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Abstract

This paper deals with sandwich structures whose core layer is made of a homogeneous foam periodically

strengthened by orthogonal reinforcements. Beside traditional sandwiches which generally display satisfac-

tory specific flexural properties but fatally insubstantial stiffnesses in the through-thickness direction, 3D

reinforced sandwich materials provide optimal out-of-plane mechanical properties. Despite this, buckling re-

mains one of the major failure modes of such structures and, compared to the case of traditional sandwiches,

both global and local buckling phenomena are more complicated in presence of transverse reinforcements.

Indeed, in most cases, the modal deformed shapes involve simultaneously the skins and the reinforcements

in an intricate way. The main feature of these buckling modes is periodicity, but the typical wave length

appears to be generally different from the characteristic length between reinforcements. However, it is pos-

sible to investigate such periodic modes on a simple unit cell by using the so-called Bloch wave theory. In

this work, an efficient procedure is defined so as to deal with the buckling behavior of a sandwich column

with periodic orthogonal reinforcements. First, a numerical method is implemented in the framework of the

commercial software Abaqus. The evaluation of the critical strains is performed on a unit cell: an initial

average compressive strain is enforced, then natural frequencies are computed and the critical strains are

deduced by extrapolation of the previous eigenvalues. A Python program is developed so as to automate

these successive calculation steps and a Fortran program is also needed (within Abaqus) in order to cope

with the two real and imaginary problems to be solved due to the Bloch-periodic conditions. Furthermore,

an exact analytical solution of this problem is obtained in the particular case of a reinforced sandwich with

no foam core (for simplicity purposes). The analytical and numerical solutions obtained with a unit cell

model are finally compared to the results of numerical computations performed on a complete beam with

an arbitrary number of cells, for validation purposes. The critical strains/displacements are found to be in

very good agreement and the buckling modes rebuilt from the real and imaginary components of the unit

cell modal solutions perfectly coincide with the buckling modes of the complete beam obtained through a

linearized buckling analysis.

Keywords: Sandwich structures, Reinforcements, Global/local buckling, Unit cell, Bloch wave theory,

1



Analytical solution, FE modeling

1. Introduction

Sandwich composites are plate-like structures which traditionally consist of two thin and stiff skin layers

separated by a thicker and softer core layer. The core material is often a homogeneous and isotropic foam,

which provides the extreme lightweight property of the sandwich. Conversely, the skins and their distance

to the middle surface of the composite contribute to the tensile properties and particularly to the flexural

rigidity. The resulting composite material thus combines both lightweight and strong mechanical properties

and, thanks to this interesting compromise, sandwich structures are increasingly used in aerospace, marine

or transportation industries, among others. However, such classical sandwiches show two main weaknesses.

The first one concerns the out-of-plane behavior (in through-thickness compression and transverse shear),

directly related to the low mechanical properties of the homogeneous soft core material. In order to improve

the load carrying capacity in the thickness direction without being detrimental to lightness, the low density

core layer may be usually strengthened, using transverse fibrous reinforcements or replacing the foam core

by a thin-walled core layer (with a honeycomb or corrugated structure, for instance). Unfortunately, the

presence of thin or slender reinforcements adds up to that of thin faces and makes the sandwich material

even more sensitive to buckling which turns out to be the major remaining weakness of such composite

structures (apart from delamination).

As a matter of fact, due to their geometric and material configuration, sandwich structures are prone to

collapse when submitted to compressive loadings. The buckling analysis of sandwich structures is therefore

an important issue for dimensioning purposes and so it has been widely studied in the past decades (see

[1] and [2] as two of the first leading references in this field). On one hand, when dealing with classical

sandwiches, one usually distinguishes two types of geometric instabilities, namely the global buckling of the

sandwich structure under overall compression and the so-called wrinkling (or local buckling) of the faces,

which may appear insofar as they undergo compressive stresses (when the sandwich structure is submitted to

axial compression or pure or simple bending, for instance). If the global buckling of a sandwich material can

be easily viewed as the classical buckling of a homogeneous structure (as soon as the equivalent properties

have been properly derived), the local buckling analysis requires the use of advanced models. If the earliest

contributions rely on uncoupled formulations, where the global and local buckling analyses are treated

separately, many authors have tried to achieve unified models capable of describing both global and local

modes (both symmetric/hourglass and antisymmetric/snaking) in the particular case of a sandwich column
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under axial compression (Benson and Mayers [3] have been the first to suggest a unified approach to solve

the overall buckling and wrinkling problems simultaneously). Among them, a hybrid beam/2D model (with

no kinematic assumption in the core layer) was recently developed by Douville and Le Grognec [4] which was

first able to derive closed-form expressions of both buckling and wrinkling critical values of sandwich beam-

columns (accounting for all mode types) with a very good accuracy, compared to the numerous simplified

models in earlier literature (see also [4] for a comprehensive review of analytical or numerical models for

the buckling analysis of sandwich beam-columns/plates under various loading conditions, using different

simplified kinematic assumptions).

On the other hand, a compressive loading in the thickness direction of a 3D reinforced sandwich will also

fatally lead to an instability phenomenon. This response can be seen as the buckling of reinforcements inside

the homogeneous core material, if any. Among others, López J́ımenez and Triantafyllidis [5] investigated

the buckling behavior of rectangular and hexagonal honeycomb structures under transverse compression,

possibly combined with transverse shear. In the context of stitched sandwich structures under transverse

compression and out-of-plane shear, the buckling of reinforcements (which can be considered as slender

beams) is governed by Euler’s theory, as soon as the core material is neglected (see [6], for instance).

