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The detection of signal presence is a crucial job carried out through spectrum sensing 
in cognitive radio systems. A tradeoff between detection accuracy and detector 
complexity is tackled often in researches. Amongst different spectrum sensing 
techniques, conventional energy detection is widely used due to its simplicity of 
implementation, however, it is sensitivity to noise variation makes it unreliable in low 
signal-to-noise-ratio environments. This manuscript proposes the use of scattering-
based detector for spectrum sensing in the context of cognitive radio to provide 
reliable signal detection. Through scattering transform, signal features are enhanced 
whereas noise variations effects are reduced which enhances the detection results. 
The proposed detector is tested for chirp and spread spectrum signals in additive 
white Gaussian noise channel. Performance evaluation is conducted through 
calculation of detection probability for several signal-to-noise ratio values. Through 
MonteCarlo simulations, the proposed detector proves reliability of detection as 
compared to energy detection which provides false detection decision when noise 
only considered for detection. 
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1. Introduction 

 
The basic principles of cognitive radio (CR) technology define a wireless communication system 

as an intelligent system that employ understanding-by-building methodology to communicate with 
the surroundings [1]. Through this methodology, such system is able to learn from the environment 
and also to correspond to statistical variations by adapting its internal states in real-time. In CR, 
spectrum sensing (SS) is a major task in the cognition cycle to facilitate the access of a primary user 
(PU) frequency band by a secondary user (SU) (i.e., cognitive radio user) while maintaining quality 
of service (QoS). Through SS, a CR system detects the spectrum holes, thus this process must be 
performed fast while providing high detection accuracy. Hence, trade-offs between sensing time 
and accuracy of signal detection are often questioned in literature [2].  
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        Spectrum sensing techniques can be classified into cooperative and noncooperative 
techniques. In the former, information from multiple CR users is incorporated for PU detection 
whereas for the latter, user detection is based on the received signal at the CR receiver. The 
noncooperative techniques include energy detection (ED), matched filter detection (MFD), and 
cyclostationary feature detection (CFD) [3]. Energy detectors are easy to implement but they are 
sensitive to noise and channel impairments as well as they provide unreliable results in low signal-
to-noise ratio scenarios. The matched filter detectors are optimum for additive white Gaussian 
noise (AWGN) channel but they require prior information about the PU signal which practically 
cannot be provided. Further, fine detection accuracy can be attained through CFD but on the 
expenses of increased complexity. Although conventional energy detectors are easy to implement 
and they do not require PU information and channel state information (CSI), they suffer from 
performance degradation especially in low signal-to-noise ratio (SNR) scenarios [4]. Accordingly, 
other energy-detection based techniques are proposed for performance improvements [5,6]. 
        On the other hand, scattering transform provides a method for hierarchal signal representation 
based on deep convolutional networks (ConvNets) [7,8]. Its multi-stage architecture analyses the 
signal of interest into its significant features through every stage. Our main objective is to take 
advantage of the sparsity provided through wavelet filtering, nonlinearity and pooling to detect the 
presence of a signal. Needless to say, due to this cascaded signal analysis the noise effect is reduced 
and the detection accuracy is improved. In order to mitigate the problem of unknown signal 
detection in AWGN, this work introduces a novel spectrum sensing technique based on scattering 
transform (ST) as opposed to conventional energy detection (CED) to provide reliable detection in 
low SNR environments. 
 
2. Scattering Transform: A State-of-Art 
 
        In scattering transform, a signal of interest is analysed through cascaded operations of complex 
modulus wavelet decomposition followed by averaging [8]. This iterative procedure brings up 
significant signals features and average out sources of time variation. A scattering network recovers 
high frequency information lost due to averaging through cascaded wavelet filters and rectification 
with complex modulus. Theoretically, the wavelet transform of the signal �(�)  is a convolution with 
the scaling function �(�), which is a low pass filter with a time support defined by �, as well as 
convolving �(�) with the wavelet function ��(�)  which is a band pass filter. With  	 being the 
center frequency of the filter, a dilated mother wavelet is given by 
 ��(�) = 		��(	�)	                                                                   (1) 
 
Then the wavelet transform of �(�)  can be written as 
  �� = (� ⋆ 	�(�), � ⋆ 	��(�)	)�∈ℝ,�∈�	                                                   (2) 
 
where Λ is the set of all scattering network paths .by applying the complex modulus, the phase of 
all wavelet coefficients is removed and hence (2) becomes 
 |�|� = (� ⋆ 	�(�), |� ⋆ 	��(�)|	)�∈ℝ,�∈�	                                                      (3) 
 
To explain the iterative operation through the network, first, at the root of the network, we 
calculate the low-frequencies variation in the signal which is given by: 
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	���(�) = � ⋆ 	�	(�)                                                           (4) 
 
To recover high frequency information lost by averaging, we apply the wavelet transform modulus 
operator 
 
���	(�, 	�) = �� ⋆	���(�)�                                                    (5) 
 
To regain stabilization, the operator is averaged out such that we obtain 
 	���(�, 	�) = ���	(�, 	�) ⋆ 	�	(�)                                                 (6) 
 
The latter is called first order scattering coefficients. These are computed with wavelets ���(�) 
having �� as an octave frequency resolution. The scattering operator at first order is convolved 
with second wavelets ���(�) and after averaging we get 
 
	���(�, 	�, 	�) = ����	(�, 	�) ⋆ ���(�)� 	⋆ �	(�)                                            (7) 
 
accordingly, the processes of energy averaging by �	(�) and energy scattering by ��(�) are being 
repeated iteratively until the energy reaches a threshold. Thus for any order � ≥ 1, the iterated 
wavelet modulus is given by 
 

