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Analytical Tether Model for Static Kite Flight

Nedeleg Bigi, Alain Nême, Kostia Roncin, Jean-Baptiste Leroux, Guilhem Bles,

Christian Jochum and Yves Parlier

Abstract The use of traction kites as auxiliary propulsion systems for ships appears

to be a high-potential alternative for fuel saving. To study such a system a tether

model based on the catenary curve has been developed. This model allows calcu-

lating static flight positions of the kite on the edge of the wind window. The effect

of the wind velocity gradient is taken into account for the evaluation of the aerody-

namic forces acting on kite and tether. A closed-form expression is derived for the

minimum wind velocity required for static flight of the kite. Results are presented

for a kite with a surface area of 320 m2 and a mass of 300 kg attached to a tether

with a diameter of 55 mm and a mass per unit length of 1.20 kg m−1. The minimum

wind speed measured at 10 m altitude to launch the kite is found to be around 4.5
m/s. After the launching phase, we show that the optimal tether length for static

flight is 128.4 m with a minimum wind speed of 4.06 m/s. The presented approach

shows an error up to 9% for a zero-mass kite model with a straight massless tether

regarding the maximal propulsion force estimation.

3.1 Introduction

This study is part of the beyond the sea R© research program led by the ENSTA Bre-

tagne school of engineering. The project attempts to develop a kite system as an

auxiliary propulsion device for merchant ships. Such a system is a high-potential

alternative to conventional fossil fuel based propulsion systems, as indicated by
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several authors [7, 17, 19, 23]. Depending on the maritime route and the seasons,

weather conditions vary. Thus, to achieve a tether and a kite design according to the

encountered weather condition, one of the main inputs of a functional specification

is the minimum wind velocity enabling kite flight. The capacity of the system to tow

a ship at a certain wind condition must be evaluated as well.

Moreover, wind speed increases with altitude, and as it has been highlighted by

many authors, notably by Leloup et al. [17], this is a benefit for the kite to generate

a propulsive force. This benefit is directly dependent on the tether length, the higher

the kite is, the stronger the wind generally is. Therefore, during the early design

stage, studies taking into account tether effects have to be performed. At this stage

of the design a wide range of potential solutions must be investigated. This work

aims therefore to provide an early design step accurate enough to be realistic.

Tethers are currently made of fiber materials such as Dyneema R©(Ultra-high-

molecular-weight polyethylene, UHMWPE) for example. This means that compres-

sion, transverse shear, bending and torsional stiffness of the tether can be neglected

compared to its tensile stiffness. In addition, the tether shape is highly dependent

on aerodynamic loading acting on the tether surface and tether gravity acting on the

tether volume. This kind of structure has been studied for other industrial applica-

tions such as electrical power lines, anchored offshore structures, tethered under-

water vehicles or sling loads. Tether models for airborne wind energy applications

were inspired by these fields.

Williams et al. [24] developed a so-called lumped mass model for dynamic flight.

The mass of each element is concentrated on each node and the distance between

each node remains constant. Breukels and Ockels [4] used discrete element mod-

eling with inelastic bar elements. Argatov et al. [1] accounted for tether sag due to

wind load and gravity, assuming that the tension along the tether is constant. They

proposed a method to calculate wind load by neglecting the tangential wind com-

ponent relatively to the line. They showed how tether effects decrease the power

production for a dynamic flight. A model considering the tether as a straight elastic

spring to account for material stiffness has been used to study the stability of the

kite during a dynamic flight by Terink et al. [21]. To identify the low wind limit for

kite flight, the most restrictive flight case is assumed to be the static flight because

the apparent wind velocity is, most of the time, lower compared to a dynamic flight.

Kite deployment and recovering phases can also reasonably be considered quasi-

static. Indeed, with a constant reeling velocity and neglecting the dynamic effect on

the tether, the kite follows a straight path at a constant speed, thus the kite flight

can be considered as equivalent to a static flight. Moreover, Leloup et al. [17] have

shown for upwind sailing that a static flight could be more efficient than dynamic

flight for fuel saving. All these tether models have been developed for dynamic flight

and are still valid for static flight. Nevertheless, for discrete model, artificial struc-

tural damping needs to be added to reach static equilibrium as reported by Breukels

and Ockels [4]. Considering low wind velocities, tether sag could be important,

therefore a single straight elastic spring modeling the tether [21] is not a realistic

enough assumption. Varma and Goela [22] developed a soft kite tether model for

static kite flights at zero azimuth angle. Their model is based on the catenary curve
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[18]. Varma and Goela [22] consider a flexible tether of constant length and mass

per unit length. Indeed, the average aerodynamic loading on the tether is not signif-

icantly modified by the increasing length of the tether due to its tensile stiffness.