However, in practice, despite its comparatively low modulus, the presence of the core material cannot be

ignored and the classical Euler critical values are no more valid (the core material generally displays a

stabilizing effect). Several analytical solutions have thus been proposed in the literature to better estimate

the critical loading for such a micro-buckling problem, where simplified strain states are supposed in the

core material which is sometimes even replaced by spring distributions [7] (see [8] for a more comprehensive

review on this subject). Recently, one of the authors [8] analyzed the buckling behavior of similar composites,

namely Napcor reinforced sandwiches (whose manufacturing is based on transverse needling, see Figure

1), under through-thickness compression. Exact closed-form solutions were derived using a similar hybrid

beam/2D (unit cell) model as in [4] (where the skins are replaced here by the reinforcements and without

any simplification regarding the deformation field in the core material). The prevailing mode was proved to

be the so-called shear mode (see Figure 2), as long as the volume fraction of reinforcements is sufficiently

high, as shown in [9].

Considering now reinforced sandwiches, but under in-plane loading (such as axial compression), most

complicated solutions may arise since both faces and reinforcements are supposed to interact in the buckling

response. Such sandwich structures are also likely to buckle in a localized as well as in a global way,

depending on the geometric and material parameters, but the new modes (and therefore the new critical

values) cannot be obtained by a simple combination of the original buckling modes involving either the skins

or the reinforcements (see Figure 3 for an illustration of global and local modes of classical or reinforced
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(a) Transverse needling (b) 3D sandwich representation

Figure 1: Napcor technology

(a) Buckling mode of a 2D unit cell (FE model) (b) Buckling mode of a 3D unit cell (FE model)

(c) Buckling mode of a 3D structure (FE model) (d) Experimental post-buckled deformed shape

Figure 2: Buckling of a reinforced Napcor sandwich under through-thickness compression [8]

sandwiches). Such a problem has thus been far less investigated in the literature. Let us mention Wang and

Abdalla [10] who examined the global and local buckling behavior of grid-stiffened composite panels (like

sandwiches with only one skin) and Combescure et al. [11] who analyzed the post-bifurcation and stability

of an hexagonal honeycomb under equi-biaxial compression, among few others.

The present paper deals again with a sandwich material manufactured with polymeric foam core re-

inforced thanks to the Napcor technology. Here, this work specially investigates the axial compression

behavior of sandwich columns in a 2D context. Based on the previous study dealing with through-thickness

compression, a unit cell model is still preferred for obvious efficiency purposes. Two differences occur nonethe-
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(a) Global mode without reinforcements (b) Local modes without reinforcements

(c) Global mode with reinforcements (d) Local modes with reinforcements

Figure 3: Influence of the reinforcements on the global and local modal deformed shapes

less between the two problems. Firstly, for the through-thickness compression analysis, the skins were not

included in the model, since they did not deform during the corresponding buckling response, whereas the

unit cell model here naturally includes both reinforcements and skins. Secondly, periodic boundary condi-

tions were simply applied on the edges of the unit cell, since the wave length of the periodic buckling modes

was strictly the length of the unit cell. Here, as seen in Figure 3, the modes are supposedly periodic but

with an arbitrary wave length. An appropriate technique for the identification of such periodic modes using

a single unit cell turns out to be the Bloch wave theory. In the sequel, a numerical procedure devoted to

the buckling analysis of reinforced sandwich columns under axial compression is first described. It consists

of three successive calculation steps, namely (i) the compression of the unit cell with an arbitrary strain,

(ii) the evaluation of the natural frequencies and corresponding modes under the so-called Bloch-periodic

boundary conditions and (iii) the estimation of the critical strain by means of extrapolation. The presence of

complex boundary conditions (with real and imaginary parts) requires the use of a specific Fortran program

within the framework of the commercial software Abaqus and a Python program is also implemented so as

to automate all the numerical procedure. In the particular case of a reinforced sandwich where the foam

core has been removed, analytical solutions are also obtained from a general bifurcation analysis involv-

ing the same Bloch-periodic complex conditions. Numerical computations (linearized buckling analyses) on
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complete reinforced sandwich columns (displaying several cells) are finally performed for validation purposes.

2. Numerical analysis of the buckling behavior of reinforced sandwich columns

2.1. Problem definition

In this study, the objective is to solve numerically (and also analytically) the buckling behavior of a

Napcor sandwich under axial compression. The Napcor technology is a manufacturing process of 3D

sandwich composites based on transverse needle punching. Among the existing methods, such as tufting,

Z-pinning and stitching [12], the patented Napcor technology allows one to produce tailored sandwich

structures in a continuous way, while preserving a high production efficiency and a relatively low cost. It

consists in strengthening the foam core of a sandwich structure by adding orthogonal (or inclined) through-

thickness reinforcements, but it differs from other technologies by the fact that the fibrous reinforcements

here come from the skin material, so that the facing fabrics (mats) and the foam core make up a monolithic

whole (see Figure 4).

(a) Orthogonal through-thickness reinforcements (b) Inclined through-thickness reinforcements

Figure 4: Napcor sandwiches (the foam core is partly removed to show the transverse composite beams)

The core layer is classically made up of a linearly elastic isotropic closed cell polyurethane foam. The skins

are also elastic and are supposed to be isotropic, with equivalent Young’s modulus Es and Poisson’s ratio

νs. The cylindrical fibrous reinforcements (of constant cross-section) are supposed here to be perpendicular

to the skins and can be viewed as unidirectional composite columns (UDs) composed of aligned isotropic

fibres surrounded by resin. Since the micro-buckling of fibres inside the reinforcements is out of the scope

of this paper and thus ignored in our future model, the heterogeneous fibrous reinforcements can simply be

represented by equivalent homogeneous cylinders with their effective properties deriving from a preliminary

homogenization step, based on advanced mixture laws, for instance. In the present study, only the effective

longitudinal modulus will have a significant influence on the results, so that the reinforcements will also be

considered isotropic with Young’s modulus Efr and Poisson’s ratio νfr.
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From a geometric point of view, a 2D representation of the sandwich column is retained with a unit

depth. Some conventions are specially suggested in order to relate properly the 2D designed model to the

real 3D configuration. In the context of micro-buckling of a fibrous reinforcement in a surrounding medium,

