N
N

N

HAL

open science

A reliable affine relaxation method for global

optimization

Jordan Ninin, Frédéric Messine, Pierre Hansen

» To cite this version:

Jordan Ninin, Frédéric Messine, Pierre Hansen. A reliable affine relaxation method for global optimiza-
tion. 40R: A Quarterly Journal of Operations Research, 2015, 13 (3), pp.247-277. 10.1007/s10288-

014-0269-0 . hal-01194735

HAL Id: hal-01194735
https://hal.science/hal-01194735

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01194735
https://hal.archives-ouvertes.fr

A Reliable Affine Relaxation Method for Global Optimization

Jordan Ninin' Frédéric Messinet Pierre Hansen$9

March 3, 2015

Abstract

An automatic method for constructing linear relaxations of constrained global optimization
problems is proposed. Such a construction is based on affine and interval arithmetics and uses
operator overloading. These linear programs have exactly the same numbers of variables and
inequality constraints as the given problems. KEach equality constraint is replaced by two
inequalities. This new procedure for computing reliable bounds and certificates of infeasibility
is inserted into a classical Branch and Bound algorithm based on interval analysis. Extensive
computation experiments were made on 74 problems from the COCONUT database with up
to 24 variables or 17 constraints; 61 of these were solved, and 30 of them for the first time,
with a guaranteed upper bound on the relative error equal to 1078, Moreover, this sample
comprises 39 examples to which the GlobSol algorithm was recently applied finding reliable
solutions in 32 cases. The proposed method allows solving 31 of these, and 5 more with a
CPU-time not exceeding 2 minutes.

1 Introduction

For about thirty years, interval Branch and Bound algorithms are increasingly used to solve global
optimization problems in a deterministic way [13, 16, 24, 37]. Such algorithms are reliable, i.e.,
they provide an optimal solution and its value with a guaranteed bound on the error, or a proof
that the problem under study is infeasible. Other approaches of global optimization (e.g. [1, 2,
14, 21, 22, 23, 30, 40, 42]), while useful and often less time-consuming than interval methods,
do not provide such a guarantee. Recently, the second author adapted and improved standard
interval branch and bound algorithms to solve design problems of electromechanical actuators
[9, 10, 27, 28]. This work showed that interval propagation techniques based on constructions of
computation trees [26, 43, 44] and on linearization techniques [13, 16, 22] improved considerably
the speed of convergence of the algorithm.

Another way to solve global optimization problems, initially outside the interval branch and
bound framework, is the Reformulation-Linearization Technique developed by Adams and Sherali
[40], see also [2, 36] for methods dedicated to quadratic non-convex problems. The main idea is to
reformulate a global optimization problem as a larger linear one, by adding new variables as powers
or products of the given variables and linear constraints on their values. Notice that in [39], Schichl
and Neumaier proposed another linearization technique based on the slopes of functions. This

fLabSTICC, IHSEV team, ENSTA-Bretagne, 2 rue Francois Verny 29806 Brest, France,
jordan.ninin@ensta-bretagne.fr

TENSEEIHT-IRIT, 2 rue Charles Camichel, 31071, Toulouse, France,
Frederic.Messine@enseeiht.fr

§Groupe d’Etudes et de Recherches en Analyse des Décisions, HEC Montréal, Canada and LIX, Ecole Polytech-
nique, Palaiseau, France, Pierre.Hansen@gerad.ca

9The research of Pierre Hansen was supported by an NSERC Operating Grant as well as by the DIGITEO
Fondation. The work of Jordan Ninin has been supported by French National Research Agency (ANR) through
COSINUS program (project IDACS nANR-09-COSI-005).

technique has the advantage of keeping the same number of variables as the original optimization
problem.

Kearfott [17], Kearfott and Hongthong [19] and Lebbah, Rueher and Michel [22] embedded the
Reformulation-Linearization Technique in interval branch and bound algorithms, showing their
efficiency on some numerical examples. However, it is not uncommon that the relaxed linear
programs are time-consuming to solve exactly at each iteration owing to their large size. Indeed,
if the problem has highly nonlinear terms, fractional exponents or many quadratic terms, these
methods will require many new variables and constraints.

