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_______________________________________________________________________________________ 

Abstract – The use of composite materials begin to normalize in various sectors, however, 

these structures are very susceptible to degradation of their properties and consequently a 

catastrophic failure. The response of deformable composite subjected to water-entry impact 

can cause a phenomenon called hydro-elastic effect due to water-flexible laminate interaction. 

This phenomenon may be large enough to cause the damage in composite panels. This paper 

employs the finite element method to simulate the behavior of composite wedges under 

slamming impact with presence of damage. To investigate this situation, the hydro-elastic 

influence has been analysis as both kinematic effect due to deflection of the composite panel 

and dynamic effect caused by the interaction between the water and the structure. On the 

other hand, damage modeling was formulated based on continuum damage mechanics for 

intra-laminar damage. A user-defined material subroutine VUMAT has been incorporated into 

explicit Abaqus FE software to enhance the damage simulation, which includes Hashin 

criteria for degradation of the panel stiffness with failure onset criteria and fracture 

mechanics. To reinforce the methodology adopted, numerical results are compared with the 

previous experimental data. A good agreement was observed. Effects of impact velocity and 

the panels flexibility on the damage have been investigated. 

Keyword:  Laminate composites, Impact behaviour, Damage mechanics, Finite element 

analysis, Slamming impact. 
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1 Introduction 

Composite materials have been used in the recent years in many industrial applications 

such as the aerospace, automobile and naval applications. This attention was primarily 

coming relative of their superior properties in terms of high strength, stiffness, lightweight 

and for their performance capability in critical practical application environment. In contrast, 

due to the complexity of the composite structure, a variety of the failure modes and damages 

are occurring compared with the metallic materials, which considered an active challenge area 

in the advanced material structure. For this reason, special attention requires in both design 

phase and operation phase, this done by incorporating the damage tolerance as a safety factors 

in the design loads [1, 2]. 

The damage mechanism in composite materials under slamming impact is importance to 

constrict the usage of composite materials in the naval application and assistant the designers 

to predict the critical locations in the structure [3]. Generally, researches have been 

constrained two modes for fibers. In the other hand, because the complexity of the matrix 

morphology; some of research studies have been incorporated more than one mode for matrix 

failure criteria. Various failure criteria models have been adapted to predict the damage onset 

based on a combination of the longitudinal, the transversal and the shear stresses [4, 5, 6]. 

One of the more satisfying criteria is based on the Hashin theory [5]. Tsai-Wu (1971) [6] have 

introduced a method that based on the maximum stress for transversely isotropic symmetry, 

which a one mode dominates the materials failure with seven parameters interacting with each 

other. Hence, it considered the simplest method for the damage onset. Hashin (1980) [4] was 

introduced a failure criteria for unidirectional fiber composites with second degree polynomial 

expansion. For more simplicity, he divided the failure status into four modes according to the 

failure plane that perpendicular and aligned to the fiber direction with six parameters, and on 

the other hand the main failure of the matrix in transverse direction. This criterion was widely 

applicable in the much commercial finite element software. However, some of authors said 

that this model not predict accuracy the initial failure, especially for matrix and fiber in 

compression modes [7]. Christensen (1998) [8] has proposed and has applied a criteria for 

failure under hydrostatic pressure. Therefore, reduced the parameters from 7 to 5, and also 

reduced the failure mode to three applied condition (two modes for fiber and one mode for the 

matrix) that transverse tensile stress in tension is equal or less than the transverse compressive 

stress. Puck (2002) has developed the model represented by Hashin’s criteria and based on 

Mohr’s method applied to brittle fiber reinforcement composite. Nevertheless, this approach 
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was taking into account the non-linearity behavior due to microcracks, matrix cracking and 

change in fiber directions. He incorporated the inter-fiber fracture (IFF) to detect many of the 

failure modes, and to define the planes acting on IFF. He believed that the inclination of the 

fracture plane parallel to the fiber is the main parameter, which will influence the onset of 

delamination. 