Zhang and Latour [13] compared the results from both 2D and 3D models and tried to define the best

2D representation of the reinforced material, in terms of geometric dimensions, which would be capable

of displaying the same critical values as in 3D. In accordance with their conclusions, the width 2e of the

composite reinforcements in our 2D model is chosen in such a way that their second moment-to-area ratio is

equal to the one of the real cylindrical reinforcements in the 3D material. The same critical loading (under

through-thickness compression) is thus obtained in both 2D and 3D configurations in the absence of foam,

since the buckling load of a beam-like structure is governed by its bending rigidity. Moreover, the width (2H)

of the foam blocks separating the successive reinforcements is defined so as to maintain the same volume

fraction of reinforcements between the 2D and 3D configurations. This particular choice has proved to give

satisfactory results for the buckling problem of a reinforced sandwich under through-thickness compression.

Eventually, the thicknesses of the core layer (2L) and of the two identical faces (2t) are the real 3D ones

measured experimentally.

The problem in hand is represented in Figure 5. It consists in a complete sandwich column of total

length l containing N reinforcements (that is to say N consecutive cells). The column is clamped at the left

end and guided at the right end. These boundary conditions are particularized so as to clarify expectations

without limiting the general scope of the subsequent developments.

Figure 5: Reinforced sandwich column (N cells) under axial compression

The objective of the paper is to find an efficient method for the evaluation of the successive critical values

and corresponding buckling modes of such a reinforced sandwich beam. For this purpose, a unit cell model

is defined, comprising a foam block, two skins and two half-reinforcements, see Figure 6. It will be used in

the sequel in order to derive efficiently the critical values of the total beam, by means of the Bloch wave

theory.

2.2. Bloch wave theory

The Bloch wave theory, initially introduced for the analysis of wave functions for particles (such as

electrons) in a periodically-repeating environment (such as crystals), has then long been utilized in acoustics
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Figure 6: Unit cell model for the numerical modeling

and more specifically for the description of wave propagation in periodic porous or composite media. For

instance, Boutin et al. [14] analyzed the large scale modulations of high frequency waves in periodic elastic

structures in the context of the Bloch wave theory. As the buckling response of periodic composites often

reveals critical local modes with large wave lengths compared to the typical length of a unit cell, the

Bloch wave theory is utterly appropriate for solving such stability problems, but nonetheless it has been

far less operated in this context. Let us mention a few papers on buckling among the rare involving a

Bloch wave analysis. Bertoldi et al. [15] performed Bloch wave calculations so as to analyze the pattern

transformations of infinite periodic elastomeric cellular structures under compressive loading. More recently,

Liu and Bertoldi [16] studied the wrinkling behavior of bilayer structures made of a thin film bonded on a

compliant substrate under compression. In this work, the authors analyzed not only the buckling but also

the post-buckling response and revealed the presence of secondary critical modes that were also identified

by means of the Bloch wave theory. Gong et al. [17] studied the buckling and post-buckling behavior of

Kelvin cell foams under compressive loads by also using the Bloch wave theory. The foams were considered

to be periodic and the ligaments were modeled as shear deformable beams. The post-buckling response

was found to be either stable or unstable (involving a localization phenomenon), depending on whether

the mode is local or global (with long wave lengths). López Jiménez et Triantafyllidis [5] analyzed the

buckling behavior of various honeycomb structures (to be used as the core layer in sandwich structures)

under out-of-plane compression and/or transverse shear, relying on the Bloch wave representation theorem.

Wang and Abdalla [10] investigated the buckling behavior of grid-stiffened composite panels, including the

particular case of composite stiffened cylindrical shells under axial compression. The local critical modes,

involving both the skins and stiffeners, were specifically obtained through a Bloch wave analysis (see also

[18] where curved stiffeners are designed optimally against buckling). The case of stiffened or corrugated
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axially loaded cylindrical shells was also considered by Ning and Pellegrino [19]. A modified Bloch wave

method was developed, so as to be applied to rotationally periodic structures, and it showed to be able to

capture both global and local modes with a very good accuracy. The main interest of the use of the Bloch

wave approach in all previous investigations is the significant reduction of computational time.

In this paper, a Bloch wave analysis is also achieved in order to obtain first in an efficient way (at a

low computational cost) all the global and local buckling modes of a reinforced sandwich column under

longitudinal compression. A specific numerical approach, where all the calculations are performed on a unit

cell model, is identified and implemented in the commercial finite element software Abaqus. The successive

steps of the procedure are presented in the sequel.

2.3. Numerical procedure

The sandwich column in hand is periodically reinforced along the longitudinal direction, so that one can

define and rely on the primitive unit cell illustrated in Figure 6. The general idea is to derive the critical

loadings and corresponding buckling modes of the column by simply performing linearized buckling analyses

on the previous unit cell, through the use of appropriate Bloch-periodic conditions. Since such conditions

cannot be applied on the left-hand side and right-hand side of the unit cell while seeking the critical force

or displacement (which needs to be applied to the same edges) resulting in buckling, an indirect method

is retained, based on the computation of the natural frequencies of the pre-stressed unit cell. The general

procedure may be divided into the four following steps.

2.3.1. Compressive strain

First of all, the unit cell is pre-stressed by introducing a compressive strain in the longitudinal direction.