In this paper, the main idea is to use affine arithmetic [4, 5, 6, 41] to generate linear relaxations.
This arithmetic can be considered as an extension of interval arithmetic [31] by converting intervals
into affine forms. This has several advantages: (i) keeping affine information on the dependencies
among the variables during the computations reduces the dependency problem which occurs when
the same variable has many occurrences in the expression of a function; (ii) as with interval arith-
metic, affine arithmetic can be implemented in an automated way by using computation trees and
operator overloading [30] which are available in some languages such as C++, Fortran90/95/2000
and Java; (iii) the linear programs have exactly the same numbers of variables and of inequality
constraints as the given constrained global optimization problem. The equality constraints are
replaced by two inequality constraints. This is due to the use of two affine forms introduced by
the second author in a previous work [25]. The linear relaxations have to be solved by specialized
codes such as CPLEX. Techniques for obtaining reliable results with such non reliable codes have
been proposed by Neumaier and Shcherbina [33], and are used in some of the algorithms proposed
below; (iv) compared with previous, often specialized, works on the interval branch and bound
approach [17, 22], or which could be embedded into such an approach [2, 40], the proposed method
is fairly general and can deal with many usual functions such as logarithm, exponential, inverse,
square root.

The paper is organized as follows. Section 2 specifies notations and recalls basic definitions
about affine arithmetic and affine forms. Section 3 is dedicated to the proposed reformulation
methods and their properties. Section 4 describes the reliable version of these methods. In Section
5, their embedding in an interval Branch and Bound algorithm is discussed. Section 6 validates
the efficiency of this approach by performing extensive numerical experiments on a sample of 74
test problems from the COCONUT website. Section 7 concludes.

2 Affine Arithmetic and Affine Forms

Interval arithmetic extends usual functions of arithmetic to intervals, see [31]. The set of intervals
will be denoted by IR, and the set of n-dimensional interval vectors, also called bozes, will be
denoted by TR™. The four standard operations of arithmetic are defined by the following equations,
where & = [z,7] and y = [y, 7] are intervals:
Oy =[z+y,
roy =lz-—

7l x Oy = |min(zy, 27, Ty, TY), max(zy, 27, Ty, TY)],
yl, roy =T 01/71/y,if0dy.

These operators are the basis of interval arithmetic, and its principle can be extended to many
unary functions, such as cos, sin, exp, log, /. [16, 41]. We can also write inf(x) = x for the lower

bound, sup(z) = T for the upper bound and mid(x) = EJQFT for the midpoint of the interval «.
Given a function f of one or several variables z1, ..., z, and the corresponding intervals for the
variables @1, ..., x,, the natural interval extension f of f is an interval obtained by substituting

variables by their corresponding intervals and applying the interval arithmetic operations. This
provides an inclusion function, i.e., f : D C IR™ — IR such that V& € D, range(f,x) = {f(z) : z €
x} C f(x), for details see [37, section 2.6].

Example 1 Using the rounded interval arithmetic in Fortran double precision, such as defined in

[31, Chap. 3],

x=[1,2] x [2,6], f(z)=2z1- 22— exp(x1 + z2),
f(x) =[1,2] ®[2,6]% © exp([1,2] ® [2,6]) = [~2976.957987041728, 51.914463076812],
We obtain that: Vx € x, f(x) € [—2976.957987041728,51.914463076812].

Affine arithmetic was introduced in 1993 by Comba and Stolfi [4] and developed by De Figueiredo
and Stolfi in [5, 6, 41]. This technique is an extension of interval arithmetic obtained by replacing
intervals with affine forms. The main idea is to keep linear dependency information during the
computations. This makes it possible to efficiently deal with a difficulty of interval arithmetic: the
dependency problem, which occurs when the same variable appears several times in an expression
of a function (each occurrence of the same variable is treated as an independent variable). To
illustrate that, the natural interval extension of f(z) = x — x, where x € & = [z, 7], is equal to
[x — T, T — z] instead of 0.

A standard affine form is written as follows, where x is a partially unknown quantity, the
coefficients z; are finite floating-point numbers (we denote this with a slight abuse of notation as
R) and ¢; are symbolic real variables whose values are unknown but assumed to lie in the interval
€; = [—1,1], see [41]:

S/C\: Zo +Z$i€i,
i=1 (1)
with Vi € {0,1,...,n},x; e Rand Vi € {1,2,...,n},¢; € €, = [—1,1].

