%0 Conference Proceedings %T Phase Retrieval with a Multivariate Von Mises Prior: From a Bayesian Formulation to a Lifting Solution %+ Lab-STICC_ENSTAB_CID_TOMS %+ Pôle STIC_AP %+ Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio (PANAMA) %A Drémeau, Angélique %A Deleforge, Antoine %< avec comité de lecture %B ICASSP 2017 - 42nd IEEE International Conference on Acoustics, Speech and Signal Processing %C New Orleans, United States %P 1-5 %8 2017-03-05 %D 2017 %R 10.1109/ICASSP.2017.7953027 %K lifting %K Mahalanobis distance %K Phase retrieval %K multivariate Von Mises distribution %Z Statistics [stat]/Methodology [stat.ME]Conference papers %X In this paper, we investigate a new method for phase recovery when prior information on the missing phases is available. In particular, we propose to take into account this information in a generic fashion by means of a multivariate Von Mises distribution. Building on a Bayesian formulation (a Maximum A Posteriori estimation), we show that the problem can be expressed using a Mahalanobis distance and be solved by a lifting optimization procedure. %G English %2 https://hal.science/hal-01653732/document %2 https://hal.science/hal-01653732/file/07953027.pdf %L hal-01653732 %U https://hal.science/hal-01653732 %~ UNIV-BREST %~ INSTITUT-TELECOM %~ ENSTA-BRETAGNE %~ UNIV-RENNES1 %~ CNRS %~ INRIA %~ UNIV-UBS %~ INSA-RENNES %~ INRIA-RENNES %~ IRISA %~ ENSTA-BRETAGNE-STIC %~ IRISA_SET %~ INRIA_TEST %~ TESTALAIN1 %~ ENIB %~ LAB-STICC %~ INRIA2 %~ UR1-HAL %~ UR1-MATH-STIC %~ UR1-UFR-ISTIC %~ INRIA2017 %~ TEST-UNIV-RENNES %~ TEST-UR-CSS %~ UNIV-RENNES %~ INRIA-RENGRE %~ INSTITUTS-TELECOM %~ UR1-MATH-NUM