The simplest way to get such a quasi-uniform strain state in the unit cell is to prescribe the longitudinal

displacement to zero on the left-hand side of the cell and to enforce a non-zero compressive displacement ū

on the right-hand side, see Figure 7(a). The average pre-strain in the longitudinal direction may then be

defined by:

εxx =
uCD − uAB

2H
=

ū

2H
(1)

where [AB] and [CD] are the left and right edges of the cell, respectively, see Figure 7(a). In Equation (1)

and in all the subsequent analysis, the width of the reinforcements is neglected compared to the width of

the foam blocks (e � H), so that the total width of the unit cell is approximated by 2H. Similarly, the

thickness of the skins will further be neglected compared to the one of the foam blocks (t� L), for simplicity

purposes.

Finally, it should be mentioned that, during this step, the vertical displacement of an arbitrary point has

to be set to zero, in order to prevent from a rigid mode in the vertical direction.
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(a) Enforced compressive displacement

(b) Linear extrapolation of the eigenvalues

Figure 7: General procedure for the evaluation of the critical strains on a unit cell

2.3.2. Natural frequencies

A modal analysis is then performed on the pre-stressed unit cell, namely the following eigenvalue problem

is solved: (
[KT ]− ω2 [M ]

)
{X} = {0} (2)

In Equation (2), [M ] is the mass matrix of the unit cell model and [KT ] its tangent stiffness matrix, de-

pending on the pre-stress introduced by the enforced displacement in the previous step (the small amplitude

vibrations of the unit cell are superimposed on the current state of deformation). In practice, a linearized

frequency analysis is carried out and allows one to derive the sought natural frequencies ω and corresponding

vibration modes {X}.

The Bloch wave theory comes into play here, throughout the choice of boundary conditions. The hori-
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zontal and vertical components of the eigenmodes (namely the modal displacements U and V , respectively)

are assumed to meet the so-called Floquet-Bloch periodic conditions. In such circumstances, it is possible

to capture the probable change in periodicity between the geometric and material configuration and the

modal solution. Since periodicity occurs here in only one direction, these conditions may simply write in

the following form [16]:

UCD = UAB exp(2ikH)

VCD = VAB exp(2ikH)
(3)

involving a single wave number k.

Equations (3) are intrinsically complex (i is the imaginary number such that i2 = −1). A commercial

software such as Abaqus is not able to handle such complex-valued relations, so that one has to split the

equations into their real and imaginary parts. In practice, two identical unit cell models are used and the

two real and imaginary problems are solved in parallel, as explained in Åberg and Gudmunson [20] when

dealing with the computation of dispersion relations in materials with periodic microstructures. These two

problems can be joined together in the following extended equation system: KT 0

0 KT

− ω2

 M 0

0 M

 XRe

XIm

 =

 0

0

 (4)

where KT and M are the previous stiffness and mass matrices, and XRe and XIm stand for the real and

imaginary parts of the modal displacements, respectively. The equation system (4) is uncoupled, but the

real and imaginary boundary conditions are coupled to each other in the following way:

UReCD = UReAB cos(2kH)− U ImAB sin(2kH)

U ImCD = U ImAB cos(2kH) + UReAB sin(2kH)

V ReCD = V ReAB cos(2kH)− V ImAB sin(2kH)

V ImCD = V ImAB cos(2kH) + V ReAB sin(2kH)

(5)

In order to account for these coupled boundary conditions, a specific Fortran program is developed in

the framework of Abaqus software. Moreover, the (linear) relationships above between degrees of freedom

of nodes belonging to the left and right edges, respectively, are established using multi-point constraints

(which is an available feature in Abaqus). Lastly, solving Equation (4) with boundary conditions (5) leads

to coupled real and imaginary modes associated to each eigenvalue ω, as depicted in Figure 8 in the periodic

case (k = 0).

In most preceding stability analyses involving Bloch-periodic conditions, the structure is considered as

of infinite length and calculations should be made for a large number of wave numbers in the following

interval: k ∈ [0, π/2H] (for a unit cell of length 2H). For each wave number considered in this interval, a

critical strain is obtained (as explained below), and a critical wave number kcr can be identified as being
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Figure 8: Periodic mode obtained with a unit cell model

the one associated to the smallest critical strain. A critical length lcr = 2π/kcr can also be defined which

corresponds to the periodic wave length of the first buckling pattern of the infinite structure. Owing to

the finite size of the sandwich column here, only a finite number of values of k needs to be investigated.

Following the idea of Ning and Pellegrino [19] for rotationally periodic structures, it can be shown that the

N + 1 values k = nπ
2NH (n = 0, 1, 2, ..., N) allow one to retrieve all the modes achieved with the complete

sandwich column of N cells with clamped-guided boundary conditions (these conditions lead to a particular

constraint on the wave length of the mode which makes other values of k unsuitable).

2.3.3. Critical strain

As the enforced compressive strain increases in magnitude, the natural frequencies gradually decrease

and each buckling critical strain obtained for a given wave number k can be viewed as the compressive strain

at which the natural frequency corresponding to the concerned mode vanishes. Indeed, when considering a

null value of ω, Equation (2) simplifies and becomes:

[KT ] {X} = {0} (6)

in such a way that the applied compressive strain makes the tangent stiffness matrix singular, which indicates

an underlying buckling phenomenon.

In practice, the squared frequency ω2 is proved to be almost proportional to the applied strain, so that

the use of two arbitrary strains allow one to extrapolate the results and find the sought critical strains.