Hobbs [10] studied the influence of the wind velocity gradient effect on the tether

shape for static kite flights at zero azimuth angle. He concluded his study on the

wind profile influence arguing that the main factor influencing the line shape is the

mean wind velocity according to the altitude. Being analytical, the model presented

by Varma and Goela [22] has the potential to sufficiently reduce computation times

to perform tether analysis early in the design.

The study presented in this chapter provides an analytical formulation of the cate-

nary curve [18, 22] to model a flexible tether of constant length for any static kite

flight position, with an arbitrary attachment point altitude on the ship deck, and with

a wind velocity gradient law for kite forces estimation. The preliminary content of

the present chapter has been presented at the Airborne Wind Energy Conference

2015 [3]. The determination of tether’s shape and tension only requires the solu-

tion of a one-dimensional transcendental equation with a fixed-point algorithm. This

procedure improves the reliability and the convergence rate of 2D Newton’s method

suggested in [14]. A closed-form expression is determined to evaluate a mean aero-

dynamic loading on the tether according to the wind velocity gradient effect. These

developments are then used to identify a new analytical low wind speed limit for

kite flight. Then, results highlighting the capability of the model for an early design

stage are presented.

3.2 Mathematical Model

3.2.1 Tether Model

The tether model is based on the well-known catenary curve [18]. As illustrated

in Fig. 3.1, the points S and K mark the extremities of the tether namely the ship

attachment point and the position of the kite. A constant load per unit length is

applied on the tether, which is assumed to be flexible, of constant length and with

no transverse shear and no bending stiffness. Consequently, the tether remains in a

plane defined by (S,yt ,zt) of the Rt coordinate system. R0 = (x0,y0,z0) denotes a

coordinate system attached to the ship sailing at constant speed on a straight course,

where z0 is opposed to the earth gravity. The unit vector zt is defined by the load per

unit length q as

q =−‖q‖zt =−qzt . (3.1)

The unit vector xt is defined as xt = (SK× zk)/‖SK× zk‖, where "×" denotes the

cross product operator. In order to obtain a direct orthonormal coordinate system,

the unit vector yt is given by yt = zt ×xt .

With tension T along the tether, s the curvilinear abscissa, Tyt and Tzt denoting

the projections T ·yt and T ·zt , the following equations define the static equilibrium
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Fig. 3.1 Coordinate systems

used for the development of

the catenary equation

z0

x0

zt

yt

q =−qzt

K

S

O0

y0

T(yt)

ds

yt

Tyt

Tzt

yt

zt

Kzt

Kyt

C (yt)

of an infinitesimal length of tether ds projected on yt and zt

dTyt

ds
= 0, (3.2)

dTzt

ds
−q = 0. (3.3)

According to Eqs. (3.2) and (3.3), a catenary function C must fulfill the following

equation
q

Tyt

=
C′′ (yt)√

1+C′ (yt)
2
, (3.4)

where C′ and C′′ denote the first and second derivative of the function. Therefore,

by integration of Eq. (3.4), C could be expressed as follows

C (yt) =
Tyt

q
cosh

(
q

Tyt

yt +K1

)
+K2, (3.5)

where K1 and K2 are two constants of integration. They are determined with the

boundary conditions
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0 =
Tyt

q
cosh(K1)+K2, (3.6)

Kzt =
Tyt

q
cosh

(
q

Tyt

Kyt +K1

)
+K2, (3.7)

lt =
∫ Kyt

0

√
1+C′2 (yt) dyt , (3.8)

=
Tyt

q

[
sinh

(
q

Tyt

Kyt +K1

)
− sinh(K1)

]
, (3.9)

where Eq. (3.9) is derived from constant tether length lt , Eq. (3.6) from the coor-

dinates of S = [0,0,0]⊤Rt
and Eq. (3.7) from K = [0,Kyt ,Kzt ]

⊤
Rt

. Using trigonometric

identities, constants K1 and K2 can be expressed thanks to the boundary conditions

in order to obtain the function C which can be expressed as

C (yt) =
Kzt sinh(ωyt)+λ

{
sinh(ωyt)− sinh(ωKyt )+ sinh [ω (Kyt − yt)]

}

sinh(ωKyt )
,

(3.10)

where λ and ω are defined by

λ =
lt sinh(ωKyt )−Kzt [cosh(ωKyt )−1]

2 [cosh(ωKyt )−1]
, (3.11)

ω2
(
K2

zt
− l2

t

)
= 2 [1− cosh(ωKyt )] . (3.12)

It can be noticed that the catenary function does not depend on the load per unit

length, q. Equation (3.12) can be rearranged in order to compute the value of ω .

