An interval space reducing method for constrained problems with particle swarm optimization

Machado-Coelho T. 1 A Machado 1 Luc Jaulin 2, 3 P. Ekel 1 Witold Pedrycz 4 G.L. Soares 1
2 Lab-STICC_ENSTAB_CID_PRASYS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
3 Pôle STIC_OSM
ENSTA Bretagne
Abstract : In this paper, we propose a method for solving constrained optimization problems using Interval Analysis combined with Particle Swarm Optimization. A Set Inverter Via Interval Analysis algorithm is used to handle constraints in order to reduce constrained optimization to quasi unconstrained one. The algorithm is useful in the detection of empty search spaces, preventing useless executions of the optimization process. To improve computational efficiency, a Space Cleaning algorithm is used to remove solutions that are certainly not optimal. As a result, the search space becomes smaller at each step of the optimization procedure. After completing pre-processing, a modified Particle Swarm Optimization algorithm is applied to the reduced search space to find the global optimum. The efficiency of the proposed approach is demonstrated through comprehensive experimentation involving 100,000 runs on a set of well-known benchmark constrained engineering design problems. The computational efficiency of the new method is quantified by comparing its results with other PSO variants found in the literature.
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal-ensta-bretagne.archives-ouvertes.fr/hal-01698453
Contributeur : Marie Briec <>
Soumis le : jeudi 1 février 2018 - 11:56:16
Dernière modification le : mercredi 19 décembre 2018 - 15:26:08
Document(s) archivé(s) le : mercredi 2 mai 2018 - 14:47:20

Fichier

paper_soares_2017(1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Machado-Coelho T., A Machado, Luc Jaulin, P. Ekel, Witold Pedrycz, et al.. An interval space reducing method for constrained problems with particle swarm optimization. Applied Soft Computing, Elsevier, 2017, 59, pp.405 - 417. ⟨10.1016/j.asoc.2017.05.022⟩. ⟨hal-01698453⟩

Partager

Métriques

Consultations de la notice

302

Téléchargements de fichiers

176