The procedure is illustrated in Figure 7(b), where the first three critical strains corresponding to a given

arbitrary value of k are extrapolated by linear interpolation of the squared frequencies.
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2.3.4. From the unit cell to the whole structure

Finally, for each critical strain determined with the unit cell model, one can rebuild the corresponding

complete buckling mode, starting from the real and imaginary unit cell vibration modes, in accordance with

the retained boundary conditions for the full column (see Figure 9). The reconstruction technique is based

on the following Bloch relations between the real and imaginary parts of the buckling mode in a first unit

cell and the corresponding (real) modal displacements (with components Un and Vn) in all the N successive

unit cells of the entire column, varying n from 0 to N − 1:

Un = URe cos(2nkH)− U Im sin(2nkH)

Vn = V Re cos(2nkH)− V Im sin(2nkH)
(7)

(a) Real and imaginary components of a unit cell

mode

(b) Corresponding rebuilt mode for the entire col-

umn

Figure 9: From the unit cell modes to the buckling behavior of the complete column

Let us finally mention that, for efficiency purposes, a Python program has been developed in Abaqus

environment so as to automate the global (repetitive) procedure above.

3. Analytical modeling

Contrary to the general case of a sandwich column with many reinforcements, the unit cell problem is

likely to be solved analytically, due to its simple configuration and the small number of components brought

into play. This section is thus devoted to find an exact analytical solution for the buckling problem of

a reinforced sandwich column under axial compression, still using a unit cell model and the Bloch wave

representation of the critical modes. Although the numerical procedure above was presented in the general

context of a reinforced sandwich including a foam core material, the analytical solution will be developed

considering that the influence of this core material on the buckling behavior of the column is negligible

compared to that of the skins and reinforcements, for simplicity purposes. This paper focuses on the use of
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the Bloch wave theory for the buckling analysis of reinforced columns, and it has been shown numerically

(using the previous numerical tool) that, even if the core modulus may modify the critical values, it does

not change at all the typical behavior which will be further described, mainly due to the coupling effect

between the skins and the reinforcements. As a consequence, the core material will also be removed in the

subsequent validation and analysis of the results.

In the end, the new unit cell model of Figure 10 is considered for conveniency purposes, which is equivalent

to the one displayed in Figure 6. It consists of one reinforcement and two skin segments with the same

geometric and material properties as before.

Figure 10: Unit cell model for the analytical modeling

3.1. Theoretical formulation

The model used here to investigate the elastic buckling behavior of a reinforced sandwich column under

axial compression is very similar to the one already developed in [8] and [4] for the buckling analysis of rein-

forced sandwiches under through-thickness compression and classical sandwiches (without reinforcements)

under axial compression. The main difficulty here comes from the fact that both skins and reinforcements

may buckle simultaneously, whereas only the reinforcements or the skins were involved in the previous

studies, respectively in [8] and [4].

The critical displacements (or strains) and the associated bifurcation modes are derived from a 3D

framework: the theory is developed using a total Lagrangian formulation where the different components

of the model are initially seen as 3D bodies. This method has already been applied successfully to the

previous cases. The facings and reinforcement are then assumed to behave like Euler-Bernoulli beams, with

a linear elastic constitutive law. Due to these kinematic hypotheses, only their Young’s modulus (Es and

Efr, respectively) will be involved subsequently.
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The critical loading λcr and the bifurcation mode X of a 3D body can be generally obtained by solving

the following bifurcation equation:

∀ δU,
∫

Ω

∇T δU : K (λcr) : ∇XdΩ = 0 (8)

where Ω is the volume of the 3D body in the reference configuration and δU stands for the variation of the

displacement field in the body.

The fourth-order nominal tangent elastic tensor K can be written as follows:

K =
∂Π

∂F
= F.

∂Σ

∂E
.FT + (I.Σ)T = F.D.FT + (I.Σ)T (9)

In the above equation, E denotes the Green strain tensor and Σ the second Kirchhoff stress tensor

(symmetric). F is the deformation gradient and Π = F.Σ the first Kirchhoff stress tensor (non-symmetric).

I represents the fourth-order unit tensor (Iijkl = δilδkj) and the superscript T the transposition of a second-

order tensor and the major transposition of a fourth-order tensor (
(
AT
)
ijkl

= Aklij), respectively. The

fourth-order material tangent elastic tensor D of an isotropic material can be defined by its components in

an orthonormal basis Dijkl = Λδijδkl + µ (δikδjl + δilδkj), where δij is the Kronecker symbol, and Λ and µ

are the Lamé constants. Use is also made of the Young’s modulus E, the Poisson’s ratio ν and the shear

modulus G related to Λ and µ by the standard relations Λ = Eν
(1+ν)(1−2ν) and µ = G = E

2(1+ν) .

We shall now derive more explicit expressions of the above tensors by exploiting the uniaxial stress state

in the body. More precisely, while the uniform compressive displacement applied on the unit cell obviously

leads to compressive stresses in the facings, the reinforcement will be supposed to be free of initial stresses

at the onset of buckling.

On one hand, the skins are thus subjected to a nominal axial compressive stress Πxx = −P < 0 in

their longitudinal direction, so that the first Kirchhoff stress tensor Π is expressed in the orthonormal basis

(ex, ey, ez) as:

Π = −Pex ⊗ ex =


−P 0 0

0 0 0

0 0 0

 (P > 0) (10)

Let us make the assumption that the pre-critical deformations are small, which is usually satisfied in

practice:

‖∇U‖ � 1 (11)

Thus, the stress tensor Σ writes:

Σ = F−1.Π ≈ Π (12)

The nominal tangent elastic tensor in Equation (9) becomes then:

K ≈ ∂Σ

∂E
+ (I.Σ)T = D− Pei ⊗ ex ⊗ ex ⊗ ei (13)
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which is independent of the spatial coordinates (the implicit summation convention on repeated indices is

used with i = x, y, z).