An affine form can also be defined by a vector of all its components: (g, 21, ..., 2Tn)-

As in interval arithmetic, usual operations and functions are extended to deal with affine forms.
For example, the addition between two affine forms, latter denoted by Z and 7, is simply the term-
wise addition of their coefficients x; and y;. The algorithm for the other operations and some
transcendental functions, such as the square root, the logarithm, the inverse and the exponential,
can be found in [41]. Conversions between affine forms and intervals are done as follows:

Interval — Affine Form Aﬂi‘ne Form — Interval
x= |[z,7] — T= xo+)i Ti€ —
~ x + T T — X n
7= 5ty ks (2) = 20D Z|zi|> o [~1,1].
where €, € €, is a new variable. i=1

Indeed, using these conversions, it is possible to construct an affine inclusion function; all the
intervals are converted into affine forms, the computations are performed using affine arithmetic
and the resulting affine form is then converted into an interval; this generates bounds on values
of a function over a box [25, 41]. These inclusion functions cannot be proved to be equivalent or
better than natural interval extensions. However, empirical studies done by De Figueiredo et al.
[41], Messine [25] and Messine and Touhami [29] show that when applied to global optimization
problems, affine arithmetic is, in general, significantly more efficient for computing bounds than
the direct use of interval arithmetic.

Nevertheless, standard affine arithmetic such as described in [41] introduces a new variable each
time a non-affine operation is done. Thus, the size of the affine forms is not fixed and its growth
may slow down the solution process. To cope with this problem, one of the authors proposed two
extensions of the standard affine form which are denoted by AF1 and AF2 [25]. These extended
affine forms make it possible to fix the number of variables and to keep track of errors generated
by approximation of non-affine operations or functions.

e The first form AF1 is based on the same principle as the standard affine arithmetics but
all the new symbolic terms generated by approximations are accumulated in a single term.

f(@) f(@)

min-range
4 approximation
¢+ az

v Chebyshev
approximation

¢+ az
error

< lower bound

1

error

Y Jower bound

Figure 1: Affine approximations by min-range methods and Chebyshev.

Therefore, the number of variables does not increase. Thus:

n
r=uwxo+ Z Ti€; + Tpt1€4, (4)
i=1

with Vi € {0,1,...,n},2; € R, w11 €ERY ¢, € ;= [—1,1] and ey € €+ = [-1,1].

e The second form AF2 is based on AF1. Again the number of variables is fixed but the errors
are stacked in three terms, separating the positive, negative and unsigned errors. Thus:

n

fzmo—l—inei—i—anei + Tpio€r + Tpise_, (5)
i=1
withVi € {0,1,...,n},z; € Rand Vi € {1,2,...,n}, e € ¢, = [—1,1], and (11, Tnt2, Tnis) €
R, er €ex =[-1,1], ey €€y =1[0,1],e- € e~ =[-1,0].

In this paper, we use mainly the affine form AF2. Note that a small mistake was recently found
in the computation of the error of the multiplication between two AF2 forms in [25], see [44].

Usual operations and functions are defined by extension of affine arithmetic, see [25] for details.
For example, the multiplication between two affine forms of type AF1 is performed as follows:

n n+1 n+1
Ty =xoyo + Z(woyi + ziyo)ei + (-Toyn-i-l + Tnt1yo + (Z |4 - Z |yz|>> €+

i=1 i=1 i=1

For computing unary functions in affine arithmetic, De Figueiredo and Stolfi [41] proposed
two linear approximations: the Chebyshev and the min-range approximations, see Figure 1. The
Chebyshev approximation is the reformulation which minimizes the maximal absolute error. The
min-range approximation is that one which minimizes the range of the approximation. These affine
approximations are denoted as follows:

f(Z) = ¢ + aF + bex, (©)
with Z given by Equation (4) or (5) and (€ R,a € RT,§ € R™.

Thus on the one hand, the Chebyshev linearization gives the affine approximation which mini-
mizes the error § but the lower bound is worse than the actual minimum of the range, see Figure 1.
On the other hand, the min-range linearization is less efficient in estimating linear dependency
among variables, while the lower bound is equal to the actual minimum of the range. In our affine
arithmetic code, as in De Figueiredo et al.’s one [41], we choose to implement the min-range lin-
earization technique. Indeed, in experiments with monotonic functions, bounds were found to be
better than those calculated by the Chebyshev approximation when basic functions were combined
(because the Chebyshev approximations increase the range).