With u = ω2K2
yt

, l̄t =
lt

Kyt
and β =

Kzt
Kyt

we arrive at

u =

⎧
⎨
⎩argcosh

⎡
⎣

u
(

l̄t
2 −β 2

)

2
+1

⎤
⎦

⎫
⎬
⎭

2

. (3.13)

The value of u is computed by applying the fixed-point algorithm to Eq. (3.13)

achieving convergence for all positive values of u. Thus, for a given kite position K

and a given ship attachment point position S, tether tension is expressed by

T(yt) =
[
0,

q

ω
,

q

ω
C′ (yt)

]⊤
Rt

. (3.14)

It can be noticed that the inverse of ω is directly proportional to the tension in the yt

direction with the factor q. Consequently, tether shape and tension along the tether

are determined for any kite and ship attachment point positions.

By contrast to the previous approach, an expression giving the kite location K,

for a known tension at K, is relevant in order to determine the minimal wind velocity

permitting a static flight. This expression is then developed. The tension is tangential

to the tether, which means at K
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C′ (Kyt ) = sinh

(
q

Tyt

Kyt +K1

)
=

Tzt

Tyt

. (3.15)

Then, using Eqs. (3.6), (3.7) and (3.9), expressions for the kite location K with a

given tether tension at K are

Kyt =
Tyt

q

[
argsinh

(
Tzt

Tyt

)
− argsinh

(
Tzt −qlt

Tyt

)]
, (3.16)

Kzt =
Tyt

q

⎛
⎝
√

1+

(
Tzt

Tyt

)2

−

√

1+

(
Tzt −qlt

Tyt

)2

⎞
⎠ . (3.17)

Equations (3.16) and (3.17) are similar to [14, Eqs. (1.27) and (1.28)] in case of an

flexible tether of constant length with very large Young’s modulus.

3.2.2 Wind Model

It has been observed that the wind above the sea increases with the altitude due to

the friction stress on the free surface within the atmospheric boundary layer. This

phenomenon, called wind velocity gradient effect, can be taken into account with

a simple formula according to ITTC [12]. The true wind velocity VTW at a given

altitude z0 is calculated as

VTW = Ure f

(
z0

zre f

)n

, (3.18)

from the known reference wind velocity Ure f measured at an altitude zre f . The coef-

ficient n denotes the friction effect due to the free surface. A typical value of n= 1/7

is given by ITTC [12] for sea friction. Figure 3.2 illustrates the evolution of the wind

Fig. 3.2 Wind velocity gradi-

ent evolution against altitude

according to Eq. (3.18) using

zre f = 10 m, Ure f = 1 m s−1

and n = 1/7 True wind velocity VTW [ms−1]
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velocity with the altitude range from 1 m to 300 m with a wind of 1 m s−1 at the

reference altitude zre f = 10 m.

Consequently, since the relative wind velocity VRW is given by the difference

between the true wind velocity and the ship velocity Vs, VRW can be expressed as

VRW = Ure f

(
z0

zre f

)n

−Vs. (3.19)

3.2.3 Tether Load Model

The load per unit length on the tether is given by

q(s) = qw (s)+qg = qw (s)−mtgz0, (3.20)

where qw denotes the load per unit length due to wind and qg denotes weight dis-

tribution, along the curvilinear abscissa, mt the mass per unit length of tether and g

the acceleration due to gravity (g = 9.81 m s−2).

Aerodynamic tether loading qw is very sensitive since a tether can encounter a

wide range of Reynolds number. The flow around circular cylinder has been widely

studied in the past and is still a research topic as demonstrated by Sarpkaya in his

literature review [20] and in Chap. 2 of this book. In addition, a textile rope has not

exactly a circular section. Jung [15] performed wind tunnel experiments for various

rope sections and various roughness surface at a Reynolds number Re = 84.0×103.

According to his measurements the drag coefficient can vary from 0.76 to 1.56 with

orthogonal flow.

Nevertheless, since the Reynolds effect and the surface roughness are out of the

scope of the paper, the Hoerner formulation [11] is used similar to many other au-

thors involved in airborne wind energy. As mentioned in Sect. 3.2.2, VRW depends

on altitude, and therefore qw as well. Since the catenary tether model requires only

constant load per unit length, as can be seen in Sect.3.2.1, an approximation of con-

stant wind tether load must be achieved. The determination of an equivalent altitude

zq0
to evaluate qw is proposed here. It is assumed that the tether is a straight line

between S and K̃. K̃ is the kite position calculated with the static flight model de-

scribed in [17] and summarized in Sect.3.2.5.