Furthermore, when dealing with 1D models like beams, ad hoc assumptions are usually added in order to

enforce some specific stress state in the body. Namely, the transverse normal material stresses are assumed

to be zero: Σyy = Σzz = 0. Taking into account these assumptions leads one to replace tensor D with the

reduced tensor C defined as:

Cijkl = Dijkl +
Dijyy(DyyzzDzzkl−DzzzzDyykl)+Dijzz(DzzyyDyykl−DyyyyDzzkl)

DyyyyDzzzz−DyyzzDzzyy

(i, j) 6= (y, y), (z, z) (k, l) 6= (y, y), (z, z)
(14)

It can be readily checked that tensor C has the major and both minor symmetries. In the sequel, we

only need the following reduced moduli (and their equivalents obtained by major or minor symmetries):

Cxxxx = E Cxyxy = Cxzxz = Cyzyz = G (15)

where only E = Es will explicitly appear in the final bifurcation equation.

On the other hand, as the existing initial stresses in the reinforcement at the critical point are neglected,

the nominal tangent elastic tensor in this case simply writes:

K ≈ ∂Σ

∂E
= D (16)

which may also be replaced by its reduced counterpart C (due to the kinematics, the Young’s modulus Efr

will be again the only parameter appearing in the final equations).

Eventually, the bifurcation equation (8) of the unit cell writes:

∀ δUa, δUb, δUfr,
∫

Ωa
∇T δUa : (Cs − Pcrei ⊗ ex ⊗ ex ⊗ ei) : ∇XadΩa

+
∫

Ωb
∇T δUb : (Cs − Pcrei ⊗ ex ⊗ ex ⊗ ei) : ∇XbdΩb +

∫
Ωfr
∇T δUfr : Cfr : ∇XfrdΩfr = 0

(17)

The compressive stress (P > 0), identical for the two skins, is related to the enforced strain ε > 0 (which

will act as the bifurcation parameter) by the following relation:

P = Esε (18)

and Ua, Ub, Ufr, Xa, Xb and Xfr represent the displacement field and bifurcation mode components,

respectively, relative to the bottom and top skins (with indices •a and •b, respectively) and the reinforcement

(with indice •fr).

Let us now consider the bending problem of the skins and the reinforcement in the xy-plane. The

Euler-Bernoulli beam theory is employed, as transverse shear effects may be negligible in practice (due to

the low thickness-to-length ratio of all the components). The Euler-Bernoulli kinematics is defined by two

scalar displacement fields, respectively the axial and transverse displacements of the centroid axis of the
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beam. When the skins buckle from the straight position (the fundamental solution) to a bent shape, the

expressions for the bifurcation modes Xi and the displacement variations δUi (with i = a, b depending on

the skin considered) are both chosen accordingly as follows:

Xi =

∣∣∣∣∣∣∣∣∣
Ui − yVi,x
Vi

0

δUi =

∣∣∣∣∣∣∣∣∣
δui − yδvi,x
δvi

0

(19)

The bifurcation mode Xfr and the displacement variation δUfr in the reinforcement are defined with

the same kinematics as:

Xfr =

∣∣∣∣∣∣∣∣∣
Ufr

Vfr − xUfr,y
0

δUfr =

∣∣∣∣∣∣∣∣∣
δufr

δvfr − xδufr,y
0

(20)

The global bifurcation equation then writes:

∀ δua, δva, δub, δvb, δufr, δvfr,
∫

Ωa
[Es (Ua,x−yVa,xx ) (δua,x−yδva,xx )

−Esεcr (Ua,x−yVa,xx ) (δua,x−yδva,xx )− EsεcrVa,x δva,x ] dΩa

+
∫

Ωb
[Es (Ub,x−yVb,xx ) (δub,x−yδvb,xx )

−Esεcr (Ub,x−yVb,xx ) (δub,x−yδvb,xx )− EsεcrVb,x δvb,x ] dΩb

+
∫

Ωfr
[Efr (Vfr,y −xUfr,yy ) (δvfr,y −xδufr,yy )] dΩfr = 0

(21)

where y (respectively x) stands for the y-coordinate (respectively x-coordinate) of a current point relative

to the centroid axis of the corresponding skin (respectively reinforcement).

First, integrating over the cross-sections of the beams, then integrating by parts with respect to x or

y, and eliminating negligible higher-order terms (presupposing that εcr � 1) yields six local differential

equations for the components Ua, Va, Ub, Vb, Ufr and Vfr of the eigenmode:

Ua,xx = 0

1
3h

2
sVa,xxxx +εcrVa,xx = 0

Ub,xx = 0

1
3h

2
sVb,xxxx +εcrVb,xx = 0

Ufr,yyyy = 0

Vfr,yy = 0

(22)

At this stage, one has to specify the boundary conditions in order to solve the previous system. First,

connecting conditions for the displacement fields (bifurcation mode) must be satisfied at the intersection

between the reinforcement and the two facings. Due to the entanglement of the fibres, the two ends of the
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reinforcement can be considered as clamped in the skins, which leads to the following relationships:

Ua(−H) = Ufr(−L)

Va(−H) = Vfr(−L)

Va,x (−H) = −Ufr,y (−L)

Ub(−H) = Ufr(L)

Vb(−H) = Vfr(L)

Vb,x (−H) = −Ufr,y (L)

(23)

Calculations are performed on a unit cell, where Bloch-periodic boundary conditions are used (instead

of periodic ones as in [8]), so as to deal with any global or local mode whose period does not necessarily

coincide with the size of the unit cell. Taking into account these Bloch-periodic conditions between the two

ends of each face leads to the following kinematical constraints:

Ua(H) = Ua(−H) exp(2ikH)

Va(H) = Va(−H) exp(2ikH)

Va,x (H) = Va,x (−H) exp(2ikH)

Ub(H) = Ub(−H) exp(2ikH)

Vb(H) = Vb(−H) exp(2ikH)

Vb,x (H) = Vb,x (−H) exp(2ikH)

(24)

After integration by parts, the remaining stress boundary conditions are obtained together with the

differential equations (22):

