A. H. Aguirre, A. Zavala, E. V. Diharce, and S. B. Rionda, COPSO: Constrained Optimization via PSO Algorithm, Center for Research in Mathematics (CIMAT), pp.22-24, 2007.

R. Datta and K. Deb, Uniform adaptive scaling of equality and inequality constraints within hybrid evolutionary-cum-classical optimization, Soft Computing, vol.39, issue.5, pp.2367-2382, 2016.
DOI : 10.1016/j.eswa.2011.12.012

D. Falco, I. , D. Cioppa, A. Maisto, D. Scafuri et al., An adaptive invasion-based model for distributed Differential Evolution, Information Sciences, vol.278, 2014.
DOI : 10.1016/j.ins.2014.03.083

K. Deb, A. Srinivasan, N. Broadway, and . York, Innovization, Proceedings of the 8th annual conference on Genetic and evolutionary computation , GECCO '06, pp.1629-1636, 1515.
DOI : 10.1145/1143997.1144266

R. Eberhart and Y. Shi, Particle swarm optimization: developments, applications and resources, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), pp.81-86, 2001.
DOI : 10.1109/CEC.2001.934374

A. El-gallad, M. El-hawary, and A. Sallam, Swarming of intelligent particles for solving the nonlinear constrained optimization problem, ENGI- NEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEER- ING AND COMMUNICATIONS, vol.9, pp.155-163, 2001.

H. Garg, A hybrid PSO-GA algorithm for constrained optimization problems, Applied Mathematics and Computation, vol.274, pp.292-305, 2016.
DOI : 10.1016/j.amc.2015.11.001

M. Ghovvati, G. Khayati, H. Attar, and A. Vaziri, Kinetic parameters estimation of protease production using penalty function method with hybrid genetic algorithm and particle swarm optimization, Biotechnology & Biotechnological Equipment, vol.7, issue.2, pp.404-410, 2016.
DOI : 10.2307/3758571

H. J. Gu and L. Xu, Perceptive particle swarm optimization algorithm for constrained optimization problems, Journal of Computer Applications, vol.31, issue.1, pp.85-88, 2011.
DOI : 10.3724/SP.J.1087.2011.00085

J. Gu and X. Shi, An adaptive PSO based on motivation mechanism and acceleration restraint operator, 2014 IEEE Congress on Evolutionary Computation (CEC), pp.2014-1328, 2014.
DOI : 10.1109/CEC.2014.6900387

E. Hansen and G. W. Walster, Global optimization using interval analysis: revised and expanded, 2003.

S. He, E. Prempain, and Q. Wu, An improved particle swarm optimizer for mechanical design optimization problems, Engineering Optimization, vol.11, issue.5, pp.585-605, 2004.
DOI : 10.1080/03052150008941301

N. Higashi and H. Iba, Particle swarm optimization with Gaussian mutation, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706), pp.72-79, 2003.
DOI : 10.1109/SIS.2003.1202250

X. Hu, R. Eberhart, and Y. Shi, Engineering optimization with particle swarm, PROCEEDINGS OF THE 2003 IEEE SWARM INTELLI- GENCE SYMPOSIUM (SIS 03), IEEE, pp.53-57, 2003.

Y. Hu, A New Evolutionary Algorithm Based on Simplex Crossover and PSO Mutation for Constrained Optimization Problems, 2010 International Conference on Computational Intelligence and Security, pp.142-146, 2010.
DOI : 10.1109/CIS.2010.38

F. Z. Huang, L. Wang, and Q. He, A hybrid Differential Evolution with double populations for constrained optimization, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp.18-25, 2008.
DOI : 10.1109/CEC.2008.4630770

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, 2001.
DOI : 10.1007/978-1-4471-0249-6

URL : https://hal.archives-ouvertes.fr/hal-00845131

J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95, International Conference on Neural Networks, 1995.
DOI : 10.1109/ICNN.1995.488968

G. Levitin, X. Hu, and Y. S. Dai, Particle Swarm Optimization in Reliability Engineering, of Studies in Computational Intelligence . chapter 4, pp.83-112, 2007.
DOI : 10.1007/978-3-540-37372-8_4

