the registration results are of interest.
The results are illustrated in (Fig.11), where the corresponding
features such as rocky structures or mine-like objects are
correctly matched.

A quantitative comparison, regarding the registration
performances only, has also been done between the proposed
algorithm and the one described in [2] which is based on a
multi-resolution correlation-based block-matching approach.

To do so, for both pairs, a ground-truth vector field has been
manually retrieved in order to evaluate the different methods.
Both the ground-truth vector field and the estimated one
are firstly interpolated. According to a regular grid, we thus
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sample pairs of ground-truth and estimated vectors {v;, w;},
at the same locations, to respectively build the sets }V and W.
The designed metric S is then computed as

S =DsV, W)+ AD,(V, W), (22)
where A has been set to 0.1 and
D) = —— Y vi—wi
d ) - card [V} . = V; W,
) Ve (23)
D - = ) )
a(V? W) Ca.rd [V} Z V’L 6 W’L,

(vi,Wi)EVXW

where © stands for the angular difference between two
vectors.

Numerical results are provided in (Tab.I) and demonstrate
that the vector field yielded by the proposed algorithm achieves

Seabed type Algo. S
Multi-resolution correlation [2] 1.59
Homogeneous M-ICP [ours] 1.69
SIFT [40] 1.37
SURF [41] 1.83
BRISK [42] 2.47
Multi-resolution correlation [2] | 0.55
Complex M-ICP [ours] 0.90
SIFT [40] 1.24
SURF [41] 2.02
BRISK [42] 1.73

TABLE I: Quantitative comparison between different registra-
tion algorithms

slightly worse results than the multi-resolution intensity-based
approach on both datasets while still being superior to common
keypoints detectors, except for the SIFT algorithm which
performs better on the homogeneous dataset.



(a) North area before registration

(c) North area after registration

H

(b) South area before registration

(d) South area after registration

Fig. 8: Registration and change detection results for the homogeneous seabed dataset. The estimated vector field is denoted
by red arrows. Boxes illustrate the change detection result. Solid yellow line boxes correspond to objects detected as being
new while dashed line ones are the real new objects according to the ground truth. Solid red line boxes correspond to objects
detected as missing while dashed line ones are the real missing objects according to the ground truth.

V. CONCLUSION AND FURTHER WORK

In this paper, we proposed a symbolic simultaneous reg-
istration and change detection algorithm, strongly based on
the probabilistic iterative closest point formulation, in the
underwater mine warfare context. To assess the robustness
of such an algorithm we have designed a simulator whose
the main component is a navigation model based on sensors
the carrier is equipped with. This algorithm has then been
experimented on datasets acquired at sea on two different
seabed types namely a homogenous and a complex ones,
thus demonstrating its interest to solve the change detection
problem. Compared to purely image-based methods, change

detection performances are usually better for a symbolic
approach as several invariances (grazing and view angles)
are taken into account during the features extraction step.
However, in case of missing or new objects, the robustness
of the matching step can be poor, compared to image-based
methods that can benefit from multifarious common structures
present in both datasets.

Further work would thus consists in modifying the distance
used within the nearest neighbors matching step, in order to
incorporate more than just a geometric distance. Indeed, a
greater robustness could potentially be achieved by adding
other descriptors such as shape contexts [43] or even image-



(a) West area before registration (b) West area after registration

Fig. 9: Registration results for the western area of the complex seabed dataset.

)

(a) Center area before registration (b) Center area after registration

Fig. 10: Registration results for the centered area of the complex seabed dataset.

(a) East area before registration (b) East area after registration

Fig. 11: Registration results for the eastern area of the complex seabed dataset



based descriptors [40].
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