2
3Efre

3Ufr,yyy (−L)− 2EstUa,x (−H) + 2EstUa,x (H) exp(−2ikH) = 0

−2EfreVfr,y (−L) + 2
3Est

3Va,xxx (−H) + 2EstεcrVa,x (−H)− 2
3Est

3Va,xxx (H) exp(−2ikH)

−2EstεcrVa,x (H) exp(−2ikH) = 0

− 2
3Efre

3Ufr,yy (−L) + 2
3Est

3Va,xx (−H)− 2
3Est

3Va,xx (H) exp(−2ikH) = 0

− 2
3Efre

3Ufr,yyy (L)− 2EstUb,x (−H) + 2EstUb,x (H) exp(−2ikH) = 0

2EfreVfr,y (L) + 2
3Est

3Vb,xxx (−H) + 2EstεcrVb,x (−H)− 2
3Est

3Vb,xxx (H) exp(−2ikH)

−2EstεcrVb,x (H) exp(−2ikH) = 0

2
3Efre

3Ufr,yy (L) + 2
3Est

3Vb,xx (−H)− 2
3Est

3Vb,xx (H) exp(−2ikH) = 0

(25)
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3.2. Solution procedure

The previous differential equation system (22) is totally uncoupled and gives rise to the general following

solutions:

Ua(x) = a0 + a1x

Ub(x) = b0 + b1x

Vfr(y) = c0 + c1y

Va(x) = α0 + α1x+ α2 cos(px) + α3 sin(px)

Vb(x) = β0 + β1x+ β2 cos(px) + β3 sin(px)

Ufr(y) = γ0 + γ1y + γ2y
2 + γ3y

3

(26)

with p =
√

3εcr
t and involving a set of 18 constant unknowns which will be further collected in a single vector:

{B}T = 〈a0, a1, b0, b1, c0, c1, α0, α1, α2, α3, β0, β1, β2, β3, γ0, γ1, γ2, γ3〉 (27)

The verification of the boundary conditions (23-25) all at once may be written in the form of a linear

equation system as follows:

[A] {B} = {0} (28)

where [A] has been reported in Appendix A for clarity purposes.

Equation (28) has a non-zero solution for vector {B} once matrix [A] is singular. The critical strains are

thus obtained by solving:

det ([A]) = 0 (29)

Equation (29) is a complex-valued transcendent equation which is numerically solved for each successive

value of the wave number k. Here, no separation between real and imaginary parts are required, since

Equation (29) can be directly solved in the plane of complex numbers. Nevertheless, all the solutions of

Equation (29) are found to be real critical strains, whatever the wave number k. In practice, for each critical

strain εcr, the corresponding vector {B} allows one to identify the modal displacement field, which can be

split into real and imaginary parts so as to rebuild the related buckling mode of the complete sandwich

column, using the same expressions (7) as before.

4. Validation and analysis of the results

4.1. Numerical finite element models

For validation purposes, an illustrative example is presented in this section. The numerical values of the

geometric and material parameters are listed in Table 1 (the foam core is not included in the model).

The numerical procedure presented above is applied on the finite element (unit cell) model depicted

in Figure 11. The skins and reinforcement are represented by a 2D continuous solid satisfying the plane
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Es (MPa) νs Efr (MPa) νfr H (mm) L (mm) e (mm) t (mm)

9000 0.3 6834 0.39 13.95 8.075 0.1395 0.275

Table 1: Geometric and material parameters for the unit cell model

stress hypothesis. Two-dimensional 8-noded quadrangular finite elements are thus employed, with quadratic

shape functions and reduced integration. Only two elements are proved to be sufficient in the thickness of

the skins and reinforcements (one for each half of the reinforcement), whereas the number of elements in the

longitudinal direction of each component is obtained through a convergence analysis.

Remark. The use of 2D solid elements (instead of beam structural ones which would have been more

efficient) is here more convenient for the definition of the two half-reinforcements and the application of

the Bloch conditions, and it will make it easier to generalize to the case of a unit cell with the foam core

included.

Figure 11: FE mesh used for the unit cell model

The finite element model of the complete sandwich column is derived from the previous one by juxtaposing

the required number of cells side by side, while retaining the same mesh for each cell. An arbitrary number of

N = 10 cells is retained here. The left end section of the sandwich column is fixed horizontally whereas the

right end section is submitted to a uniform horizontal displacement so as to trigger the buckling phenomenon

(the vertical displacement of one arbitrary node is fixed in order to prevent the structure from rigid modes).

Linearized buckling analyses are performed on this complete model, also using Abaqus software, so as to

serve as reference results and validate the critical strains and modes provided by the Bloch wave theory on

a unit cell.
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4.2. Results and validation

When considering the unit cell solutions, each critical strain corresponds to a double buckling mode: the

two buckling modes corresponding to the same critical value are always the same, except that the roles are

reversed between the real and imaginary components. For each value of k = nπ
20H (n = 0, 1, 2, ..., 10), the

first three (different) buckling modes are identified using the numerical and analytical unit cell models. It

allows one to recover the first thirty modes of the complete sandwich column (the last one being double),

which are found to be either symmetric or antisymmetric. Only four modes obtained with the numerical

unit cell model are not observed in the complete column (they are thus not calculated with the analytical

approach). These modes correspond to cases where the wave length is a multiple of the unit cell length and

all the reinforcements (without exception) clearly deform (so that these modes can not comply to the applied

boundary conditions on the complete column). Figure 12 displays these four modes that are obviously not

obtainable when clamping both skins at the two ends of the column.

