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Abstract: Energy extracted from the ocean can provide a source of regular and foreseeable electrical
production at higher energy densities than any other renewable energy resource. The marine current
resource is potentially great and is focused in several sites around the world. The knowledge of the
energy potential, its constraints and availability are all prerequisites to determine the possibilities
for the implementation of infrastructure to produce energy. They are also required to anticipate the
structuring of energy routes and to respond to increasing technological needs. Several Moroccan
regions want to take advantage by their coastal domain and play a role in the development of the tidal
energy sector. They also want to benefit from the associated economic advantages knowing that the
Mediterranean coast length is 550 km and the Atlantic length is 3000 km, respectively. The Copernicus
Marine Service ocean products provide key input for such technologies, as they can be employed
to help evaluate the accessible ocean energy devices and choose the most attractive sites to exploit
the tidal energy projects in Morocco. The goal of this research was to evaluate and analyze the tidal
marine current resource at the sites which are potentially suitable for the installation of Horizontal
Axis Marine Current Turbines in Morocco. Distributions of available power of tidal energy in the
Moroccan region are provided, and three possible areas are suggested for installing tidal energy
conversion systems.

Keywords: tidal stream energy; resource assessment; power density; Morocco

1. Introduction

Covering 70% of our globe, the oceans are the world’s largest source of energy. Marine renewable
energy technology has quickly developed to meet Morocco’s energy requirements and decrease its fossil
fuel needs [1]. Many technologies have been developed to harness the energy of the seas. Morocco has
two maritime frontages with stable and predictable marine currents with a total length equivalent to
3500 km [2]. All these resources make Morocco a country with several sites allowing the development of
renewable marine energies. These natural energy sources provide very good opportunities to innovate and
improve the performance of tidal energy converters from 20% to 30%. The development of a hydrokinetic
sector will complement and diversify the Kingdom’s renewable energy mix [3]. Currently, its traditional
partners are already mastering the energies of the seas on a large scale because their investments in
R&D (research & development) and support of their industrial sectors. World leaders in marine energies
include the United Kingdom, which hosts the world’s largest hydroelectric power reserve in the Pentland
estuary, and has 3300 MW of offshore wind energy, followed by Canada, with an exceptional natural
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potential of 35.7 GW in marine energies (excluding offshore wind) [4]. New entrants have invested in this
sector and have strong ambitions to develop their production capacities, such as the United States, China,
Denmark, Spain, Portugal and France [5]. The greatest potential for wave energy is located where winds
are strongest and the fetches are long. Until now, despite its great potential for wind and solar energy,
only 10% of Morocco’s energy production comes from renewable sources, mainly hydro and wind. Sierra
and co-workers [6] have found that the average power of the waves is important, with an annual energy
30 kW/m in Atlantic coast.

Studies have shown that there is a great potential in installing a tidal current generator in the
Strait of Gibraltar [7]. One of the great advantages of this zone is the existence of exceptionally coherent
and solid currents so the potential for electricity generation is considerable. Currently, despite the
advantages of the Gibraltar’s zone as a natural energy distinction, this project is quite theoretical,
without future plans. However, in the future, tidal production in the Strait of Gibraltar could be an
important asset for the advancement of renewable energy use in Morocco [8].

