F. Blanchini and S. Miani, Set-Theoretic Methods in Control, 2007.
DOI : 10.1007/978-3-319-17933-9

D. Althoff, M. Althoff, and S. Scherer, Online safety verification of trajectories for unmanned flight with offline computed robust invariant sets, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.
DOI : 10.1109/IROS.2015.7353861

S. Olaru, J. D. Dona, M. Seron, and F. Stoican, Positive invariant sets for fault tolerant multisensor control schemes, International Journal of Control, vol.40, issue.12, pp.2622-2640, 2010.
DOI : 10.1016/j.automatica.2004.01.014

URL : https://hal.archives-ouvertes.fr/hal-00293927

F. F. Tahir and M. Jaimoukha, Low-Complexity Polytopic Invariant Sets for Linear Systems Subject to Norm-Bounded Uncertainty, IEEE Transactions on Automatic Control, vol.60, issue.5, pp.1416-1421, 2015.
DOI : 10.1109/TAC.2014.2352692

S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne, Invariant approximations of the minimal robust positively Invariant set, IEEE Transactions on Automatic Control, vol.50, issue.3, pp.406-410, 2005.
DOI : 10.1109/TAC.2005.843854

E. Kofman, M. M. Seron, and H. Haimovich, Robust control design with guaranteed state ultimate bound, Proceedings of the 3rd International Conference on Integrated Modeling and Analysis in Applied Control and Automation, 2007.
DOI : 10.1016/j.automatica.2007.10.022

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Rakovic, E. Kerrigan, K. Kouramas, and D. Mayne, Invariant approximations of robustly positively invariant sets for constrained linear discrete-time systems subject to bounded disturbances, 2004.

J. Wan, J. Vehi, and N. Luo, A numerical approach to design control invariant sets for constrained nonlinear discrete-time systems with guaranteed optimality, Journal of Global Optimization, vol.39, issue.3, pp.395-407, 2009.
DOI : 10.1007/s10898-008-9334-6

H. Khalil, Nonlinear Systems, Third Edition, 2002.

J. E. Slotine and W. Li, Applied nonlinear control, Englewood Cliffs (N.J, 1991.

W. Tucker, The Lorenz Attractor Exists Comptes Rendus de l, Académie des Sciences, vol.328, issue.12, pp.1197-1202, 1999.
DOI : 10.1016/s0764-4442(99)80439-x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Goldsztejn, W. Hayes, and P. Collins, Tinkerbell Is Chaotic, SIAM Journal on Applied Dynamical Systems, vol.10, issue.4, pp.1480-1501, 2011.
DOI : 10.1137/100819011

URL : https://hal.archives-ouvertes.fr/hal-00835176

W. Kühn, Rigorously computed orbits of dynamical systems without the wrapping effect, Computing, vol.66, issue.Suppl, pp.47-67, 1998.
DOI : 10.1007/BF02684450

D. Wilczak and P. Zgliczynski, Cr-lohner algorithm, Schedae Informaticae, vol.20, pp.9-46, 2011.

R. E. Moore, Methods and Applications of Interval Analysis, 1979.
DOI : 10.1137/1.9781611970906

J. A. Sandretto and A. Chapoutot, Validated explicit and implicit runge-kutta methods, Reliable Computing, vol.22, p.79, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01243053

N. Revol, K. Makino, and M. Berz, Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY, The Journal of Logic and Algebraic Programming, vol.64, issue.1, pp.135-154, 2005.
DOI : 10.1016/j.jlap.2004.07.008

URL : https://hal.archives-ouvertes.fr/inria-00071850

P. Collins and A. Goldsztejn, The Reach-and-Evolve Algorithm for Reachability Analysis of Nonlinear Dynamical Systems, Electronic Notes in Theoretical Computer Science, vol.223, issue.223, pp.87-102, 2008.
DOI : 10.1016/j.entcs.2008.12.033

N. Ramdani and N. Nedialkov, Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint-propagation techniques, Nonlinear Analysis: Hybrid Systems, vol.5, issue.2, pp.149-162, 2011.
DOI : 10.1016/j.nahs.2010.05.010

URL : https://hal.archives-ouvertes.fr/hal-00611996

E. Goubault, O. Mullier, S. Putot, and M. Kieffer, Inner approximated reachability analysis, Proceedings of the 17th international conference on Hybrid systems: computation and control, HSCC '14, pp.163-172, 2014.
DOI : 10.1145/2562059.2562113

URL : https://hal.archives-ouvertes.fr/hal-01073731

M. Lhommeau, L. Jaulin, and L. Hardouin, Capture basin approximation using interval analysis, International Journal of Adaptive Control and Signal Processing, vol.49, issue.2-3, pp.264-272, 2011.
DOI : 10.1002/acs.1195