As illustrated in Fig. 3.3, the wind load qw can be decomposed into drag force

qd and lift force ql

qw = ql +qd . (3.21)

Both components are determined from the Hoerner formulas [11] as
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Fig. 3.3 Diagram of the tether

wind load model

zt

yt

VRW

(
zq0

)

K̃

S

qd

ql

αt

xt

Tether

qd =
1

2
ρadt

[
1.1sin3 (αt)+0.02

]∥∥VRW

(
zq0

)∥∥VRW

(
zq0

)
, (3.22)

ql =
1

2
ρadt

[
1.1sin2 (αt)cos(αt)

]∥∥VRW

(
zq0

)∥∥

VRW

(
zq0

)
×
[
VRW

(
zq0

)
×SK̃

]

∥∥∥VRW

(
zq0

)
×SK̃

∥∥∥
(3.23)

where ρa is the air density, dt is the tether diameter, αt is the angle of attack between

the wind and the tether as described in Fig. 3.3 and assuming a base drag coefficient

of 1.1 for orthogonal flows (αt = π/2).

With respect to the ship velocity VS and according to Eq. (3.18), the relative wind

velocity at the altitude zq0
is given by

VRW

(
zq0

)
= Ure f

(
zq0

zre f

)n

−VS. (3.24)

In order to conserve approximately the total force acting on the tether, zq0
is defined

such that the following equation must be fulfilled

∥∥VRW

(
zq0

)∥∥2
=

1(
Kz0

−Sz0

)
∫ Kz0

Sz0

‖VRW (z)‖2
dz, (3.25)

which, by keeping only the largest root, leads to a second degree polynomial equa-

tion in zn
q0
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0 =

∥∥Ure f

∥∥2

z2n
re f

z2n
q0
−2

Vs ·Ure f
zn

q0
+‖Vs‖2 −

∥∥Ure f

∥∥2 K2n+1
z0

−S2n+1
z0

(2n+1)
(
Kz0

−Sz0

)
z2n

re f

+2Vs ·Ure f

Kn+1
z0

−Sn+1
z0

(n+1)
(
Kz0

−Sz0

)
zn

re f

−‖Vs‖2
(3.26)

It must be noticed that the definition of the equivalent altitude zq0
, Eq. (3.25) is not

correct to conserve the total force acting on the tether. Indeed, the load direction

varies with the altitude which is not considered in Eq. (3.25). A better definition

could have been

VRW

(
zq0

)
=

V2√
‖V2‖

, (3.27)

with,

V2 =
1

Kz0
−Sz0

∫ Kz0

Sz0

‖VRW‖VRW dz. (3.28)

However, our proposition should be reasonable in order to achieve a closed-form

formulation of the equivalent altitude zq0
.

3.2.4 Aerodynamic Kite Model

For a static flight, forces acting on the kite must be opposed to the tether tension and

vary with altitude due to the wind velocity gradient. Applying the first Newton’s law

to the kite we obtain

0 =−T(Kyt )+L+D+W, (3.29)

where T(Kyt ) is the tether tension at kite location, L is the lift kite aerodynamic

force, D is the drag kite aerodynamic force and W = −MKgz0 is the kite weight

calculated from the kite mass MK . For static flight, the lift-to-drag ratio angle ε is

assumed to be constant. D is by definition in the direction of the relative wind and

can be determined as follows

D =
1

2
ρaAKCLK

tan(ε)‖VRW‖VRW , (3.30)

where ρa is the air density, AK is the kite area and CLK
is the kite lift coefficient.

According to the assumption of a constant lift-to-drag ratio, the magnitude of the

lift can be determined as

‖L‖= ‖D‖
tan(ε)

(3.31)

and the orthogonality of lift and drag components is formally expressed as

L ·D = 0. (3.32)

zn
re f
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One additional equation is needed to determine the lift. As a balance is expected

between kite forces and tether tension, we know that at least they must stay in the

plane (S,yt ,zt). This is a consequence of the projection of Eq. (3.29) on axis xt ,

which can be expressed as

(L+D+W) ·xt = 0. (3.33)

The component Lxt can be derived from Eq. (3.33) as

Lxt =−(Dxt +Wxt ) . (3.34)

Equations (3.31) and (3.32) lead to a second order polynomial equation in Lzt

Lzt =

√
∆ −Lxt Dxt Dzt(

D2
zt
+D2

yt

) , with (3.35)

∆ =
D2

yt
‖D‖

tan2 (ε)

[
D2

yt
+D2

zt
−L2

xt
tan2 (ε)

]
. (3.36)

Equation (3.36) describes the discriminant ∆ of the second order polynomial equa-

tion in Lzt . Using Eq. (3.32) Lyt can be derived as

Lyt =−Lxt Dxt +Lzt Dzt

Dyt

(3.37)

The condition ∆ ≥ 0 is a necessary condition to allow a static kite flight.