Recently, many of the researches have been focused on composite damages under low and 

high velocity impact for the solid-solid interaction and concentrate on the interlaminar 

damage that happens in the sandwich and composite structure [9, 10, 11, 12]. However, the 

slamming impact of the deformable structure, or composites, with the evaluation of the 

damage has been required hardly studied. This coming from experiment slamming 

observations that clarified the variation of the pressure peak distribution along the span panel 

can be occur, especially close to the chine. For this reason, this pressure creates high shear 

forces in this location. Parga-Landa et al. [13] have developed an analytical model based on 

the stress wave propagation to study the effect of the material properties on the delamination 

behavior in the ship panel under slamming impact. A parametric study has been achieved to 

investigate the stacking sequence and the strain effect of the interlaminar damage. They 

conclude that the stress components cannot be neglected in the strength and the fatigue 

loading, stacking sequence has an influence on the delamination and with no effect of the 

strain rate. Kaushik and Batra [14] studied the slamming impact for the hull structures using 

the Multi-materials Eulerian Lagrangian model build in LS-DYNA for both rigid and 

deformable structures. Their results indicate that the pressure of deformable panels differs 

from the plate theory and Wagner theory, and a high pressure occurs close to the panel edges 

due to the hydroelastic influence, which produces a high shear stress between the interface of 

the skin and the core in sandwich structure. Manganelli and Wilson [15] proposed an 

experimental study concerning the effects of slamming on offshore sailing yachts. Valuable 

data can be obtained by instrumenting structure boats directly. Santos et al. [16] studied the 

symmetric dynamic behavior for the fast patrol boat using the unified hydroelasticity analysis. 

They modeled the structure using beam and three finite element methods. Moreover, the 

coupling between the fluid-structure interactions was performed using 3D potential flow 

theory.  Charca and Shafiq [17, 18] studied experimentally the slamming problem in the 

single and repeating slamming impact to assessment the damage in sandwich structures. They 

observed that the catastrophic failure occurs beyond the threshold strain 0.0035 with the 

signal slamming, a very little reduction in the flexural capacity has been occurs. In contract, 
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the damage develops with more cycle repeating slamming, especially, face-core delamination 

and the local buckling of the faces as considered main damages dominate the structure 

response. Stenius et al. [19, 20, 21] used the experimental techniques and finite element based 

on the multi-material Arbitrary Lagrangian-Eulerian (ALE) formulation code for estimating 

the hydroelastic problem related to the panel-water impacts for high-speed craft. 

Experimentally, deflections and strains are compared with that corresponding to non-

hydroelastic reference solutions. They indicate that the hydroelastic effects are located close 

to the panel supports for the very flexible panels and sandwich constructions. Xiao and Batra 

[22] have studied the water entry problem for composite sandwich structures based on the 

boundary element method to determine the fluid flow and the finite element method for both 

straight and curve deformable panels. Coupling between two models has been achieved with a 

third order shear and normal deformable plate/shell theory (TSNDT). The interlaminar 

damage (delamination) has been implemented using the cohesive zone model for both 

initiation and propagation. 

This work focuses on slamming impact problem with presence of the damage for 

composite structures, which is implemented by incorporating a user-define material VUMAT 

into finite element method using Abaqus explicit code to investigate the intralaminar damage 

for fiber glass- vinylester reinforced laminate composite panels based on Hashin criterion. A 

comparison between numerical results and previous experimental data was achieved to 

validate the present model. Finally, the effect of such parameters namely; impact velocity, 

panels thickness and flexibility of the structures were studied. 

2 Constitutive progressive degradation of composite material 

Progressive failure models have been adopted in the finite element simulations to model 

the onset of damage and his propagation in composite materials based on the concept of the 

continuum damage mechanics (CDM). The material behavior can be characterized in two 

substantial phases namely the elastic and the failure regions. The elastic region means that the 

material can be come back to original shape dimensions without deformation when unloading. 

