%0 Journal Article %T An Interval Approach to Compute Invariant Sets %+ Pôle STIC_OSM %+ Lab-STICC_ENSTAB_CID_PRASYS %A Le Mézo, Thomas %A Jaulin, Luc %A Zerr, Benoit %Z This work has been supported by the French Government Defense procurement and technology agency (DGA - Direction Générale de l'Armement) %< avec comité de lecture %@ 0018-9286 %J IEEE Transactions on Automatic Control %I Institute of Electrical and Electronics Engineers %V 62 %N 8 %P 4236 - 4242 %8 2017 %D 2017 %R 10.1109/TAC.2017.2685241 %K Guaranteed integration %K state equation %K constraint programming %K limit cycle %K invariant set %K interval analysis %Z Mathematics [math]/Dynamical Systems [math.DS]Journal articles %X This paper proposes an original interval-based method to compute an outer approximation of all invariant sets (such as limit cycles) of a continuous-time non-linear dynamic system which are included inside a prior set of the state space. Contrary to all other existing approaches, our method has the following properties: (i) it is guaranteed (a solution cannot be lost), (ii) it is applicable to a large class of systems without any specific assumption such as the knowledge of a Lyapunov function or any partial linearity, and (iii) there is no need to integrate the system. %G English %2 https://hal.archives-ouvertes.fr/hal-01497267/document %2 https://hal.archives-ouvertes.fr/hal-01497267/file/root.pdf %L hal-01497267 %U https://hal.archives-ouvertes.fr/hal-01497267 %~ CNRS %~ UNIV-UBS %~ INSMI %~ INSTITUT-TELECOM %~ ENIB %~ TDS-MACS %~ LAB-STICC %~ UNIV-BREST %~ ENSTA-BRETAGNE %~ ENSTA-BRETAGNE-STIC %~ INSTITUTS-TELECOM