Oceanic tides are the result of the interaction of the gravitational fields of the Earth, Moon, and Sun [9].
Capturing energy from tides is not a new idea. In 1981 Underwater Electric Kite (UEK) invented a new
system to capture ocean, river, and tidal currents using hydrokinetic turbines [10]. The elevation variance
between low and high tides can be employed for electricity production. Tidal energy brings great energy
density, lower environmental impact and great predictability. Tidal current converters are very similar to
wind turbines, unless they are located below the water surface instead of above or on land. The turbine
transforms the flow of water coming from tide, the kinetic energy, into electricity. Water is 830 times denser
than air and therefore can produce electricity at lower velocity than wind turbines. Figure 1 presents
the tidal range resources worldwide. The exploitable tidal current power with actual technologies is
evaluated about 75 GW in the world and 11 GW in Europe. UK and France have highest marine current
potentials (6 GW and 3.4 GW respectively) among the European countries [11]. Tidal current turbine have
observed a lot of research work in recent years and are indeed a technology close to the industrial stage
but still in the experimental phase in test sites such as the European Center for Marine Energy (EMEC) in
Scotland [12] and the Marine Energy Research Center in the Bay of Fundy in Canada, or the experimental
site of Paimpol in France. However, only prototypes have been tested such as two-bladed SeaGen project
turbines in the UK manufactured (Siemens and Bluewater Energy Services, Scotland, UK), Three-bladed
Hammerfest Strom turbine (Andritz Hydro Hammerfest (AHH), Glasgow, Scotland, UK) and there
multi-bladed Underwater Electric Kite (UEK, Annapolis, MD, USA) which currently work a wholly
functional plant at Eagle, Alaska. The capture of the kinetic energy of tidal currents by tidal turbines is
currently being investigated to exploit tidal energy however, currents must exceed 1.5 m/s for significant
duration. Under lower speeds; tidal turbines are not profitable, while higher speeds can damage the
turbines [13]. The most suitable areas to utilize tidal energy are very few; and they are concentrated in
areas where the amplitude of the tidal wave is amplified like in the case of the Bay of Mont-Saint-Michel
in France and the Bay of Fundy in Canada where the tidal current can exceeds 2.7 m/s [14].
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This work is based on the statistical evaluation of marine current velocity characteristics and
energy potential at three areas in Morocco (32◦00′ N 5◦00′ W). The objective of this research is to
evaluate the potential of marine currents in Morocco and to identify the most suitable sites for the
development of tidal energy. It also characterizes in detail the resource of the various sites of interest
through the provision of relevant indicators using numerical model results provided by The Copernicus
Marine Environment Monitoring Service (CMEMS).

2. Data and Methods

2.1. Study Area and Available Tidal Data

Morocco is located in the Maghreb region of North Africa and its geographic position has many
advantages as it is located in the middle of two continents: Europe and Africa (Figure 1). Morocco is
situated at the northwest corner of Africa, rimming the North Atlantic Ocean and the Mediterranean
Sea. With a population of over 34 million and an area of 720,000 km2. Morocco fully plays its role
at the regional level. It, thus, it intends to integrate into the Mediterranean Solar Plan and provides
an opportunity for combining the availability of renewable resources, accessibility to industrial parks
and poles of skilled labour [15,16].

Its strategic position is very important to consolidate the regional key, which is Morocco’s
responsibility in the field of energy by giving this sector the necessary means to enable it to meet the
challenges it faces in order to facilitate its integration into the world scenario. In addition, the energy
market to become a key player in Euro-Mediterranean energy cooperation, in particular through the
strengthening of electricity interconnections with neighboring countries and the establishment of the
infrastructure needed to achieve regional integration [17]. The Sahara represents 36.57% of the total
surface of Morocco. In these regions the solar potential is important and the density of the population
is medium. The use of conventional energy sources requires high costs. The rate of rural electrification
rose steadily to 97.4% by the end of 2011. The tariff of consumption of the electricity varies between
0.9010 MAD/kWh for up to 100 kWh, and 1542 MAD /kWh for up to 500 kWh. In the rural areas,
diesel generators are used in most cases for power generation, although these devices have unwanted
environmental effects [18,19]. Morocco has a Mediterranean climate that is generally hot and dry for
most of the year. Geographical location has several advantages for the development of renewable
energies (solar, wind, hydro, etc.); particularly with climatic conditions widely favorable [20].