3.2.5 Zero-Mass Model

In this study, the zero-mass model developed by Leloup et al. [17] is used as refer-

ence model. This model has been expressed for static and dynamic kite flight. For a

commodity purpose the corresponding static flight formulation is recalled with the

present coordinate system. Neglecting the kite mass and the tether mass, the first

Newton’s law applied to the kite can be expressed by the following equation

0 =−T+L+D, (3.38)

where T is given according to Leloup et al. [17] as

T =
1
2
ρaAkCLK

‖VRW‖2

cos(ε)

SK

‖SK‖ . (3.39)

We define the reference frame RRW = (S,xRW ,yRW ,z0), with xRW = VRW/‖VRW‖
and yRW = z0 ×xRW , as illustrated in Fig. 3.4, to obtain
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O0

K

VRW

z0

θ

φ

S
xRW

yRW

Fig. 3.4 Zero-mass model parametrization of Leloup et al. [17]. In this diagram, the azimuth angle

φ is negative

SK = [lt cos(φ)cos(θ) , lt sin(φ)cos(θ) , lt sin(θ)]⊤RRW
. (3.40)

The static flight condition is calculated by Leloup et al. [17] as

φ =±arccos

[
sin(ε)

cos(θ)

]
(3.41)

3.2.6 Kite Static Equilibrium

The equilibrium equation of the kite, Eq. (3.29), can be solved by coupling these

models. The initial kite position is determined according to the zero-mass formu-

lation of the kite balanced equation, as shown in Sect. 3.2.5. From this position,

the tether load and coordinate system Rt are calculated, as shown in Sect. 3.2.1,

and kept constant until the kite equilibrium position is reached. A Newton-Raphson

algorithm, in Eq. (3.42), is used to solve the kite static equilibrium in plane (yt ,zt)

[
Kyt

Kzt

]

(k+1)

=

[
Kyt

Kzt

]

(k)

−

⎡
⎢⎢⎣

∂Fyt

∂Kyt

∂Fyt

∂Kzt

∂Fzt

∂Kyt

∂Fzt

∂Kzt

⎤
⎥⎥⎦

−1

(k)

[
Fyt

Fzt

]

(k)

, (3.42)

where F =−T+L+D+W and k represents the iteration number.

11



3.2.7 Verification of the Implementation

The implementation of the presented model is verified on the basis of the experi-

mental data of Irvine and Sinclair in [13]. In this experiment, the two extremities of

a cable were horizontally attached. The cable length was 1.20 m, the cable cross sec-

tional area was 1.58 10−6 m2 and the Young’s modulus of the cable was 1.00×1011

N m−2. The horizontal distance between the attachment point was 1.00 m. A total

of 20 weights of 2.45 N were added to the cable with ferrules in order to neglect

the cable bending stiffness. From the attachment point, the weights were attached

with a distance of 0.03 m and the weights were equally spaced each other by a

distance of 0.06 m. The weight of the cable, ferrules and weights were 50 N. Fig-

ure 3.5 represents the cable corresponding to the experiment in [13] (dashed line)

and the corresponding cable shape calculated with model, Eqs. (3.10) – (3.13). The

experimentally measured shape of the cable has been extracted from [13].

Fig. 3.5 Comparison of the tether shape computed with the present model and measured by [13]

The present model fits pretty well with the experimental data [13] and can be

considered validated. Nevertheless, a comparison between the entire present model

and static kite flight must be investigated as well.

3.3 Low Wind Limit for Kite Flight

Most kite launch step begins by quasi-static flight at zero azimuth angle. Therefore

the low wind limit for static kite flight at zero azimuth angle is an important param-
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Fig. 3.6 Diagram of the lower

limit static flight case

z0

y0

zt

yt

K

O0

q

Kz0

Sz0
T(S) Horizontal tangency

VRW

(
zq0

)

η

eter. Obviously, a tether should not touch the ground or the free surface. In that case,

friction with the ground could have a dramatic effect on the material durability and

kite control. This leads to the mathematical condition that the whole tether must be

above the attachment point, as shown in Fig. 3.6. The mathematical expression of

this limit is given by

T(S) · z0 = 0. (3.43)

In the static kite flight case at zero azimuth angle, the first Newton’s law applied to

the tether and projected on axis z0, in accordance with the condition given by Eq.

