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Separator Algebra for State Estimation

Luc Jaulin, ENSTA-Bretagne, LabSTICC.

1 Introduction

Consider the following state estimation problem [Jau15]

(i) ẋ (t) = f (x (t)) , t ∈ R
(ii) g (tk) ∈ Y (k) , k ∈ N

(1)

Our objective is to find an inner and an outer approximation of the set X (t) of all state vectors
that are consistent with (1) at time t. If we define by flow map ϕt1,t2 as follows:

�
x (t1) = x1 and ẋ (t) = f (x (t))⇒ x2 = ϕt1,t2 (x1)

�
. (2)

The set of all causal feasible states at time t is defined by

X (t) =
�

tk≤t

ϕtk,t ◦ g
−1 (Y (k)) . (3)

In this paper, we show how it is possible to find both an inner and an outer approximations for
X (t). Some existing methods are able to find an outer approximation [KJWM99] [GRMA13], but,
to my knowledge, none of them is able to get an inner approximation. The main idea is to copy a
classical contractor approach [CJ09] for state estimation, but to use separators [JD14] instead of
contractors.

2 Separators

In this section, we present separators and show how they can be used by a paver in order to bracket
the solution sets. An interval of R is a closed connected set of R. A box [x] of Rn is the Cartesian
product of n intervals. The set of all boxes of Rn is denoted by IRn. A contractor C is an operator
IR

n �→ IR
n such that C([x]) ⊂ [x] and [x] ⊂ [y] ⇒ C([x]) ⊂ C([y]). A set S is consistent with the

contractor C (we will write S ∼ C) if for all [x], we have C([x]) ∩ S = [x]∩ S. A separator S is pair
of contractors

�
S in ,Sout

�
such that, for all [x] ∈ IRn, we have S in([x])∪Sout([x]) = [x]. A set S is

consistent with the separator S (we write S ∼ S), if S ∼ Sout and S ∼ S in . where S = {x | x /∈ S}.
Using a separator inside a paver we can easily to classify part of the search space that are inside
or outside a solution set S associated with S.
The algebra for separators is a direct extension of contractor algebra [CJ09]. If Si =

�
S ini ,S

out
i

�
, i ∈

{1, 2} are separators, we define

S1 ∩ S2 =
�
S in1 ∪ S

in
2 ,S

out
1 ∩ Sout2

�
(intersection)

S1 ∪ S2 =
�
S in1 ∩ S

in
2 ,S

out
1 ∪ Sout2

�
(union)

f−1 (S1) =
�
f−1(S in1 ), f

−1(Sout1 )
�

(inverse)
(4)



If Si are sets of R
n, we have [JSD14]

(i) S1 ∩ S2 ∼ S1 ∩ S2
(ii) S1 ∪ S2 ∼ S1 ∪ S2
(iii) f−1 (S1) ∼ f

−1 (S1) .
(5)

Interval analysis [Moo66] [KK96] combined with contractors [CJ09] has been shown to be able to

give an outer approximation of set. For the inner subpaving, the De Morgan rules make it possible
to express the complementary set X of X. Then, basic contractor techniques can be used to get an
inner characterization X−. Now, the task is not so easy and the role of separators is to make it
automatic.

3 Transformation of separators

A transformation is an invertible function f such as an analytical expression if known for both f
and f−1. The set of transformation from Rn to Rn is a group with respect to the composition ◦.
Symmetries, translations, homotheties, rotations, . . . are linear transformations.
Theorem. Consider a set X and a transformation f . Denote by [f ] and

�
f−1

�
two inclusion functions

for f and f−1. If SX is a separator for X then a separator SY for Y = f (X) is

[y]→
��
[f ] ◦ S inX ◦

�
f−1

��
([y]) ∩ [y] ,

�
[f ] ◦ SoutX ◦

�
f−1

��
([y]) ∩ [y]

�
(6)

or equivalently
f (X) ∼

�
[f ] ◦ S inX ◦

�
f−1

�
∩ Id, [f ] ◦ SoutX ◦

�
f−1

�
∩ Id

�
(7)

where Id is the identity contractor.
Remark. The separator defined by (6) corresponds to what we call the transformation of a
separator by f and we write SY = f (SX). As a consequence, thanks to the theorem, we can add to
(5) the property

(iv) f (X) ∼ f (SX) .

which will be used later for our state estimation problem.
Proof. The separator SY is equivalent to Y = f (X) if

�
Sout
Y
([y]) ∩Y = [y] ∩Y

S in
Y
([y]) ∩Y = [y] ∩Y.