This phenomenon appears because the material have an elastic energy depended on material 

nature type. In the other hand, the second phase represents as post failure region, followed 

subsequent to the material satisfied the onset of the damage, and further loading results in a 

degradation of mechanical properties of the structure and subsequently to a reduction in its 

stiffness caused by the accumulation of cracks. The relationship between the effective stress 

(��) and nominal stress (�) can be defined in form:  
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�� = �.� (1) 

Where d is the damage operator  

Thus stress with presence of the damages is given as: 

��,	 = 
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where C represents the undamaged orthotropic� stiffness matrix. This matrix takes the 
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Then the damage stiffness matrix as follow [23]:  
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where the damage variables and " are given by equation 5 [23]. 

�� = 1− �1 − ��$��1 − ��&� 
�# = 1− (1 − �#$)(1 − �#&) 

" = 1 (1 − !���( − !��� − !��� −2�!��!��!��) 

 

 

(5) 

where ��, �# and �* is the damage variables for the fiber, matrix and shear failure mode 

respectively. 

2.1 Intralaminar failure criteria  

The laminate damage initiation is happening when the applied true stress in the laminate 

composite reaches the ultimate strength of the ply laminate. Explicitly, the debonding 

interface between the fiber and matrix occurs due to difference in the fiber transverse 

compressive modulus and the matrix modulus, which represents the main influence of damage 

initiation. A VUMAT subroutine in Abaqus explicit software was implemented, in the case of 

slamming impact, to characterize the intralaminar damage based on the Hashin failure criteria 
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in the three dimensional form for fibers and matrix, which has been widely applied to predict 

the initiation of damage in a unidirectional composite [4, 24]. In the present study, these 

criteria were proposed for both fibers and matrix, and listed in Table 1. 

2.2 Damage evolution  

As previously specified, after the initial failure criteria have been satisfied, and based on 

the relationship between the effective stress and displacement, the damage variable for each 

mode in fiber and matrix can be illustrated in form: 

�� = �+�,,-
� (+�,,- − +�,,-. )
+�,,-(+�,,-� − +�,,-. )�������,���+�,,-

. ≤ ��+�,,- �≤ �� +�,,-�
 (6) 

 

where ��  is the damage variable defined for each damage mode. The variables +,-. �,
+,-���and��+�,,-� � represent respectively the initial displacement, equivalent displacement and 

equivalent failure displacement which are computed as follow: 

'� = 3 ���
45,678

45,679 =�12�(+�,,-� − +�,,-. )��,,-. ���������

+�,,-� − +�,,-. =� 2'���,,-. �����������
�

+�,,-. = ��� +� ,,- :;�< ����������
�

��,,-. =���,,-/�:;� ������������
�

�

 

 

 

 

(7) 

 

where ��,,-, ��,,-,. �, ;� �and�'>� are the equivalent stress, equivalent initial stress, initial 

failure and the fracture energy corresponding for each mode, respectively. These variables are 

computed at each element’s integration point to describe the materials stiffness degradation. 

This scheme is shown in Fig. 1.   
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3 Model, specimens generating and meshing 

3.1 Fluid domain characterization 

In slamming impact model, a fluid-structure interaction phenomenon requires to be solved 

simultaneously. Coupled Eulerian-Lagrangian Model (CEL) with Abaqus/Explicit, which can 

be used more than one materials model that couples the Lagrangian and Eulerian model. 

Volume of Fluid (VOF) method is capable to solve a wide range of non-linear problems in 

fluid and solid mechanics [25]. 

The equation of the state (EOS) can be describing by linear ?* −?@ formulation of the 

Mie-Gruneisen equation of state, which can be exploited in water entry problem, and can be 

defined the pressure as a function of the density �(A) and the internal energy�( #) per unit 

mass as: 

B = ;(A, #) (8) 

 

?* = 
. − %?@ (9) 

where ?*, ?@ , 
. and % = �?*/�?@,  are the linear shock velocity, particle velocity, the 

velocity of the sound in the fluid and linear Hugoniot slope coefficient, respectively. 