L. D. Li, X. Li, and X. Yu, A Multi-Objective Constraint- Handling Method with PSO Algorithm for Constrained, 2008.
DOI : 10.1109/cec.2008.4630995

URL : http://researchbank.rmit.edu.au/view/rmit:3235/n2006009455.pdf

L. Lin, M. Gen, and Y. Liang, A hybrid EA for high-dimensional subspace clustering problem, 2014 IEEE Congress on Evolutionary Computation (CEC), pp.2014-2855, 2014.
DOI : 10.1109/CEC.2014.6900313

I. Mazhoud, K. Hadj-hamou, J. Bigeon, and P. Joyeux, Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism, Engineering Applications of Artificial Intelligence, vol.26, issue.4, 2013.
DOI : 10.1016/j.engappai.2013.02.002

URL : https://hal.archives-ouvertes.fr/hal-00786457

E. Mezura-montes, C. Coello, R. Landa-becerra, . On, . Tools et al., Engineering optimization using simple evolutionary algorithm, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence, pp.149-156, 2003.
DOI : 10.1109/TAI.2003.1250183

URL : http://www.cs.cinvestav.mx/~constraint/papers/mezura_ictai03.pdf

R. E. Moore, Interval analysis, 1966.

R. Neuland, R. Maffei, L. Jaulin, E. Prestes, and M. Kolberg, Improving the Precision of AUVs Localization in a Hybrid Interval-Probabilistic Approach Using a Set-Inversion Strategy, Unmanned Systems, vol.02, issue.04, pp.361-375, 2014.
DOI : 10.1109/TRO.2011.2147110

K. Parsopoulos, M. Vrahatis, . Sincak, . Vascak, . Kvasnicka et al., Particle Swarm Optimization method for Constrained Optimization problems, INTELLIGENT TECHNOLOGIES -THEORY AND APPLICATIONS: NEW TRENDS IN INTELLIGENT TECHNOLOGIES, IOS PRESS, pp.214-220, 2002.

S. Rao, Engineering Optimization: Theory and Practice, 2009.
DOI : 10.1002/9780470549124

URL : http://deptauto.csu.edu.cn/staffmember/paper and matlab code/An orthogonal design based constrained evolutionary optimization algorithm/An orthogonal design based constrained evolutionary optimization algorithm.pdf

G. L. Soares, Algoritmos Determinísticos e Evolucionares Intervalares para Otimização Robusta Multi-Objetivo, 2008.

C. Solau, B. Marhic, L. Delahoche, A. Clerentin, A. M. Jolly-desodt et al., Combination of interval analysis and PSO for optimization, Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011), pp.978-985, 2011.
DOI : 10.2991/eusflat.2011.102

L. N. Vitorino, S. F. Ribeiro, and C. J. Bastos-filho, A hybrid swarm intelligence optimizer based on particles and artificial bees for high-dimensional search spaces, 2012 IEEE Congress on Evolutionary Computation, p.2012, 2012.
DOI : 10.1109/CEC.2012.6256157

C. Worasucheep, . On-elec-trical, . Engineering, C. Electronics, . Telecom-munications et al., Solving constrained engineering optimization problems by the constrained PSO-DD, 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp.5-8, 2008.
DOI : 10.1109/ECTICON.2008.4600359

H. Wu, C. Nie, F. C. Kuo, H. Leung, and C. J. Colbourn, A Discrete Particle Swarm Optimization for Covering Array Generation, IEEE Transactions on Evolutionary Computation, vol.19, issue.4, pp.575-591, 2015.
DOI : 10.1109/TEVC.2014.2362532

URL : http://hdl.handle.net/10397/13342

K. Yu, X. Wang, and Z. Wang, Constrained optimization based on improved teaching???learning-based optimization algorithm, Information Sciences, vol.352, issue.353, pp.61-78, 2016.
DOI : 10.1016/j.ins.2016.02.054

H. Zhu, C. Pu, K. Eguchi, and J. Gu, Euclidean Particle Swarm Optimization, 2009 Second International Conference on Intelligent Networks and Intelligent Systems, pp.669-672, 2009.
DOI : 10.1109/ICINIS.2009.171