2.2. Resource Assessment Methodology

Marine renewable energies comprise a large number of technologies encompassing tidal,
and offshore wind technologies. Numerical modelling could contribute to promoting the development
of such projects in various ways [21]. Through atmospheric, waves and hydrodynamic models,
the regions with enough energetic resource for these industries could be classified. Furthermore,
maintenance services and operation rely on the sea conditions that operational modelling is able to give
through forecasting services. These forecasts could also be valuable for the survivability of the installed
devices as extreme events could be identified and thus the possible damages could be mitigated by
taking appropriate measures. Moreover, operational modelling could estimate the amount of energy
that would be available and how much could be generated by the devices thus the electric system
would be more efficient in supplying the produced energy. In this article, the tidal energy potential
is determined by exploring the results of numerical models for The Copernicus Space Component.
The numerical models shown in this research ran operationally and their results and forecasts can
be accessed at [22]. The CMEMS database has been widely used by several researchers to evaluate
wave and tidal energies. This simulation has some weaknesses in terms of accurately representing
some storm events, but it generally represents mean values quite well, and this database proposes
homogeneous long-term data and a higher spatial coverage than that achieved with single-point
observations. Moreover, data from the CMEMS database have previously been used to identify tidal
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energy potential in different regions [23–25]. Three regions are analyzed for investigating their tidal
energy potential, while their geographical coordinates and catalog using from the Copernicus Marine
Environment Monitoring Service is provided in Table 1.

Table 1. Locations and catalog employed for the region considered.

Regions Geographical Coordinates Catalog

Mediterranean Sea 6◦ W–2◦ W; 37◦ N 35◦ N IBERIA-BISCAY-IRELAND REGIONAL SEAS (IBI)
South Atlantic Coast 22◦ W–13◦ W; 26◦ N 21◦ N GLOBAL_REP_PHY_001_021
North Atlantic Coast 19◦ W–5◦ W; 35◦ N 26◦ N GLOBAL_REP_PHY_001_021

In this context, the examination of resource evaluation is limited to issues around maximizing
energy extraction. It is recognized that in the real world there are other agents that may constrain
the selection of sites, including access for maintenance; survival of equipment; environmental and
ecological impacts; and integration with the power distribution network. Aside from these questions,
it is recommended that the following steps (Table 2) are required in resource evaluation as part of
an iterative design process [26]:

Table 2. Steps required in tidal energy resource evaluation.

Steps Description

Step 1

Selection of sites suitable for establishing arrays of
tidal current generators. This is mainly restricted by
a minimum value of mean cube flow velocity and
an appropriate range of depths for a specific kind
of generator.

Step 2

Initial sizing and evaluating of the generating device
to maximize energy captured from the life of the
device taking into account elements such as the
long-term variations in flow velocity; a vertical
profile of flow velocity; deviation of the flow from
rectilinear motion.

Step 3

Given the device parameters above, the study of
various arrangements (longitudinal spacing, lateral
spacing, and orientation) of generators within the
chosen site to maximize coupled power output.
Revision of generator parameters if needed.

Step 4

Survey of the extent of the significant impact of the
proposed tidal current generator array on tidal
parameters. If requisite, improvements made to
power output evaluate due to resulting changes in
boundary conditions.

This research analyses the tidal energy resource in Morocco using a 5-year series of data obtained
from numerical modeling (hindcasting). The spatial distribution of tidal power is analyzed using data
from 2 areas (Irish-Biscay-Iberia, Mediterranean sea). This allows a fast evaluation of the feasibility of
tidal energy locations. The location of these regions is presented in Figure 2.
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To obtain the power potential of the Morocco Atlantic coast and the Mediterranean Sea the values
were obtained for one square meter cross-sectional area, therefore using the following formula [27]:

P =
1
2
× ρ×V3 (1)

where ρ the density of water (kg/m3) and V is the instantaneous current velocity (m/s). The power
of the resource increases very quickly with the speed of the current, and it is considered that tidal
turbines become interesting if the current exceeds 2 m/s. A frequent assumption is that the speed
varies according to the formula:

V = V0(
z
p
)

1
7 (2)

where z is the distance above the bottom, p the depth, V0 the speed of the current at the surface. In fact,
the maximum speed is usually located slightly below the free surface. Figure 3 shows the variation
curve according to this law for a channel 50 m deep.

