J. P. Aubin and H. Frankowska, Set-Valued Analysis, 1990.

J. Aubin, Viability Theory, Birkhäuser Boston, 1991.
URL : https://hal.archives-ouvertes.fr/inria-00636570

A. M. Bayen, I. M. Mitchell, M. K. Osihi, and C. J. Tomlin, Aircraft Autolander Safety Analysis Through Optimal Control-Based Reach Set Computation, Journal of Guidance, Control, and Dynamics, vol.30, issue.1, pp.68-77, 2007.
DOI : 10.2514/1.21562

F. Blanchini and S. Miani, Set-Theoretic Methods in Control, 2007.
DOI : 10.1007/978-3-319-17933-9

O. Bouissou, A. Chapoutot, A. Djaballah, and M. Kieffer, Computation of parametric barrier functions for dynamical systems using interval analysis, 53rd IEEE Conference on Decision and Control, pp.753-758, 2014.
DOI : 10.1109/CDC.2014.7039472

URL : https://hal.archives-ouvertes.fr/hal-01073673

B. F. Caviness and J. R. Johnson, Quantifier Elimination and Cylindrical Algebraic Decomposition, 2012.
DOI : 10.1007/978-3-7091-9459-1

A. Chapoutot, J. Sandretto, and O. Mullier, Validated explicit and implicit Runge-Kutta methods, Proceedings of the Small Workshop on Interval Methods, pp.79-103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01243053

G. Deffuant, L. Chapel, and S. Martin, Approximating Viability Kernels With Support Vector Machines, IEEE Transactions on Automatic Control, vol.52, issue.5, pp.933-937, 2007.
DOI : 10.1109/TAC.2007.895881

URL : https://hal.archives-ouvertes.fr/hal-00758886

N. Delanoue, L. Jaulin, and B. Cottenceau, An algorithm for computing a neighborhood included in the attraction domain of an asymptotically stable point, Communications in Nonlinear Science and Numerical Simulation, vol.21, issue.1-3, pp.181-189, 2015.
DOI : 10.1016/j.cnsns.2014.08.034

A. Desilles, H. Zidani, and E. Crck, Collision analysis for an UAV, AIAA Guidance, Navigation, and Control Conference, pp.13-16, 2012.
DOI : 10.2514/6.2012-4526

URL : https://hal.archives-ouvertes.fr/hal-00756389

M. Hladík and S. Ratschan, Efficient Solution of a Class of Quantified Constraints with Quantifier Prefix Exists-Forall, Mathematics in Computer Science, vol.32, issue.1, pp.329-340, 2014.
DOI : 10.1007/s11786-014-0195-8

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, 2001.
DOI : 10.1007/978-1-4471-0249-6

URL : https://hal.archives-ouvertes.fr/hal-00845131

S. Kaynama, J. Maidens, M. Oishi, I. M. Mitchell, and G. A. Dumont, Computing the viability kernel using maximal reachable sets, Proceedings of the 15th ACM international conference on Hybrid Systems: Computation and Control, HSCC '12, pp.55-64, 2012.
DOI : 10.1145/2185632.2185644

M. Lhommeau, L. Jaulin, and L. Hardouin, Capture basin approximation using interval analysis, International Journal of Adaptive Control and Signal Processing, vol.49, issue.2-3, pp.264-272, 2011.
DOI : 10.1002/acs.1195

URL : https://hal.archives-ouvertes.fr/hal-00593261

J. N. Maidens, S. M. Kaynama, M. Mitchell, G. A. Oishi, and . Dumont, Lagrangian methods for approximating the viability kernel in high-dimensional systems, Automatica, vol.49, issue.7, pp.492017-2029, 2013.
DOI : 10.1016/j.automatica.2013.03.020

I. Mitchell, A. M. Bayen, and C. J. Tomlin, Validating a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets, Hybrid Systems: Computation and Control, number 2034 in Lecture Notes in Computer Science, pp.418-432, 2001.
DOI : 10.1007/3-540-45351-2_34

N. S. Nedialkov, K. R. Jackson, and G. F. Corliss, Validated solutions of initial value problems for ordinary differential equations, Applied Mathematics and Computation, vol.105, issue.1, pp.21-68, 1999.
DOI : 10.1016/S0096-3003(98)10083-8

S. Ratschan and Z. She, Providing a Basin of Attraction to a Target Region of Polynomial Systems by Computation of Lyapunov-Like Functions, SIAM Journal on Control and Optimization, vol.48, issue.7, pp.4377-4394, 2010.
DOI : 10.1137/090749955

F. Rego, E. De-weerdt, E. Van-oort, E. Van-kampen, Q. Chu et al., Determination of Inner and Outer Bounds of Reachable Sets Through Subpavings, Mathematics in Computer Science, vol.21, issue.2, pp.3-4425, 2014.
DOI : 10.1007/s11786-014-0199-4

P. Saint-pierre, Approximation of the viability kernel, Applied Mathematics & Optimization, vol.14, issue.3, pp.187-209, 1994.
DOI : 10.1007/BF01204182

N. Seube, R. Moitie, and G. Leitmann, Aircraft take-off in windshear: A viability approach. Set-Valued Analysis, pp.163-180, 2000.

Z. She and B. Xue, Computing an invariance kernel with target by computing Lyapunov-like functions, IET Control Theory & Applications, vol.7, issue.15, pp.1932-1940, 2013.
DOI : 10.1049/iet-cta.2013.0275

J. J. Slotine and W. Li, Applied Nonlinear Control, 1991.