(3.43), leads to

L−W + ltq · z0 = 0. (3.44)

Therefore, the relative wind at the kite location is given by

VRW =

√
2(W − ltq · z0)

ρaAkCLK

. (3.45)

In the static kite flight at zero azimuth angle, the kite position in reference frame R0,

compared to the position in reference frame Rt , is defined by the angle

η = arctan

(
−q ·y0

q · z0

)
. (3.46)

Kite altitude in R0 is given by

Kz0
= Sz0

+Kyt sin(η)+Kzt cos(η) . (3.47)
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Inserting Eqs. (3.45) and (3.47) into Eq. (3.24), assuming VRW and VS are collinear,

and reorganizing leads to the wind velocity at the measurement altitude

Ure f ,min =
zn

re f[
Sz0

+Kyt sin(η)+Kzt cos(η)
]n

[√
2(W − ltq · z0)

ρaAkCLK

+Vs

]
. (3.48)

As indicated by Eqs. (3.20) – (3.24), q depends on Ure f ,min which means that Eq.

(3.48) needs to be solved. However, rather than solving the problem numerically,

for example by iterative methods, a closed-form approximation of the minimal wind

velocity required for a static flight is provided assuming that the load per unit length

on the tether is only due to the gravity (this hypothesis is discussed at the end of the

Sect. 3.5 and is illustrated in Fig. 3.10). Therefore, zt is equal to z0 and the load per

unit length is q = qg. Then, the closed-form Eq. (3.45) becomes

VRW =

√
2(W +mt ltg)

ρaAkCLK

, (3.49)

where g= 9.81 m s−2 is the acceleration due to gravity. Using Eqs. (3.17) and (3.24),

the lower limit is

U−
re f ,min =

zn
re f

(√
2g(Mk+lt mt )

ρaAkCLK
+Vs

)

{
Sz0

+ tan(ε)
(

lt +
Mk
mt

)[√
1+

(
mt lt

(mt lt+Mk) tan(ε)

)2

−1

]}n . (3.50)

Using the following dimensionless problem parameters

Ũ =U−
re f ,min

√
AkρaCLK

2W
, l̃t =

mt lt

MK

, S̃ =
Sz0

zre f

,

Ṽs =Vs

√
AkρaCLK

2W
, z̃ =

zre f mt

MK

,

Eq. (3.50) can be normalized to

Ũ =

√
1+ l̃t +Ṽs⎧

⎨
⎩tan(ε)

(1+l̃t)
z̃

⎡
⎣
√

1+

[
l̃t

tan(ε)(1+l̃t)

]2

−1

⎤
⎦+ S̃

⎫
⎬
⎭

n . (3.51)

The parameter l̃t can be interpreted as the dimensionless tether length. The attach-

ment point altitude is normalized by the wind measurement altitude. The parameter

z̃ characterizes the tether mass per unit length compared to the kite mass. This last

parameter provides information on the structural and material design priority be-
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tween the tether and the kite, it increases when the ratio of safety factors between

the line and the kite increases.

3.4 Case Study

The following example calculations are based on the case study of Dadd [5] where

kite parameters have been extrapolated from data measured by Dadd et al. [6] for

a Flexifoil R© Blade III kite with 3 m2 surface area. Kite and tether characteristics

are summarized in Table 3.1. Tether diameter and mass per unit length have been

estimated using a dynamic flight load case calculated with the analytical zero-mass

model developed by Leloup et al. [17]. The flight trajectory is taken from Argatov

et al. [2] with a polar angle amplitude of 16◦ and an azimuth angle amplitude of

66◦. For a true wind speed of 17 m s−1 and for a cruising ship speed of 7.5 m s−1,

according to the model of Leloup et al. [17], maximum tether tension is given for a

true wind angle1 of 110◦. At this configuration the tether tension is 1.5×106 N.

Table 3.1 Kite and tether

characteristics for the study.

Estimated values are marked

by an asterisk (∗)

Flexifoil R© Blade III characteristics extrapolated by [5]

Wing surface area AK 320 m2

Wing mass∗ MK 300 kg

Aerodynamic lift coefficient CL 0.776 -

Lift-to-drag ratio angle ε 12.02 deg

Tether characteristics

Length lt 300 m

Mass per unit length∗ mt 1.20 kg m−1

Diameter∗ dt 55.0 mm

The chosen material of the tether is Ultra-High Molecular Weight Polyethylene

(UHMWPE), which is also known under the brand name Dyneema R©. According to

its ultimate specific stress [8, 9, 16] of 1.46×103 J g−1 and a safety factor of 1.2, a

maximal load of 1.25×106 N is allowed. This leads to a tether with a mass per unit

length of 1.2 kg m−1 and a diameter of 55 mm.