(8)

Since Sout
Y
([y]) ⊂ [y] and Sout

Y
([y]) ⊂ [y], it suffices to prove that

�
(i) Sout

Y
([y]) ⊃ [y] ∩Y

(ii) S in
Y
([y]) ⊃ [y] ∩Y.

(9)

Let us first prove (i). We have

[y] ∩Y = f
�
f−1 ([y]) ∩ f−1 (Y)

�
f is bijective

= f
�
f−1 ([y]) ∩X

�
X = f−1 (Y)

⊂ f
��
f−1

�
([y]) ∩X

� �
f−1

�
is an inclusion function for f−1

⊂ f(Sout
X

��
f−1

�
([y])

�
) Sout

X
is a contractor for X

⊂ [f ] ◦ Sout
X
◦
�
f−1

�
([y]) [f ] is an inclusion function for f

(10)



Thus [y] ∩Y ⊂
�
[f ] ◦ Sout

X
◦
�
f−1

�
([y]) ∩ [y]

�
= Sout

Y
([y]). Let us now prove (ii). We have

[y] ∩Y = f
�
f−1 ([y]) ∩ f−1

�
Y
��

f is bijective
= f

�
f−1 ([y]) ∩X

�
X = f−1

�
Y
�

⊂ f
��
f−1

�
([y]) ∩X

� �
f−1

�
is an inclusion function for f−1

⊂ f(S in
X

��
f−1

�
([y])

�
) S in

X
is a contractor for X

⊂ [f ] ◦ S in
X
◦
�
f−1

�
([y]) [f ] is an inclusion function for f

(11)

Thus [y] ∩Y ⊂
�
[f ] ◦ Sout

X
◦
�
f−1

�
([y]) ∩ [y]

�
∩Y = S in

Y
([y]) which terminates the proof. �

Example. Consider the constraint
				



2 0
0 1

�

cosα sinα
− sinα cosα

�

y1 − 1
y2 − 2

�				 ∈ [1, 3] . (12)

If we apply an efficient forward-backward contractor in a paver, we get the contractions illustrated
by the paving of Figure 1, left. Now, if we take



x1
x2

�
=



2 0
0 1

�

cosα sinα
− sinα cosα

�

y1 − 1
y2 − 2

�
= f−1 (y) (13)

or equivalently 

y1
y2

�
=



cosα − sinα
sinα cosα

�

1
2 0
0 1

�

x1
x2

�
+



1
2

�
= f (x) , (14)

we get
y = f (x) , and �x� ∈ [1, 3] . (15)

An optimal separator SX can be built for x and the separator transform provides us a separator
SY for Y. As illustrated by Figure 1, right, the resulting separator SY is more efficient than the
classical one based on forward-backward contractors. Note that in case we are not able to have an
inner approximation for f−1, the problem of finding an inner approximation of the image of a set
f (X) becomes much more difficult. See, e.g., [VJVS05] [GJ10].

4 State estimation

If SX(0) is a separator for X (0) and if SY(k) are separators for Y (k), then a separator for the set
X (t) defined by (3) is

SX(t) =
�

tk≤t

ϕtk,t ◦ g
−1
�
SY(k)

�
. (16)

In this formula, g−1
�
SY(k)

�
is a separator. Due to the fact that ϕtk,t is bijective and that we are

able to find an inclusion function for ϕtk,t and ϕ
−1
tk,t

[RN11], the separator ϕtk,t ◦ g
−1
�
SY(k)

�
is

clearly defined using the separator transform. To illustrate the method, let us consider a robot
described by





ẋ (t) =



v (t) cos θ (t)
v (t) sin θ (t)

�
(evolution)

�x (tk)� ∈ y (tk) + [−0.3, 0.3] , tk = 0.1 · k, k ∈ N (observation)
(17)



Fig. 1. Left. Contractions obtained using a classical forward-backward propagation; Right. Contractions
obtained using the separator transform. The frame corresponds to the box [−6, 6]2.

where v (t) and θ (t) are measured with an accuracy of ±0.03. The observation equation is due to
the fact that the robot measures every 0.1 sec its distance to the origin with an accuracy of ±0.3.
The actual (but unknown) trajectory for the robot is

x (t) =



2 + 3 cos t
2 sin t

�
. (18)

For t ∈ 0.2 ∗ k, k = 0, . . . , 7, the sets X (t) obtained by our observer are represented on Figure 2.
Black boxes are inside X (t), grey boxes are outside and the white boxes cover the boundary. For
t = 0, X (t) is a ring which becomes a small set for t = 1.4 once the robot has moved sufficiently.
The fact that the white area covering the boundary becomes thick is mainly due to the state errors
inside the evolution equation.
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