Energies 2018, 11, x FOR PEER REVIEW  5 of 17 

 

To obtain the power potential of the Morocco Atlantic coast and the Mediterranean Sea the 
values were obtained for one square meter cross-sectional area, therefore using the following formula 
[27]: ܲ = 12 × ߩ × ܸଷ (1) 

where ߩ the density of water (kg/m3) and V is the instantaneous current velocity (m/s). The power 
of the resource increases very quickly with the speed of the current, and it is considered that tidal 
turbines become interesting if the current exceeds 2 m/s. A frequent assumption is that the speed 
varies according to the formula: ܸ = ଴ܸ(݌ݖ)ଵ଻ (2) 

where z is the distance above the bottom, p the depth, ଴ܸ the speed of the current at the surface. In 
fact, the maximum speed is usually located slightly below the free surface. Figure 3 shows the 
variation curve according to this law for a channel 50 m deep. 

 

Figure 3. Water speed vs. depth. 

The depth at which the tidal turbines are installed is moderate (a few tens of meters). It would 
be possible to work on machines with divers. However, dive must have a minimum duration 
(because of the decompression stops) and cannot fit into a moderate current period. The strong 
currents pose big safety problems and require technicians perfectly trained to this type of 
intervention. It is essential to design all equipment so that any necessary interventions are reduced 
to a minimum. 

The installation of tidal turbines in a bay, lagoon, and strait must take into consideration 
potential environmental effects. These areas are frequented by fish, some of which are migratory, and 
marine mammals. It is essential that the size and the number of machines do not hinder the passage. 
Similarly, the speed of the current has an influence on the development of aquatic life. The mixing of 
waters between different marine areas certainly has an effect on population movements, nutrient 
exchange, etc. For all these reasons, many of which remain to be studied, it is prudent to consider at 
this stage that the current which normally exists in these places should not be reduced by more than 
10%. 

3. Results and Discussion 

Morocco presents a high potential for renewable marine energies, and some studies have 
analyzed the availability of energies due to wind [28]. Some studies assessed the wave energy 
resource in the whole Mediterranean. Thus [29] found at the Mediterranean Coast of Morocco wave 
energy powers between 2 kW/m and 6 kW/m, while [30] estimated a mean wave power of 6.3 
kW/m at a point in the Moroccan Mediterranean. The results obtained by Sierra et al. [6] from the 
average power of the waves is important (up to 30 kW/m with an annual energy average waves up 
to 262 MWh/m) on the Atlantic coast. Nevertheless, as far as the authors know, there are no specific 

Figure 3. Water speed vs. depth.

The depth at which the tidal turbines are installed is moderate (a few tens of meters). It would be
possible to work on machines with divers. However, dive must have a minimum duration (because of
the decompression stops) and cannot fit into a moderate current period. The strong currents pose big
safety problems and require technicians perfectly trained to this type of intervention. It is essential to
design all equipment so that any necessary interventions are reduced to a minimum.

The installation of tidal turbines in a bay, lagoon, and strait must take into consideration potential
environmental effects. These areas are frequented by fish, some of which are migratory, and marine
mammals. It is essential that the size and the number of machines do not hinder the passage. Similarly,
the speed of the current has an influence on the development of aquatic life. The mixing of waters
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between different marine areas certainly has an effect on population movements, nutrient exchange,
etc. For all these reasons, many of which remain to be studied, it is prudent to consider at this stage
that the current which normally exists in these places should not be reduced by more than 10%.

3. Results and Discussion

Morocco presents a high potential for renewable marine energies, and some studies have analyzed
the availability of energies due to wind [28]. Some studies assessed the wave energy resource in the
whole Mediterranean. Thus [29] found at the Mediterranean Coast of Morocco wave energy powers
between 2 kW/m and 6 kW/m, while [30] estimated a mean wave power of 6.3 kW/m at a point in
the Moroccan Mediterranean. The results obtained by Sierra et al. [6] from the average power of the
waves is important (up to 30 kW/m with an annual energy average waves up to 262 MWh/m) on the
Atlantic coast. Nevertheless, as far as the authors know, there are no specific studies addressing the
potential of tidal energy there. Almost all the eligible Moroccan sites are in the Mediterranean Sea.
These specific and well-identified areas (straits ...) have geomorphologic features which force tidal
currents and induce high velocities. Although, very localized, the sites exist and Morocco has great
potential for them.

