Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Aircraft recognition using a statistical model and sparse representation

Ayoub Karine 1, 2, 3 Abdelmalek Toumi 4, 2 Ali Khenchaf 1, 2 Mohammed El Hassouni 5
1 Lab-STICC_ENSTAB_MOM_PIM
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
2 Pôle STIC_REMS
ENSTA Bretagne - École Nationale Supérieure de Techniques Avancées Bretagne
4 Lab-STICC_ENSTAB_CID_TOMS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : This paper presents a novel approach for automatic target recognition (ATR) using inverse synthetic aperture radar (ISAR) images. This proposed approach is mainly com- posed of two steps. In the rst step, we adopt a statisti- cal method to compute a novel target template from fea- ture descriptors. The proposed template is achieved by combining the Gamma statistical parameters of the both dual-tree complex wavelet transform (DT-CWT) coecients and the scale-invariant feature transform (SIFT) descrip- tor. In order to validate the proposed target template, we achieve in the second step the recognition task using a sparse representation-based classi cation (SRC) method. The performance of the proposed approach has been success- fully veri ed using ISAR images reconstructed from anechoic chamber. The experimental results show that the proposed method can achieve a high average accuracy and is signi - cantly superior to the well-known SVM classi er.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01406133
Contributeur : Annick Billon-Coat <>
Soumis le : mercredi 30 novembre 2016 - 18:26:45
Dernière modification le : mercredi 24 juin 2020 - 16:19:51

Identifiants

Citation

Ayoub Karine, Abdelmalek Toumi, Ali Khenchaf, Mohammed El Hassouni. Aircraft recognition using a statistical model and sparse representation. BDAW ’16, Nov 2016, Blagoevgrad, Bulgaria. ⟨10.1145/3010089.3010134⟩. ⟨hal-01406133⟩

Partager

Métriques

Consultations de la notice

861