%0 Journal Article %T Model Reduction from Partial Observations %+ Institut de Recherche Mathématique de Rennes (IRMAR) %+ Inria Rennes – Bretagne Atlantique %+ Lab-STICC_ENSTAB_CID_TOMS %+ SIMulation pARTiculaire de Modèles Stochastiques (SIMSMART) %A Herzet, Cédric %A Drémeau, Angélique %A Héas, Patrick %Z Agence Nationale de la Recherche %< avec comité de lecture %@ 0029-5981 %J International Journal for Numerical Methods in Engineering %I Wiley %V 113 %N 3 %P 479-511 %8 2018-01 %D 2018 %R 10.1002/nme.5623 %Z Computer Science [cs]/Numerical Analysis [cs.NA]Journal articles %X This paper deals with model order reduction of parametric partial differential equations (PPDE). We consider the specific setup where the solutions of the PPDE are only observed through a partial observation operator and address the task of finding a good approximation subspace of the solution manifold. We provide and study several tools to tackle this problem. We first identify the best worst-case performance achievable in this setup and propose simple procedures to approximate this optimal solution. We then provide, in a simplified setup, a theoretical analysis relating the achievable reduction performance to the choice of the observation operator and the prior knowledge available on the solution manifold. %G English %L hal-01394059 %U https://hal.science/hal-01394059 %~ UNIV-BREST %~ INSTITUT-TELECOM %~ ENSTA-BRETAGNE %~ UNIV-RENNES1 %~ IRMAR %~ UR2-HB %~ CNRS %~ INRIA %~ UNIV-UBS %~ INSA-RENNES %~ INRIA-RENNES %~ IRISA %~ ENSTA-BRETAGNE-STIC %~ INRIA_TEST %~ UNAM %~ TESTALAIN1 %~ IRMAR-MECA %~ IRMAR-STAT %~ ENIB %~ LAB-STICC %~ CHL %~ INRIA2 %~ UR1-HAL %~ UR1-MATH-STIC %~ UR1-UFR-ISTIC %~ AGREENIUM %~ UNIV-RENNES2 %~ TEST-UNIV-RENNES %~ TEST-UR-CSS %~ UNIV-RENNES %~ INRIA-RENGRE %~ INRIA-300009 %~ INSA-GROUPE %~ INSTITUTS-TELECOM %~ TEST-HALCNRS %~ ANR %~ UR1-MATH-NUM %~ INRIAARTDOI %~ INSTITUT-AGRO