In addition, the energy of the currents has the advantage of being predictable because it is mainly
correlated with the tidal coefficients. Cities like Agadir, Tangier, EL Hoceima, Oualidia and Dakhla are
among the economically promising sites. Overseas, sites with spikes or pass effects are potentially
interesting. The statistical study carried out shown that three more important areas where the current
is more interesting, see Figure 4.
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During the spring tides, the currents are very intense, especially at the entrance of the Dakhla Bay
and the Oualidia lagoon in the surrounding areas (between 1 and 2 m/s). In its central part and towards
the north of the bay, these currents decrease in intensity (<1 m/s). In the dead water, these tidal currents
generally have intensities lower than 0.6 m/s in all the zones of the bay and subjected to the strong
influence of the semi-diurnal tides.

Whatever the type of high and low water tides, the tidal currents are bidirectional in the North
East—South West axis of the bay, following the cycles of the semi-diurnal tide. During the periods of
spring tides and waves, it is found that the strongest currents generally occur downstream of the bay
between latitudes 23◦38′ N and 23◦44′ N (i.e., between Lasarga and Dakhla on the West shore of the
bay). On the eastern shore of the bay, the strongest currents with intensities between 1 and 2 m/s are
mostly between Hoja Lalmera, El Argoub, and Puertito. Upstream of the bay and beyond latitudes
higher than 23◦44′ N (between Dakhla, Boutalha and towards aquaculture parks), current intensities
are low, generally between 0.1 and 0.4 m/s. During the ebb and in the central zone and upstream of
the bay, cyclonic gyratory cells towards the west bank and/or anticyclonic cells towards the east bank
of the current are observed. These tides follow a non-regular and shallow bathymetry and present
a multitude of channels in these areas. In periods of high tides, the tidal currents are thus weaker;
whose intensities are less than 0.4 m/s in the bay. It is found that the strongest currents occur at the
entrance of the bay, between La Sarga (west side of the bay) and Puertito-Argoub (east side of the
bay). These gyratory cells of the current are also observed in the central zone and upstream of the bay
during the ebbs. Although weak and due to the influence of the winds, these cells will generate drift
currents near the coast. Another peculiarity of the marine circulation of the bay is that the outgoing
tidal currents (ebb tides) are generally slightly more intense than the incoming currents (waves), either
in tides of bright waters or dead waters. Figure 5 presents the marine current velocity rose diagrams.
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3.1. Available Energy Potential

Once the velocity distribution in the region of concern has been evaluated, it can be practiced to
the HAMCT power curve to calculate the annual power output.

The Horizontal Axis Marine Current Turbine (HAMCT) is the most advanced tidal stream technology
available that can be employed to calculate the quantity of energy required [23,24]. In this study the rotor
diameter is 22 m, so the swept area A, is 380 m2. Characteristics required are the power produced in
various speed bin P(Ui), efficiency of the machine (ηR), rated speed, and electrical efficiencies.

The rotor efficiency (ηR) can be supposed to increase from 40% at the cut-in velocity to attain
55% at the rated velocity. The cut-in velocity is the minimum velocity needed for machine operation
and is considered constant at 0.4 m/s. This hypothesis simplifies the analysis and does not impose
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significant constraints on accuracy, since the accessible power (PAV(i)) from marine currents at speeds
below 0.4 m/s is usually smaller than 5% of the total accessible power. Finally, the mean powertrain
efficiency (ηPT) can be supposed as 80% for a HACMT. All those parameters will be used to calculate
the electrical power produced in each speed bin as follows [25,26]:

P(Ui) = PAV(i) × ηR (3)

where:
PAV(i) = 0.5 × ρ × A×U3

i (4)

ρ: the water density (Kg m−3); A: represents the rotor swept area (m2); Ui: is the marine current
velocity (m/s).