Then the pressure of the fluid can be calculated as: 

B = A.
.��μ(1 − %μ)� D1 −
Г.μ2 F + Г.A. H 

 

(10) 

 

where μ = 1 − (A. A( ) is the nominal volumetric compressive strain, �A. is the initial 

density and Г. is parameter of the approximation. Defined the water parameters in Table 2 

with density of 1000 kg/m
3
, the pressure of the fluid can be calculated as: 

B = ρ.
.��μ (11) 

The fluid is considered as the Newtonian fluid flow, which means that the viscosity 

depends on the change of the temperature. The temperature is constant then the viscosity is 

also constant in this model.  
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3.2 Fluid-structure interaction algorithm  

The CEL formulation both the Eulerian and the Lagrangian equations of the model are 

depended on the same classical formulations of the conservation equations mass, energy and 

momentum. To couple the response of Eulerian and Lagrangian as the Lagrangian mesh 

moves in interface of the Eulerian mesh, both the Eulerian and Lagrangian occupied initial 

boundary conditions. Consequently, the coupling calculated by apply pressure boundary 

conditions on the Lagrangian mesh from the Eulerian mesh, while the Lagrangian mesh 

boundaries supplied velocity boundary conditions on the Eulerian mesh. Based on the 

Eulerian volume fraction (EVF), the Eulerian cell has assumes a constant pressure, since 

when it interacts with the Lagrangian the cell area will be change. The area centroid 

calculated by the Eulerian area that not intersects with Lagrangian and the reconstruction of 

pressure conditions. Thus, velocity conditions of the Lagrangian mesh are updated after 

calculation of the force from the Eulerian mesh. According to [26], the element volume is 

calculated by subtracting the Lagrangian volume from the volume of the Eulerian element. 

Once these quantities have been established, the stress and pressure are updated. The 

velocities of the uncovered parts of the element are updated in the normal manner. For more 

information concerning Abaqus CEL and a detailed description of the mathematical 

expressions, see [27, 28]. 

To prevent the Lagrangian body from overlap with the underlying Eulerian elements, the 

coupling force is calculated relative with the penetration rate based on the penalty coupling 

method, which working such as spring system attached in each of both node ends of the 

Lagrangian and Eulerian. The penalty coupling force is given as:    

J = K′. d (12) 

Where K′ and d representing the spring system stiffness and penetration respectively. 

The spring stiffness is depended on the scaling factor, bulk modulus of the fluid and the 

mesh size of the fluid as descripted in equation (13):   

K′ = M� NO!  (13) 

Where M�, N, O and ! are respectively the penalty scale factor, the bulk modulus, the 

average area of the structure element and the volume of the fluid element, which are in the 

coupling state. 
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3.3 Stabilization and validation of model   

Before validating the numerical model developed with the tests carried out on semi-

flexible and flexible panels, we are interested here in the validation with results of the 

literature. The numerical model has compared and validated with experimental data found in 

[20, 29, 30]. The experimental test has performed using servo-hydraulic slam testing system 

(SSTS) to keep approximately the impact velocity as constant during the interested impact 

duration. Biaxial E-glass reinforced epoxy composite panel have considered in the present 

investigation to validate the numerical slamming model with VUMAT subroutine. The panel 

has simply supported along its edges, as shown in Fig. 2, and all panels have tested with 

�=10° deadrise angle. The boundary conditions, panel and water domain mesh have shown in 

Fig. 3. For more details about the SSTS machine, instrumentations and panel properties, see 

[20]. 

Fig. 4 and Fig. 5 show the comparison between the deformation in the center and close of 

chine panel for the numerical results and the experimental data for two different velocities 

impact: V=2m/s and V=4m/s. It can be seen that the numerical results have been well 

predicted the panel deformation compared with experimental tests. A small discrepancy has 

observed in gauge deformation, which can be attributed to boundary conditions in the 

experimental setup. In other hand, the impact velocity is not really constant along the 

penetration time as in numerical model. Fig. 6 presents the comparison in the force between 

the experimental and numerical results in different velocities impact. A good agreement is 

also observed. For illustration, a snapshot of the model after impact test is presented in Fig. 7.         