For the results presented in Sects. 3.5 and 3.6, the ship attachment point altitude

Sz0
is 10 m and the true wind speed is measured at an altitude of zre f = 10 m.

According to the ITTC [12], the wind velocity gradient parameter is n = 1/7.

1 The true wind angle is the angle between the ship path and the true wind velocity at the reference

altitude [17]
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3.5 Minimal Wind Velocity

In order to identify a low wind limit for static kite flight, the criterion of Sect. 3.3

is applied with ε = 12.02◦. Figure 3.7 represents three surface plots of the non-

dimensional minimal wind velocity Ũ defined by Eq. (3.51) as a function of the

non-dimensional parameters z̃ and l̃t for Ṽs = 0 and for three specific values of S̃.

Assuming a given value of l̃t , Fig.3.7 shows that the non-dimensional minimal

wind velocity Ũ increases when the ratio mt lt/MK increases or when the ratio S̃

increases. These results make sense in a natural way. The explanation of the vari-

ation of Ũ according to the tether length is less obvious as it can be observed in

Fig.3.7. An optimal tether length can appear to minimize Ũ . Nevertheless the main

result is that the non-dimensional minimal wind velocity increases when the tether

length increases beyond a finite value which can be zero. This result is important

for keeping the kite airborne. Finally the effective minimal wind velocity U−
re f ,min is

obtained by dividing Ũ by the factor
√

AkρaCLK/(2W ). The latter increases when

the kite weight to lift coefficient ratio increases.

For the investigated case described in Sect. 3.4 and a zero ship velocity, the min-

imal wind velocity U−
re f ,min given by Eq. (3.50) has been plotted in Fig. 3.8 for

different tether lengths from 0 to 400 m. For a tether length lt = 0, the minimal re-

quired wind speed is 4.44 m s−1. Then, the minimal wind speed required increases

to reach a maximum at 4.48 m s−1 for a tether length of 8 m. With longer tether, the

minimal required wind speed decreases to 4.06 m s−1 for lt = 128 m. The third part

l̃t

Fig. 3.7 Surface plots of the non-dimensional minimum wind velocity Ũ as function of the non-

dimensional parameters z̃ and l̃t for S̃ = 0.1,0.5 and 1
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Fig. 3.8 Minimal wind velocity Ure f at zre f = 10 m for a tether length lt from 0 to 400 m

of the curve increases. A tether length of 128.4 m is optimal to allow a static flight

for a minimal true wind speed. For this tether length the required true wind speed is

4.06 m s−1.

On one hand, the longer the tether, the higher the kite is. So, due to the wind

velocity gradient effect, the relative wind speed at the kite increases with the tether

length. On the other hand, tether weight increases with tether length. In Fig. 3.8

it can be noticed that for tether length such as 8 ≤ lt ≤ 128 m the increase of the

relative wind speed is more significant than the increase of the tether weight mt lt .

This has the effect of reducing the minimal wind speed required to allow a static

flight. For tether length such as 0 ≤ lt ≤ 8 m and lt ≥ 128 m, the phenomenon is

reversed. The increase of the wind speed is no longer sufficient to counteract the

increase of the tether gravitational load.

Figure 3.9 shows the minimum wind required to allow a static flight for different

lift-to-drag ratio angles ε = arctan(D/L). Here, for low range of ε , the wind velocity

required increases linearly with ε .

In this section, the effect of gravity on the tether has been taken into account

while the influence of the aerodynamic loading has been neglected. For a static

flight case at zero azimuth angle and for a tether length of 300 m, a comparison

between aerodynamic load and gravitational load on the tether is displayed in Fig.

3.10.

The diagram clearly shows that for the minimum wind speed of 4.5 m s−1, which

is required for static flight according to Fig. 3.8, the corresponding wind load is less

than 12.5% of the gravitational load. Thereby, in order to obtain a closed-form for-
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Fig. 3.9 Minimal wind velocity Ure f at zre f = 10 m for a lift-to-drag angle ε range from 1◦ to 80◦
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Fig. 3.10 Tether load per unit length due to wind qw and tether load per unit length due to gravity

qg for a wind Ure f range from 0 m s−1 to 15 m s−1 at zre f = 10 m
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mula to determine the minimal wind speed to allow a static flight, the assumption of

neglecting the aerodynamic force can be considered as being reasonable. However,

it can be expected that within the framework of this hypothesis, the low wind speed

limit is underestimated.