Tidal energy potential in the Mediterranean Sea is very quiet with a view to other regions of the
world, where tidal energy field is previously existing (e.g., UK, France, Norway, China, and Canada) [10].
In the Mediterranean Sea, there is no industrial development of the marine current energy sector. As tidal
turbines require a stream velocity of at least 1.5–2 m/s to work effectively, the tidal energy potential of the
sea sets specific constraints. Based on the current speed limits presented, very few Mediterranean sites
could be of special interest. The exceptions of the Straits of Dardanelles, Gibraltar, and especially the Strait
of Messina (where the tidal stream energy resource offers its highest values in the Mediterranean) have
been under consideration. Concise attention has been provided so far to the weak tides and tides remarked
in the Mediterranean straits. Tides in the Mediterranean sea are typically semidiurnal and presents two
highs/lows per day, although with differences in heights due to the diurnal inequality, variations of
the declination of the Moon and other non-astronomical agents such as the depth, topography and size
of ocean basins, shoreline configuration and meteorological requirements. The statistical study of tide
presents a typical fortnight cycle of spring-neap tides, with higher mean sea level variability at Tetouan
because of its westernmost location. This implies an excellent resource energy production that make
this site more suitable for the installation of HAMCT. Maximum ranges of about 1.3 m are mentioned
during the most active spring tides at Tetouan whereas minimum range is lower than 0.4 m that takes
place during the weaker neap tides. This variation is also observed at Tetouan, showing amplitude much
higher than that reached at the northern limit of the Strait. Moreover, a time lag of about two months
is also remarked probably because of the wind regime. Months of May and September has been taken
as representative of the annual MSL (Mean Sea Level) average at Tetouan and El Hoceima, respectively.
Those months will be used to estimate the average power density during the year.

The Moroccan Atlantic coastline has a large potential for tidal energy production. It may contribute
meaningful profits with less cost and fewer ecological influences as compared to traditional dam-.
The present opportunity, however, lies in the strong and constant marine currents velocity of the
Strait of Gibraltar. A seafloor mounted tidal energy converters in this area could suitable produce an
important quantity of power.

The amplitude of the tide obviously has an effect on the speed of the current. Near the coasts,
we can consider as a first approximation that the maximum intensity reached by the current during
a tide is proportional to the coefficient of this tide. Often, the speed of the flow is different from that of
the ebb tide, but the speeds remain roughly proportional to the amplitude. In general, the flow has
a higher intensity with rapid growth and decay, while the ebb is smaller in amplitude with a more stable
regime over time. It is noted that a tidal turbine installed on a given site is subjected to highly variable
currents and that the available power changes a lot from one tide to another. (Figures 6–8). There are
perfectly predictable periods of dead water during which the currents are very weak, these periods
last 2 to 3 days and are renewed twice a month. In periods of production, the duration of the reversal
of the current gives only about twenty minutes of relatively calm current. The frequency and timing
of interventions can be accurately predicted from the tide tables, corrected for weather conditions.
The installation and lifting technique as well as the corresponding procedures must take into account
these particularities.
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a. Mediterranean Sea
Figure 6 shows the variation of velocity and available power around the Mediterranean Sea.

The maximal depth-average speed is higher than 1.4 m/s between the Strait of Gibraltar and Tanger
when the available power is over 400 MW. It can be concluded that the Gibraltar strait is the excellent
site for tidal current production. Analyses of the behavior of the intensity of the surface current in the
Mediterranean Sea, which spread from 2010 to 2014, showed that the minimum current values are
almost zero. On the other hand, the maximum intensities recorded reached strong values see 2.4 m/s,
all found around the Strait of Gibraltar (Lat: 36.000, Lon: −5.250) and (Lat: 36.000, Lon: −5.333) close
to Sebta and Tetouan.

• For the year 2010, it has been found that the minimum values of the intensity of the current are
almost zero and the maximum values are between 0.669–1.196 m/s. This last value observed in
May and at the latitude: 36.000◦ and the longitude: −5.250◦. Average current intensities vary
between 0.235 m/s (±0.054) in August and 0.316 m/s (±0.089) in the month of January.