URL : https://hal.archives-ouvertes.fr/hal-00593261

S. Ratschan and Z. She, Providing a Basin of Attraction to a Target Region of Polynomial Systems by Computation of Lyapunov-Like Functions, SIAM Journal on Control and Optimization, vol.48, issue.7, pp.4377-4394, 2010.
DOI : 10.1137/090749955

L. Jaulin and F. L. Bars, An Interval Approach for Stability Analysis: Application to Sailboat Robotics, IEEE Transactions on Robotics, vol.29, issue.1, 2012.
DOI : 10.1109/TRO.2012.2217794

URL : https://hal.archives-ouvertes.fr/hal-00738788

J. Yorke, Invariance for ordinary differential equations, Mathematical Systems Theory, vol.7, issue.2, pp.353-372, 1967.
DOI : 10.1007/BF01695169

L. Lapierre, R. Zapata, and P. Lépinay, Combined Path-following and Obstacle Avoidance Control of a Wheeled Robot, The International Journal of Robotics Research, vol.26, issue.4, pp.361-375, 2007.
DOI : 10.1177/0278364907076790

URL : https://hal.archives-ouvertes.fr/lirmm-00127995

S. L. Menec, Linear Differential Game with Two Pursuers and One Evader, Advances in Dynamic Games, pp.209-226, 2011.

O. Bouissou, A. Chapoutot, A. Djaballah, and M. Kieffer, Computation of parametric barrier functions for dynamical systems using interval analysis, 53rd IEEE Conference on Decision and Control, pp.753-758, 2014.
DOI : 10.1109/CDC.2014.7039472

URL : https://hal.archives-ouvertes.fr/hal-01073673

Y. Deville, M. Janssen, and P. V. Hentenryck, Consistency techniques in ordinary differential equations Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus, Proceedings of the Fourth International Conference on Principles and Practice of Constraint Programming , ser. Lecture Notes in Computer Science, 1965.

A. K. Mackworth, Consistency in networks of relations, Consistency in networks of relations, pp.99-118, 1977.
DOI : 10.1016/0004-3702(77)90007-8

E. Goubault and S. Putot, Static Analysis of Numerical Algorithms, Proceedings of SAS 06, pp.18-34, 2006.
DOI : 10.1007/11823230_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Araya, G. Trombettoni, and B. Neveu, A Contractor Based on Convex Interval Taylor, Proc. of CPAIOR, pp.1-16, 2012.
DOI : 10.1007/978-3-642-29828-8_1

URL : https://hal.archives-ouvertes.fr/hal-00733848

F. L. Bars, J. Sliwka, O. Reynet, and L. Jaulin, Set-membership state estimation with fleeting data, Automatica, vol.48, issue.2, pp.381-387, 2012.
DOI : 10.1016/j.automatica.2011.11.004

URL : https://hal.archives-ouvertes.fr/hal-00670459

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00845131

V. Drevelle and P. Bonnifait, Localization Confidence Domains via Set Inversion on Short-Term Trajectory, IEEE Transactions on Robotics, vol.29, issue.5, 2013.
DOI : 10.1109/TRO.2013.2262776

URL : https://hal.archives-ouvertes.fr/hal-00877443

G. Chabert and L. Jaulin, Contractor programming, Artificial Intelligence, vol.173, issue.11, pp.1079-1100, 2009.
DOI : 10.1016/j.artint.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00428957

P. Cousot and R. Cousot, Abstract interpretation, Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages , POPL '77, pp.238-252, 1977.
DOI : 10.1145/512950.512973

URL : https://hal.archives-ouvertes.fr/inria-00528590

G. Trombettoni and G. Chabert, Constructive Interval Disjunction, Proc. CP, Constraint Programming, pp.635-650, 2007.
DOI : 10.1007/978-3-540-74970-7_45

URL : https://hal.archives-ouvertes.fr/hal-00486726

S. Lagrange, N. Delanoue, and L. Jaulin, On Sufficient Conditions of the Injectivity: Development of a Numerical Test Algorithm via Interval Analysis, Reliable Computing, vol.26, issue.6, pp.409-421, 2007.
DOI : 10.1007/s11155-007-9042-9

URL : https://hal.archives-ouvertes.fr/hal-00859290

P. Saint-pierre, Approximation of the viability kernel, Applied Mathematics & Optimization, vol.14, issue.3, 1994.
DOI : 10.1007/BF01204182

L. Jaulin, Outer approximation of attractors using an interval quantization, Reliable Computing, vol.19, pp.261-273, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00989626

A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics, vol.5, issue.2, pp.285-309, 1955.
DOI : 10.2140/pjm.1955.5.285

URL : http://projecteuclid.org/download/pdf_1/euclid.pjm/1103044538

N. Nedialkov, K. Jackson, and G. Corliss, Validated solutions of initial value problems for ordinary differential equations, Applied Mathematics and Computation, vol.105, issue.1, pp.21-68, 1999.
DOI : 10.1016/S0096-3003(98)10083-8