�!�	(�, 	�, … 	!) = #$%�� ⋆ 	���(�)� ⋆ ���(�)% ⋆ … $ ⋆ ��&(�)#                              (8) 

 
and the scattering coefficients at order � is given as 
 	�!�(�, 	�, … 	!) = �!�	(. , 	�, … 	!) ⋆ �	(�)                                          (9) 
    
3. Spectrum Sensing with Scattering Operators  
 
        Sensing the spectrum can be viewed as a binary hypothesis testing such that when the primary 
user (PU) is active, the received signal at the secondary user (SU) receiver can be given by [5] 
 ((�) = )(�) + +(�)				, +,-./	0�:   PU present                                            (10) 
 
and when noise only present the received signal becomes 
 ((�) = +(�)				, +,-./	0� :   PU absent                                                (11) 
 
where u(t) is the noise imposed at the receiver input, s(t) the primary user’s signal received by the 
secondary user receiver. Although energy detectors are easy to implement, they cannot 
differentiate significant signals and noise presence [4]. The first order scattering coefficients 
measures the time variation of signal amplitude within frequency bands covered by wavelet filter 
banks [8]. As for the second order coefficients, co-occurrence coefficients are calculated revealing 
interferences of a signal two successive wavelets ���(�)  and ���(�) for all scales and translates [8]. 
Genuinely, filtering with wavelets is a measure of correlation between the investigated signal and 
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the wavelet function. So even with low power signals, filtering with appropriate wavelets enhances 
these correlations which leads to significant energy measurements and reduces the noise effect. 
The architecture of the proposed spectrum sensing technique is shown in Figure 1. The procedures 
for spectrum sensing using scattering signal representation can be summarized as follows: 

1- The received signal is processed through scattering network for signal decomposition which 
enhances signal contribution and reduces noise effect. 

2- The resultant scattering coefficients are used for energy measurements as a test statistic T 
and compared with the detection threshold  1. To reduce noise contribution, first order 
scattering coefficients are only used for detection 

 

     Fig. 1. Illustration of the received signal detection in the scattering domain 

For testing purposes, the noise variance is assumed to be known which can be provided offline 
through experimental measurements. If the noise is additive white Gaussian noise (AWGN) with 
variance 23�, the processed noise through complex modulus wavelet decomposition and averaging 
result in Rayleigh distributed process. Since the variance of a Rayleigh process 24� is defined by 

 
24� = 23�(2 6 7

�)                                                                                  (12) 

 In this case the detection threshold is defined in terms of the variance of the scattered noise by: 

1 = 23�(2 6 7
�)‖��‖�                                                                                 (13) 

4. Results and Discussion  

        In this section, we evaluate the performance of the time-scattering energy detector (TSED) as 
compared to conventional energy detector in low signal-to-noise ratio (SNR) scenario using first 
order scattering coefficients. This evaluation is conducted in additive white Gaussian noise (AWGN) 
channel. The primary user signal is being detected in for two types of communication signals, 
namely, Chirp Spread Spectrum (CSS) and BPSK-Direct Sequence Spread Spectrum (DSSS). The main 
objective is to evaluate the proposed energy detector in terms of detection probability and 
predetermined false alarm probability.  The chirp signal is tested for 50 kHz sampling frequency and 
of duration of one second. The frequency variation starts at 1 Hz up to 2.5 kHz. The average 
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window of the low pass filter of the scattering network is set to 2 msec. The sequence length is 
50000 samples, and 10:	iterations is used for MonteCarlo simulation. As for the DSSS signal, the 
sequence length is 6400 samples. It is sampled at a rate of 1 kHz, with an average window of 32 
msec.  Figure 2 shows an example of the signal decomposition using scattering network for a noisy 
chirp signal. This visualization gives 3 sub-figures. The first one is the scalogram of the signal, the 
second is the averaged signal variation through first order scattering coefficients, and the third 
reveals the hidden signal variation due to noise by second order coefficients. Thus, these 
coefficients represent the noise contribution in the signal of interest and can be discarded for signal 
detection. This increases the reliability of the detector as compared to ED which measures the 
energy content of whatever present in a certain frequency band.  
 

 
Fig. 2. Scattergram visualization of a chirp spread spectrum signal 

 

 
Fig. 3. Detection probabilities vs. SNR for a chirp spread spectrum 
signal 
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The detection probability is calculated for false alarm probabilities of 0.02 and 0.6 and shown in 
Figure 3 and Figure 4 for chirp and spread spectrum signals, respectively. These figures show that 
both detectors yields approximate performance. However, to test the reliability of the detectors, 
noise-only case is considered and false alarm probability is evaluated for different SNR.  As 
observed in Figure 5, we notice that conventional ED declares a detection of a significant user at 
low SNR which is a false detection decision where the scattering based detector gives zero 
detection at low SNR up to -3dB when only first order coefficients are considered for detection. For 
noisy or interfered signals, these coefficients can reflect differences between original. 
 

 
Fig. 4. Detection probabilities vs. SNR for direct sequence spread 
spectrum signal 

 

 
Fig. 5. False alarm declaration for ED and SBD when noise only considered  

 

5. Conclusion  

This work shows the reliability of scattering-detector over conventional energy detector for 
sensing the spectrum in low SNR environment despite its complexity against energy detectors. As a 
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result of its sparse representation and by a proper choice of the wavelet basis, scattering transform 
can enhance significant features, reveal noise variations. Further, it can reduce the noise effect 
since cascaded convolution and averaging with noise results in low projection of the noise on the 
wavelet basis, which gives reduces the noise contribution at the scattered output. 
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