• For the year 2011, it has been noted that the minimum intensities are almost zero and maximum
intensities vary between 0.718–1.061 m/s. the maximum values are observed in December at
latitude: 36.000◦ and longitude: −5.333◦.

• For the year 2012, it has been observed that the minimum values are very low and the maximum
intensities are between (0.739–1.178) m/s. The maximum value is observed in April at the latitude:
36.000◦ and the longitude: −5.333◦.

• For the year 2013, the minimum values of the intensity of the current are almost zero and the
maximum values are between 0.610–1.256 m/s. The value 1.256 m/s are observed in March at
latitude: 36.000◦ and longitude: −5.333◦.

• For the year 2014, it has been noted that the minimum intensities are almost zero and the maximum
values are between 0.818–1.194 m/s. The value 1.194 m/s is located in September at latitude:
36.000◦ and longitude: −5.333◦.
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b. South Coast Atlantic
The same study, for the same period, was carried out in the south coast of the Atlantic in Morocco.

Figure 7 shows the variation of velocity and available power in the south coast of the Atlantic. The study
of the intensity of surface current in this area has covered five years (2002–2014); it has clearly shown
that the minimum intensities are almost zero. The maximum values over the thirteen years are coastal
and (0.119–0.445) m/s between the south of Dakhla (latitude: 21.004◦ and longitude: −17.245◦) and
Boujedour latitude: 25.875◦ and longitude: −17.375◦. The results thus obtained are very close to the
statistics carried out in 30 m depth.

• For the year 2010, it has been found the minimum values of the intensity of the current are almost
zero and the maximum values are between 0.217 m/s and 0.395 m/s. This last value is of May
and observed at the latitude: 21.004◦ and the longitude: −17.245◦. Average current intensities
vary between 0.067 m/s (±0.010) in July and 0.097 m/s (±0.017) in May.

• For the year 2011, it has been noted that the minimum intensities are almost zero. The highest
peak intensities vary between (0.162–0.296) m/s. The maximum value is 0.296 m/s, taken in
November at the latitude: 25.757◦ and the longitude: −16.495◦. The average current values are
recorded between 0.004 m/s (±0.018) in December and 0.107 m/s (±0.016) in November.

• For the year 2012, it has been found that the minimum values are very low and the maximum
intensities are between 0.211 m/s and 0.383 m/s. This last value is observed in December at
latitude: 21.004◦ and longitude: −17.245◦. However, average current intensities varied between
0.066 m/s (±0.012) in January and 0.097 m/s (±0.023) in November.

• For the year 2013, the minimum values of the intensity of the current are almost zero and the
maximum values are between (0.019–0.445) m/s. The value 0.445 m/s are observed in the month
of February at the latitude: 21.004◦ and the longitude: 17.245. The average intensities range from
0.063 m/s (±0.011) in March to 0.087 m/s (±0.016) for the month of August.
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• For the year 2014, it has been noticed that the minimum intensities are almost zero while the high
maximum intensities take values between (0.212–0.395) m/s. The value 0.395 m/s are located in
January at the latitude: 26.004◦ and the longitude: −18.495. The average intensities range from
0.073 m/s (±0.013) observed in February to 0.090 m/s (±0.015) in December.
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c. North Coast Atlantic
Figure 8 shows the variation of velocity and available power on the north coast of the Atlantic in

Morocco. The study of the intensity of surface current in the north coast of the Atlantic has covered five
years (2010–2014); it has clearly shown that the minimum intensities are almost zero. The maximum
values over the five years are very coastal and between 0.235 and 0.812 m/s all concentrated in (latitude:
26.416◦ and longitude: −14.416◦) and (latitude: 26.116◦ and longitude: −14.500◦).