3.4 Description of the fluid-Structure domain 

It should be noted that due to the symmetry of the water entry problem, the full 3D 

slamming model in Fig. 8.a is reduced to a 3D half model as described on Fig.9b. The 

simplification of the model leads to rapid convergence. The model consists of two different 

parts namely: solid part considered as an impactor and fluid domain considered as an 

impacted zone. 

The exterior boundaries of Eulerian fluid domain are defined as non-reflecting boundaries 

to avoid reflection pressure waves, see Fig.9a. Water domain is divided in many regions as a 

result of high consuming calculation time of the model. Furthermore, it meshed with EC3D8R 

linear element Eulerian brick. The total mesh of slamming model was composed of 1078000 
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cubic elements. This is clear that the mesh is refined close to the impact location between 

impactor and water surface and coarse at the extremes, Fig.9b.  

In present study, two different composite panels have been study with dimensions of 

(L=495, W=250) mm and fully clamped boundaries condition have been applied in the panel 

ends, as illustrated in Fig.9a. However, in order to incorporate the flexibility influence 

behavior with presence of the damage, glass-fiber vinylester composite panels with different 

stiffness: semi-flexible (SF) t=13mm, flexible (F) t=8 mm, and the stacking sequence of [45/-

45]9 and [0/90]6 are considered and tested. In this work, all of the panels are examined with a 

deadrise angle of β=10° and the strain gauges (SG) and the pressure are located in the three 

different positions along the span panel to cover mode shapes natural frequency, see Fig. 10a. 

The positions of strain gauges were predicted from the mode natural frequencies of the dry 

panels using finite element code as shown in Fig. 10b. The details of the panel mechanical 

properties are listed in Table 3 [31].  

4 Numerical results: flexible and semi-flexible composite panels  

4.1 Water-structure interaction  

The structure flexibility can change the water-structure boundary conditions due to the 

variation in the local deadrise angle and the fluid flow as shown in Fig. 11. In the case of 

flexible panels, Fig. 12 shows a high flexibility of the panel leading to increase these effects. 

This explains the reason behind a high pressure near to the chine due to change of a kinematic 

effect and loading of the fluid particles close to the interface. 

Inertia effects are more appearance in high flexible structure response and increasing 

relatively with decrease the panel stiffness and increasing the impact velocity. For the high 

flexible panel with lower stiffness bending, it shows that a great structure deformation is 

occurred. However, the pressure close to the chine edge has very high amplitude and exceeds 

the pressure in the rigid body which implies that a high influence has been appeared which is 

illustrated in Fig. 13. This explains why some of the damage modes may be introduced. 

4.2 Dynamic response 

In order to analyze the panel response, the hydrodynamic force acts on the panel have been 

investigated with different impact velocities for flexible composite panel. It can be observed 

that the mechanical behavior of the damaged panel has changed compared to undamaged 
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panel, as a result of evolution of the energy absorbed for propagation of matrix cracks. The 

hydrodynamic load and strain histories, plotted in Fig. 14, add a good understanding for the 

interpretation of the slamming behavior with different impact velocity. In every case, the 

initial stiffness of panels behaves the same response until initiation of the matrix cracks 

occurs. Increasing of the impact velocity leads to more stiffness degradation of the composite 

panel. In this case, the ultimate deflection of the panel exceeds the allowable value 

corresponding to Det Norske Veritas (DNV) classification societies [32]. In the present work 

for flexible panel, the deflection in the center of the panel equal to 18.6 mm that exceed the 

allowable deflection of 9.04 mm. 

4.3 Damage assessment 

To demonstrate the capability of implemented subroutine for the intralaminar damage, 

model have been verified and tested in a sequence procedure to evaluate the validity of the 

results. For this reason, the model was tested in a single element with different loading 

conditions, consequently, given the authorization to apply it in the slamming impact 

simulation. The main damages in the composite laminate are the matrix damage in both 

tensile and compression modes. For the case of semi-flexible and flexible panels, the snapshot 

of damaged composite panels is presented in Fig. 15 and Fig. 16, respectively. However, 

damage has been raised relative to the increasing of impact velocity and the panel flexibility. 

