J. A. Tropp and S. J. Wright, Computational Methods for Sparse Solution of Linear Inverse Problems, Proc. IEEE, pp.948-958, 2010.
DOI : 10.1109/JPROC.2010.2044010

A. M. Bruckstein, D. L. Donoho, and M. Elad, From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images, SIAM Review, vol.51, issue.1, pp.34-81, 2009.
DOI : 10.1137/060657704

S. Chen, S. Billings, and W. Luo, Orthogonal least squares methods and their application to non-linear system identification, International Journal of Control, vol.10, issue.5, pp.1873-1896, 1989.
DOI : 10.2307/2284566

S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, vol.41, issue.12, pp.3397-3415, 1993.
DOI : 10.1109/78.258082

Y. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.
DOI : 10.1109/ACSSC.1993.342465

A. J. Miller, Subset Selection in Regression, 2002.

C. Soussen, J. Idier, D. Brie, and J. Duan, From Bernoulli–Gaussian Deconvolution to Sparse Signal Restoration, IEEE Transactions on Signal Processing, vol.59, issue.10, pp.4572-4584, 2011.
DOI : 10.1109/TSP.2011.2160633

N. Karahanoglu and H. Erdogan, A* orthogonal matching pursuit: Best-first search for compressed sensing signal recovery, Digital Signal Processing, vol.22, issue.4, pp.555-568, 2012.
DOI : 10.1016/j.dsp.2012.03.003

D. Needell and J. A. Tropp, CoSaMP, Communications of the ACM, vol.53, issue.12, pp.301-321, 2009.
DOI : 10.1145/1859204.1859229

J. A. Tropp, Greed is Good: Algorithmic Results for Sparse Approximation, IEEE Transactions on Information Theory, vol.50, issue.10, pp.2231-2242, 2004.
DOI : 10.1109/TIT.2004.834793

C. Soussen, R. Gribonval, J. Idier, and C. Herzet, Joint <formula formulatype="inline"><tex Notation="TeX">$k$</tex> </formula>-Step Analysis of Orthogonal Matching Pursuit and Orthogonal Least Squares, IEEE Transactions on Information Theory, vol.59, issue.5, pp.3158-3174, 2013.
DOI : 10.1109/TIT.2013.2238606

H. Mohimani, M. Babaie-zadeh, and C. Jutten, A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed <formula formulatype="inline"><tex Notation="TeX">$\ell ^{0}$</tex></formula> Norm, IEEE Transactions on Signal Processing, vol.57, issue.1, pp.289-301, 2009.
DOI : 10.1109/TSP.2008.2007606

K. Herrity, A. Gilbert, J. Tropp, and M. Davies, Sparse Approximation Via Iterative Thresholding, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, pp.624-627, 2006.
DOI : 10.1109/ICASSP.2006.1660731

Z. Lu and Y. Zhang, Sparse Approximation via Penalty Decomposition Methods, SIAM Journal on Optimization, vol.23, issue.4, pp.2448-2478, 2013.
DOI : 10.1137/100808071

M. S. O-'brien, A. N. Sinclair, and S. M. Kramer, Recovery of a sparse spike time series by L/sub 1/ norm deconvolution, IEEE Transactions on Signal Processing, vol.42, issue.12, pp.3353-3365, 1994.
DOI : 10.1109/78.340772

S. Bourguignon, H. Carfantan, and J. Idier, A Sparsity-Based Method for the Estimation of Spectral Lines From Irregularly Sampled Data, IEEE Journal of Selected Topics in Signal Processing, vol.1, issue.4, pp.575-585, 2007.
DOI : 10.1109/JSTSP.2007.910275

URL : https://hal.archives-ouvertes.fr/hal-00399459

G. Tang, B. Bhaskar, and B. Recht, Sparse recovery over continuous dictionaries-just discretize, 2013 Asilomar Conference on Signals, Systems and Computers, pp.1043-1047, 2013.
DOI : 10.1109/ACSSC.2013.6810450

B. Natarajan, Sparse Approximate Solutions to Linear Systems, SIAM Journal on Computing, vol.24, issue.2, pp.227-234, 1995.
DOI : 10.1137/S0097539792240406

M. Iordache, J. Bioucas-dias, and A. Plaza, Sparse Unmixing of Hyperspectral Data, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.6, pp.2014-2039, 2011.
DOI : 10.1109/TGRS.2010.2098413

A. Klein, H. Carfantan, D. Testa, A. Fasoli, J. Snipes et al., A sparsity-based method for the analysis of magnetic fluctuations in unevenly-spaced Mirnov coils, Plasma Physics and Controlled Fusion, vol.50, issue.12, p.125005, 2008.
DOI : 10.1088/0741-3335/50/12/125005