3.6 Tether Tension

Figure 3.11 represents tether tension for all azimuth angles enabling a static flight at

wind condition Ure f = [0,7.5,0]⊤R0
m s−1 and ship velocity Vs = [7.5,0,0]⊤R0

m s−1.

Two models are compared. Solid and dashed lines are respectively the tension calcu-

lated with the present model at ship position S and kite position K. The dotted line

represents static flight tension calculated with the model of [17]. Red, black and

blue lines are the tension projected on the unit vector x0, y0 and z0, respectively.

For the presented model, a difference in tension between the ground and kite

attachment points can be noticed. This difference is significant for the tensions pro-

jected on the axis z0 and it is caused by the tether weight and aerodynamic loads but

as well by the tension direction differences between S and K.

Leloup et al. [17] consider a straight tether and do not take into account tether

loading and kite weight, leading therefore to no differences in tension between the

kite and the attachment point. Moreover for a given azimuth, kite altitude is higher

for the zero-mass model than for the present model. Combined with the wind veloc-

Tx0
(K)Tx0

(S)

Ty0
(K)

Tz0
(K)

Ty0
(S)

Tz0
(S)

Azimuth [◦]

F
o

rc
e

[N
]

Tz0

Ty0

Tx0

Zero-mass model Tx0

Zero-mass model Ty0

Zero-mass model Tz0

Fig. 3.11 Tether forces projected in frame R0 for azimuth angle from −75◦ to 75◦ calculated with

the present model at ship attachment point S and kite position K and with the zero-mass model

presented in Sect. 3.2.5
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ity gradient effect, this leads to a higher kite aerodynamic force with the model of

Leloup et al. [17].

The propulsive part of the tether tension is the tension projected along the ship

path, Tx0
(S). The optimal position of the kite to generate the maximum propulsive

force is reached for an azimuth angle of −73.67◦ for both models. We denote FP0

as the propulsive force obtained with the zero-mass model of Leloup et al. [17]. At

this azimuth angle the dimensionless difference between FP0
and Tx0

(S), defined by

∆p =
FP0

−Tx0
(S)

Tx0
(S)

(3.52)

for a ship velocity Vs = [7.5,0,0]⊤R0
m s−1 and for a wind velocity range from Ure f =

[0,5.0,0]⊤R0
m s−1 to Ure f = [0,20.0,0]⊤R0

m s−1, is plotted in Fig. 3.12. It can be

Fig. 3.12 Plot of Eq. (3.52), the dimensionless difference of propulsion forces calculated with the

present model compared to propulsion forces calculated with the zero-mass model described in

Sect. 3.2.5 for a wind range from 5 m s−1 to 20 m s−1 at zre f = 10 m

noticed from this diagram that the relative difference between FP0
and Tx0

(S) is

up to 9% for a wind speed of 5 m s−1 and decreases to almost 1.5% for a wind

speed of 20 m s−1. The error decreases with an increasing wind velocity because

of tether loading. Kite weight and sag effects become smaller compared to the kite

aerodynamic force. This shows that it is particularly important to take into account

tether deformation due to tether loading at low wind speed. By contrast, at high-

speed wind, the propulsive force error tends to 1%.
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3.7 Conclusion

A three-dimensional analytical model for the tether deformation due to gravity and

aerodynamic loading has been derived in this chapter. The effect of the wind veloc-

ity gradient has been taken into account both for the tether as well as for the kite

aerodynamics. A method for determining a low wind speed limit for kite flight has

been developed. This method allows for a comparative study between the influence

of tether design, in terms of length and mass per unit length, and kite design, in terms

of lift-to-drag ratio angle, lift coefficient and mass. For the present case study, an op-

timal tether length around 128 m has been identified in order to allow a static flight

at a minimal wind velocity. A wind speed above 4.5 m s−1 is required to launch the

kite. Finally, the presented model indicates an error up to 9% for the zero-mass kite

model with a straight zero-mass tether on propulsion force estimation with a static

kite flight case.

For this study a tether drag coefficient of 1.1 has been assumed. Jung [15] shows

how coating can be used to effectively reduce the aerodynamic drag of the tether.

Because a coated rope is heavier it should be analyzed whether the increased tether

mass justifies the achievable drag reduction when considering the low wind limit for

static kite flight. The presented model could be an interesting starting point to study

these competing effects.

In addition, the solution for the static position of a kite in a wind field with ve-

locity gradient is computed in less than 1 s on a common PC. Because of these short

calculation times the model is suitable for coupled simulations of a ship towed by

a kite for maneuvering and seakeeping assessments. The accuracy of the presented

model will further be assessed by comparison with finite element simulations which

is currently in progress.
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