Numerical predictions indicated that, for slamming impact, matrix damages localization 

initially occurred near to the edges of the panel (keel and chine) due to high peak pressure, as 

the results of changing in local deadrise angle and the local velocity of the fluid. An animation 

of the damage history of the composite panels under slamming impact is presented in attached 

Video 1 for flexible panels and Video 2 for semi-flexible panels.   

Increasing the impact velocity can induce stress concentration in the panel center and close 

to the panel ends, see Fig. 17. In the other hand, matrix damage appears to be the first damage 

mode occurring in composite laminates under slamming impact loads, especially in the ends 

and center of panel, as illustrates in Fig. 18. This happens when the allowable deflection of 

the panel exceeds 2% of the shortest panel span and for the ultimate strain under single 

slamming impact � 0.35% [33, 17]. The matrix tensile damage, quantifies in the top layers of 

the panel center, the keel and chine locations due to combination of the in-plan and through 

thickness stresses. Therefore, in the repeating slamming wave, cracks in the matrix begin to 

propagate in the direction of the fiber for different plies of the laminate composite and then 
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bifurcated in inter-layer zones to create delamination. These cracks can cause rupture of fibers 

that leading to catastrophic failure.  

Fig. 19 illustrates the variation of depth, or displacement of impactor (composite panels), 

and the formation of the fluid jet in the water domain under slamming test. It should be 

mentioned that the jet shows correct development and corresponds to slamming impact and 

non-surprising phenomenons were observed. For more illustration, Fig. 20 illustrates the 

damage history at different impact time. From these images, it appears that the damage is 

directly related to flexibility of composite panels. In most cases when impact has occurred, at 

same times, the damage has been minimal for semi-flexible panels compared to the case of 

flexible one (for example at T=6.525 ms). We note also the formation of a pile-up region and 

water jet where the composite panel is completely submerged by water.  

5 Conclusions 

This paper presents a finite element analysis of the water entry problem for deformable 

wedge composite with the establishment of a subroutine for the consideration of the existence 

of damage. The study deals with the mechanical behavior and the identification of damage 

initiation and its development in dynamic tests. Two different stiffness panels, with 8mm and 

13 mm, are used with different constant impact velocities; namely 6, 8 and 10 m/s. Multi-

materials Eulerian-Lagrangian model builds in finite element code (ABAQUS 14.6) was 

exploited to represent the water domain which more feasibility of modeling and allows high 

deformation in the fluid. The considered model was initially validated with experimental 

results in the literature. Kinematic effects along water-panel interface exhibited a larger elastic 

influence due to flexibility and the change in local deadrise angle. Consequently, these effects 

can be reducing the panel response which significantly appeared in higher velocity impact, 

especially in the center and the end of the panel. Based on the Continuum damage mechanics 

and fracture mechanics, a 3D damage model was formulated using user-materials routine 

VUMAT to enhance the damage simulation, and implemented into the finite element code. 

The more serious damage have been observed in the matrix close to the edges and in the 

center of the panel that assist ship designers to give more attention in these locations. The 

fiber damage needs more high impact energy to occur. The interlaminar damage for the 

sandwich panels is not addressed here and it will be the objective of the next investigation. 

The improved understanding of these phenomena and the development of predictive tools are 

part of an ongoing effort to improve the long-term integrity of composite structures for naval 

applications.  
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Fig. 1. Typical behavior of material stiffness degradation.  

 

Fig. 2. Panel instrumentations and setup 

 
 

(a) (b) 

Fig. 3. Slamming model: (a) boundary conditions, (b) FE mesh. 
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S3 S5 

Fig. 4. Comparative of the panel deformation between of the numerical results and 

experimental data, V=4 m/s  

S3 S5 

Fig. 5. Comparative of the panel deformation between of the numerical results and 

experimental data, V=2 m/s.  