• For the year 2010, it has been found that the minimum values of the intensity of the current are
almost zero and the maximum values of the high intensities are between 0.290 m/s and 0.544 m/s.
The last value is observed in May at the latitude: 24.416◦ and the longitude: −14.500◦. Average
current intensities vary between 0.015 m/s (±0.015) in January and 0.118 m/s (±0.017) in July.
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• For the year 2011, it has been observed that the minimum intensities are almost zero whereas
the maximum intensities vary between (0.281–0.679) m/s. The upper value of the maximums is
located in October at latitude: 26.166◦ and longitude: −14.500◦. The values regarding the average
current are recorded between 0.061 m/s (±0.013) in January and 0.1209 m/s (±0.017) in August.

• For the year 2012, it was found that that the minimum values are very low and the higher
intensities are between 0.319 m/s and 0.698 m/s. The last value observed was of May and was at
the latitude: 26.416◦ and the longitude: −14.416◦. Regarding average current intensities, they vary
between 0.074 m/s (±0.015) in November and 0.126 m/s (±0.019) in August.

• For the year 2013, the minimum values of the intensity of the current are almost zero and the
maximum values of these intensities take values between (0.266–0.681) m/s. The value 0.681 m/s are
observed in the month of October at the latitude: 26.416◦ and the longitude: −14.416. The average
intensities range from 0.063 m/s (±0.011) in March to 0.087 m/s (±0.016) for the month of August.

• For the year 2014, it has been noticed that the minimum intensities are almost zero while the high
maximum intensities take values between (0.281–0.645) m/s. The value 0.645 m/s is located in
August at the latitude: 26.416◦ and the longitude: −14.416◦. The average intensities range from
0.072 m/s (±0.009) observed in December to 0.135 m/s (±0.025) in August.
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3.2. Mean Annual Electrical Power

The average annual electrical power (Paverage) can be calculated by combining the speed
distributions f (Ui) with the average consumed power for several velocities P(Ui) obtained using
the following equation:

Paverage =
N

∑
i=1

P(Ui)× f (Ui) (5)

Figure 9 shows electrical power output in the Mediterranean Sea. The maximum depth-average
speed is higher than 1.4 m/s between the Strait of Gibraltar and Tanger when the available power is
over 355 MW. It can be concluded that the Gibraltar strait is the best site for the tidal current production.
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Figure 10 shows the electrical power output of the south coast of the Atlantic. The maximum
depth-average speed 0.42 m/s in Agadir and in Dakhla is higher than 1 m/s when the available power
is over 13 MW.

Figure 11 shows the electrical power output on the north coast of the Atlantic. The maximum
depth-average speed is higher than 0.8 m/s between Tanger and El Hoceima when the available power
is over 63 MW.
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Figure 11. Electrical power output in the north coast of the Atlantic (MW).

4. Conclusions

This investigation provides preliminary results of an evaluation of the tidal stream power in
different regions in Morocco in order to activate the country’s green energy industry. Our results are
founded on data from Copernicus Marine Environment Monitoring Service. It was remarked that the
main difficulty in the evaluations is the requirement of accurate bathymetric data, particularly at the
various straits, bays, and lagoons. The results obtained approved that the strait under examination has
tremendous potential for the development of renewable marine energy production.

The maximal and mean depth-average velocity around the Strait of Gibraltar is greater than 2 m/s
and between 0.9 m/s~1.8 m/s, respectively. The maximal and mean power density are 1800 W/m2 and
between 200 W/m2~600 W/m2. However, the mean velocity can reach 2.1 m/s in some places and the
corresponding mean power density is 4746 W/m2. The investigation has also presented that according
to the characteristics of the topography of the locality, it is possible to imagine a modular strategy to
the establishment of size-dependent HAMCT to be used in phases leading into account technology
improvement and progress. It is expected that this research will provide a complete overview of the
potential of such a resource and a pointer to those considering the development of devices to utilize
marine currents for power production. However, there are some constraints that have to be overcome
prior to any deployment. It is important to emphasize that the results reported here were obtained
with a simplified model that cannot claim to represent the physical reality. Rigorous modeling requires
powerful means of calculation to account for the flow of water throughout the area, to a great distance
from the site.
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