Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Radar Target Recognition Using Salient Keypoint Descriptors and Multitask Sparse Representation

Ayoub Karine 1 Abdelmalek Toumi 2 Ali Khenchaf 3 Mohammed Hassouni 4
2 Lab-STICC_ENSTAB_CID_TOMS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
3 Lab-STICC_ENSTAB_MOM_PIM
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : In this paper, we propose a novel approach to recognize radar targets on inverse synthetic aperture radar (ISAR) and synthetic aperture radar (SAR) images. This approach is based on the multiple salient keypoint descriptors (MSKD) and multitask sparse representation based classification (MSRC). Thus, to characterize the targets in the radar images, we combine the scale-invariant feature transform (SIFT) and the saliency map. The purpose of this combination is to reduce the number of SIFT keypoints by keeping only those located in the target area (salient region); this speeds up the recognition process. After that, we compute the feature vectors of the resulting salient SIFT keypoints (MSKD). This methodology is applied for both training and test images. The MSKD of the training images leads to constructing the dictionary of a sparse convex optimization problem. To achieve the recognition, we adopt the MSRC taking into consideration each vector in the MSKD as a task. This classifier solves the sparse representation problem for each task over the dictionary and determines the class of the radar image according to all sparse reconstruction errors (residuals). The effectiveness of the proposed approach method has been demonstrated by a set of extensive empirical results on ISAR and SAR images databases. The results show the ability of the proposed method to predict adequately the aircraft and the ground targets.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal-ensta-bretagne.archives-ouvertes.fr/hal-01832180
Contributeur : Marie Briec <>
Soumis le : vendredi 6 juillet 2018 - 16:37:29
Dernière modification le : mercredi 5 août 2020 - 03:46:31
Archivage à long terme le : : mardi 2 octobre 2018 - 04:31:44

Fichier

remotesensing-10-00843-v4-1.pd...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Ayoub Karine, Abdelmalek Toumi, Ali Khenchaf, Mohammed Hassouni. Radar Target Recognition Using Salient Keypoint Descriptors and Multitask Sparse Representation. Remote Sensing, MDPI, 2018, 10 (6), ⟨10.3390/rs10060843⟩. ⟨hal-01832180⟩

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

372