Force-V-4 Force-V-2 

Fig. 6. Comparative of the hydrodynamic force between of the numerical results and 

experimental data.  
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Fig. 7. Snapshot of the model after impact 

 

 

 

 

 

(a) (b) 
 

Fig. 8. (a) Schematic representation of full model and (b) CAE impactor model. 

 

Fig.9. Three-dimensional representation of half slamming model: (a) boundary conditions, 

(b) FE mesh. 



  

19 

 

  

(a) (b) 

Fig. 10. Panel setup (a) FE mesh of the laminate composite panel and zone of implantation 
of strain gauges (SG) (b) Mode shapes of the dry panels.  

(a) Panel deflexion (b) Local deadrise angle 

Fig. 11. Histories of kinematic effect of semi-flexible panel, V= 6 m/s.  

(a) Panel deflexion (b) Local deadrise angle 

Fig. 12. Histories of kinematic effect of flexible panel, V= 6 m/s.  
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(a) Rigid body (b) Semi-flexible 

 

(c) flexible 

Fig. 13. Pressure time histories for V=6m/s.  
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(a) V=4 m/s (b) V=6 m/s 

Fig. 14. Slamming force and the local strain of the flexible panels.  

 

  

(a) V=6m/s 
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(b) V=4m/s 

Fig. 15. Damage for semi-flexible laminate, matrix in tension (SDV3) and compression 

(SDV4).  

 

  

(a) V=6m/s 

  

(b) V=4m/s 

 

Fig. 16. Damage for flexible laminate, matrix in tension (SDV3) and compression (SDV4).  
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Fig. 17. Stress distribution in semi-flexible panel, V=10 m/s. 
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Top layer (matrix tension) Bottom layer (matrix tension) 

  

Top layer (matrix compression) Bottom layer (matrix compression) 

Fig. 18. Damage in semi-flexible panel, V=10 m/s.  

 

 

Fig. 19. Signature of the slamming problem: impacted zone by composite panels and 

formation of the water jet. 
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T=4.35 T=4.35 

   

T=6.525 T=6.525 

   

T=8.7ms T=8.7ms 

(a) (b) 

Fig. 20. Time capture of damaged panels under slamming impact and formation of the 

fluid jet for: (a) flexible panel and (b) semi flexible panel.  
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Table 1. Hashin Failure criteria  

Fiber Tensile Failure 

(��� ≥ 0) 
;�$ = D���Q$ F

� ≥ 1 

Fiber Compression 

Failure 

(��� < 0) 
�;�& = D���Q& F

� ≥ 1 

Matrix Tensile Failure 

(��� + ���) ≥ 0 

;#$ = (��� + ���)�
S$� + ���� − ������T��� + D���T��F

� + D���T��F
�

≥ 1 

Matrix Compression 

Failure 

(��� + ���) < 0 

;#& = 1
S& UD

S&2T��F
� − 1V(��� + ���) + (��� + ���)�

4T���  

�������+���� − ������T��� + D���T��F
� + D���T��F

� ≥ 1 

 

 

 

 

Table 2. Mie-Gruneisen EOS Parameters 
C0 (m/sec) µ  ( - ) s ( - ) �0 ( - ) �(kg/m

3
) 

1420 0.001 0 0 1000 
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Table 3. Properties of glass-fiber vinylester composite panels 

Elastic moduli (GPa) Position ratios (-) Shear moduli (GPa) 

E11 E22 E33 �12 �13 �23 G12 G13 G23 

48.16 11.21 11.21 0.274 0.274 0.096 4.42 4.42 9 

Ultimate tensile and compression strengths (MPa) Ultimate Shear strengths (MPa) 

Xt Xc Yt Yc Zt Zc S12 S13 S23 

1021 978 250 300 250 300 70 70 30 

Intralaminar Fracture energy (J/m
2
) 

Gft Gfc Gmt Gmc 

1000 1000 500 500 