URL : https://hal.archives-ouvertes.fr/hal-00392457

R. Bixby, A brief history of linear and mixed-integer programming computation, Optimization Stories, pp.107-121, 2012.

S. Jokar and M. Pfetsch, Exact and Approximate Sparse Solutions of Underdetermined Linear Equations, SIAM Journal on Scientific Computing, vol.31, issue.1, pp.23-44, 2008.
DOI : 10.1137/070686676

I. Tosic and S. Drewes, Learning Joint Intensity-Depth Sparse Representations, IEEE Transactions on Image Processing, vol.23, issue.5, 2014.
DOI : 10.1109/TIP.2014.2312645

X. Sun, X. Zheng, and D. Li, Recent Advances in Mathematical Programming with Semi-continuous Variables and Cardinality Constraint, Journal of the Operations Research Society of China, vol.22, issue.1, pp.55-77, 2013.
DOI : 10.1007/s40305-013-0004-0

N. B. Karahanoglu, H. Erdogan, and S. I. Birbil, A mixed integer linear programming formulation for the sparse recovery problem in compressed sensing, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.5870-5874, 2013.
DOI : 10.1109/ICASSP.2013.6638790

I. Das and J. Dennis, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems, Structural Optimization, vol.21, issue.1, pp.63-69, 1997.
DOI : 10.1007/BF01197559

R. J. Marks, G. L. Wise, D. S. Haldeman, and J. L. Whited, Detection in Laplace Noise, IEEE Transactions on Aerospace and Electronic Systems, vol.14, issue.6, pp.866-872, 1978.
DOI : 10.1109/TAES.1978.308550

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

C. Clason, fitting for inverse problems with uniform noise, Inverse Problems, vol.28, issue.10, p.104007, 2012.
DOI : 10.1088/0266-5611/28/10/104007

P. Stoica and Y. Selen, Model-order selection, IEEE Signal Processing Magazine, vol.21, issue.4, pp.36-47, 2004.
DOI : 10.1109/MSP.2004.1311138

I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm, IEEE Transactions on Signal Processing, vol.45, issue.3, pp.600-616, 1997.
DOI : 10.1109/78.558475

M. Nikolova, Description of the Minimizers of Least Squares Regularized with $\ell_0$-norm. Uniqueness of the Global Minimizer, SIAM Journal on Imaging Sciences, vol.6, issue.2, pp.904-937, 2013.
DOI : 10.1137/11085476X

P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke et al., Mixed-integer nonlinear optimization, Acta Numerica, vol.22, pp.1-131, 2013.
DOI : 10.1017/S0962492913000032

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

A. Lodi and M. Jünger, Mixed Integer Programming Computation, 50 Years of Integer Programming, pp.619-645, 1958.
DOI : 10.1007/978-3-540-68279-0_16

R. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the American Mathematical Society, vol.64, issue.5, pp.275-278, 1958.
DOI : 10.1090/S0002-9904-1958-10224-4

F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget, Revising hull and box consistency, Proc. ICLP, pp.230-244, 1999.

S. Mallat, A wavelet tour of signal processing: The sparse way, 2009.

D. M. Malioutov, M. Cetin, and A. S. Willsky, Homotopy continuation for sparse signal representation, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., pp.733-736, 2005.
DOI : 10.1109/ICASSP.2005.1416408

E. Carcreff, S. Bourguignon, J. Idier, and L. Simon, Resolution enhancement of ultrasonic signals by up-sampled sparse deconvolution, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.6511-6515, 2013.
DOI : 10.1109/ICASSP.2013.6638920

URL : https://hal.archives-ouvertes.fr/hal-00864319

M. C. Van-rossum, A Novel Spike Distance, Neural Computation, vol.76, issue.4, pp.751-763, 2001.
DOI : 10.1088/0954-898X/8/2/003

M. Ehrgott, Multicriteria optimization, 2005.
DOI : 10.1007/978-3-662-22199-0

R. Jenatton, J. Audibert, and F. Bach, Structured variable selection with sparsity-inducing norms, J. Mach. Learn. Res, vol.12, pp.2777-2824, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00377732

J. Huang, T. Zhang, and D. Metaxas, Learning with structured sparsity, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.417-424, 2009.
DOI : 10.1145/1553374.1553429

L. Baldassarre, N. Bhan, V. Cevher, and A. Kyrillidis, Group-Sparse Model Selection: Hardness and Relaxations, IEEE Transactions on Information Theory, vol.62, issue.11
DOI : 10.1109/TIT.2016.2602222