(a) k = 0 - 2nd mode (b) k = 0 - 3rd mode

(c) k = 10π
20H

- 2nd mode (d) k = 10π
20H

- 3rd mode

Figure 12: Examples of rebuilt modes from unit cell calculations which are not obtained with the complete column

The associated critical displacements (ucr = εcrl) obtained with these three models are compared with

each other and show a very good agreement, with a maximum relative error less than 1% (see Table B.2 in

Appendix B, where only the relative error between the numerical results has been indicated). Figure 13

displays the evolution of these critical displacements with the mode number, which appear to be regularly

distributed, and Figure 14 compares the buckling modes of the complete column obtained either directly

with the complete model or after rebuilt from the unit cell results (only a selection of modes are presented,

namely the ones with a wave length multiple of the unit cell dimension). The mode shapes are in total

accordance between the two approaches.
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Figure 13: Comparison between the analytical and numerical critical displacements

5. Conclusions

The main objective of this paper is to give a first insight of the buckling behavior of sandwich structures

reinforced thanks to the Napcor technology. This patented process transversally strengthens the foam core

of a sandwich structure with fibre yarns taken from facings. In this study, we investigated the influence

of such reinforcements on the buckling behavior of sandwich columns under axial compression. Thanks

to the periodicity properties of the buckling modes obtained with classical linearized buckling analyses on

the whole structures, an efficient numerical methodology was proposed, based on the use of a single unit

cell. It can be separated into three successive steps, namely (i) the longitudinal compression of the unit cell

(with two arbitrary strains), (ii) the calculation of natural frequencies and corresponding vibration modes

and (iii) the extrapolation of the critical strains for each mode. As the wave length of the modes may be

different from the unit cell length, the use of Bloch-periodic conditions are required instead of purely periodic

ones. It gives rise to complex-valued expressions which result in a specific solution procedure with two real

and imaginary almost identical problems, when requesting the use of a commercial finite element software.

Simultaneously, analytical solutions were obtained in the simplified case where the foam core is removed.

Using an Euler-Bernoulli beam formulation for both skins and reinforcements, the critical strains and modes

were derived from a 3D bifurcation analysis of a unit cell similar to the one used in the numerical procedure.

2D finite element models were developed for the unit cell and, by extension, for the entire column. Unit

cell analytical and numerical solutions were validated against full numerical computations performed on

the sandwich column, in the particular case considered analytically. The critical strains (or displacements)
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Figure 14: Comparison between representative buckling modes obtained with the complete beam model and corresponding

modes rebuilt from the unit cell real and imaginary solutions

and the corresponding modes were shown to compare very well with each other. It means that both the

analytical and numerical procedures defined on the unit cell allow one to estimate very efficiently and with a
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very good accuracy the critical values and modes of a given sandwich column, as soon as the wave numbers

considered in the Bloch wave analysis are consistent with the boundary conditions imposed to the complete

column.

Since the methodology developed here is general, the present results may be adapted to the case of

reinforced sandwich columns including a foam core material (in the analytical case, it demands further

calculation efforts, but it is straightforward in the numerical case) and eventually to the case of sandwich

plates under biaxial compression(-tension), or other loading conditions.
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Appendix A. Global matrix for the verification of the boundary conditions

[A
]

=

                                              

1
−
H

0
0

0
0
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0

0
0

0
0
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−
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L
−
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2
L
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−
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0
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                                              
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with:

C = cos(pH)

S = sin(pH)

k+1 = 1− exp(2ikH)

k+2 = 1 + exp(2ikH)

k−1 = 1− exp(−2ikH)

k−2 = 1 + exp(−2ikH)

As = 2Est

Afr = 2Efre

Bfr = 4
3Efre

3

Appendix B. Comparison of the analytical and numerical critical displacements for the first

30 modes whatever the wave numbers
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Wave number Mode Critical displacement Critical displacement Critical displacement Relative error

k number - Analytical uancr (mm) - Unit cell uUCcr (mm) - Complete column uCCcr (mm)
uCC
cr −uUC

cr

uUC
cr

(%)

0

1st 0.3567 0.359042 0.356810 0.622

2nd - 0.377812 - -

3rd - 0.649882 - -

π
20H

1st 0.009395 0.010086 0.010125 0.387

2nd 0.3242 0.325999 0.324040 0.601

3rd 0.3299 0.329302 0.330370 0.324

2π
20H

1st 0.01208 0.012770 0.012814 0.345

2nd 0.2889 0.290404 0.288890 0.521

3rd 0.2975 0.298582 0.298130 0.151

3π
20H

1st 0.01652 0.017203 0.017251 0.279

2nd 0.2539 0.256143 0.253950 0.856

3rd 0.2666 0.267668 0.267280 0.145

4π
20H

1st 0.02272 0.023398 0.023451 0.227

2nd 0.2197 0.217699 0.219800 0.965

3rd 0.2373 0.238105 0.238070 0.015

5π
20H

1st 0.03068 0.031352 0.031408 0.179

2nd 0.1871 0.186851 0.187260 0.219

3rd 0.2098 0.211118 0.210610 0.241

6π
20H

1st 0.04038 0.041048 0.041104 0.136

2nd 0.1574 0.158706 0.157490 0.766

3rd 0.1841 0.185267 0.184950 0.171

7π
20H

1st 0.0518 0.052449 0.052499 0.095

2nd 0.1318 0.132411 0.131950 0.348

3rd 0.1602 0.161312 0.161120 0.119

8π
20H

1st 0.06482 0.065442 0.065475 0.050

2nd 0.1121 0.112365 0.112190 0.156

3rd 0.1383 0.139350 0.139270 0.057

9π
20H

1st 0.07899 0.079512 0.079509 0.004

2nd 0.09955 0.099642 0.099659 0.017

3rd 0.1188 0.119896 0.119900 0.003

10π
20H

1st 0.08917 0.089397 0.089339 0.065

2nd - 0.095417 - -

3rd - 0.108219 - -

Table B.2: Comparison between critical displacements obtained with the unit cell models and the entire column (the value of

k only refers to the unit cell calculations)
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