A representation of the computation of AF1 is shown in Figure 2 (numbers are truncated with
6 digits after the decimal point). In our implementation, the computation tree is implicitly built

@ —1476.52 — 2.04€; — 16.17€3 + 1446.23€ 4

24 + 8e1 + 24€o + 16€4

1.5+ 0.5¢; @

4 + 2¢9

\
926

\500.52 + 10.04€1 + 40.17¢o + 1430.22¢,

16 + 1669 + 4e4
5.5 + 0.561 + 262

ool

1.5+ 0.5¢;

Figure 2: Visualization of AF1 by computation tree: f(z) = x1-23 —exp(z1 +22) in [1,2] x [2, 6].

by operator overloading [30]. Hence, its form depends on how the equation is written. The leaves
contain constants or variables which are initialized with the affine form generated by the conversion
of the initial interval. Then, the affine form of each internal node is computed from the affine form
of its sons by applying the corresponding operation of AF1. The root gives the affine form for the
entire expression. Lower and upper bounds are obtained by replacing the e; variables by [—1,1]
and applying interval arithmetic.

Example 2 Consider the following function:
f(z) =21 - a3 —exp(ar +x2) in [1,2] x [2,6],

First, using Equation (2), we transform the intervals [1,2] and [2, 6] into the following affine forms
(at this stage it is equivalent to use AF1 or AF2):

xr] = [1,2] — i'\l =15+ 0.561 and Tro = [2,6] — i'\Q =4+ 262.
Computing with the extended operators of AF1 and of AF2, we obtain the following affine forms:

?Apl(a:) = —1476.521761 — 2.042768¢; — 16.171073€5 + 1446.222382¢,
fape(x) = —1476.521761 — 2.042768¢1 — 16.171073¢5 + 1440.222382¢4 + Ge4 + Oe—.

The details of the computation by AF1 are represented in Figure 2. The variable €1 corresponds to
Ty, €2 to 3 and using AF1, ex contains all the errors generated by non-affine operations. Using
AF2, ex contains the errors generated by the multiplication and the exponential, and e the errors
generated by the square.
To conclude, using Equation (3), we convert these affine forms into intervals to have the fol-

lowing bounds:
Using interval arithmetic directly, we obtain

Va € [1,2] x [2,6], f(x) € [-2976.9579870417284, 51.91446307681234],
using AF1: Va € [1,2] x [2,6], f(x) € [-2940.9579870417297, —12.085536923186737],
using AF2: Va € [1,2] x [2,6], f(x) € [-2934.9579870417297, —12.085536923186737],
and the exact range with 12 digits after comma is

range(f,[1,2] x [2,6]) = [—2908.957987041728, —16.085536923187668].

In this example, the enclosure computed by interval arithmetic contains 0. This introduces an
ambiguity on the sign of [over [1,2] X [2,6] while it is clearly negative. This example shows why
AF1 and AF2 are interesting.

An empirical comparison among interval arithmetic, AF1 and AF2 affine forms has been done
on several randomly generated polynomial functions [25], and the proof of the following proposition
is given there.

Proposition 3 Consider a polynomial function f of € C R™ to R and fap, far1 and faps the
reformulations of f respectively with AF, AF1 and AF2. Then one has:

range(f, @) C fapa (@) C fapi (@) = fap ().

3 Affine Reformulation Technique based on Affine Arith-
metic

Since many years, reformulation techniques have been used for global optimization [1, 2, 14, 19,
22, 23, 36, 40, 42]. In most cases, the main idea is to approximate a mathematical program by
a linear relaxation. Thus, solving the linear program yields bounds on this optimal value or a
certificate of infeasibility of the original problem. The originality of our approach lies in how the
linear relaxation is constructed.

In our approach, named Affine Reformulation Technique (ART a1), we have kept the computa-
tion tree and relied on the extended affine arithmetics (AF1 and AF2). Indeed, the extended affine
arithmetics handle affine forms on the computation tree. But until now, this technique has been
only used to compute bounds. Now, our approach uses the extended affine arithmetics not only
as a simple way to compute bounds but also as a way to automatically linearize every factorable
function [42]. This becomes possible by fixing the number of ¢, variables in the extended affine
arithmetics. Thus, an affine transformation 7 between the original set @ C R™ and € = [—1, 1]"
is introduced, see Equation (2); notice that T is bijective. Now, we can identify the linear part of
AF1 and AF2 as a linear approximation of the original function. Thus, this leads to the following
propositions:

Proposition 4 Consider (fo,...,fn+1), the components of the affine form AF1 of a function f
over x.

IfvVz € ®, f(x) <0, then ¥y € [-1,1]", Zfiyi < frgr —fo.
i=1
Zfzyz S fn+1 - fo,
IfVo € x, f(x) =0, then Yy € [-1,1]", =1,
= fiyi < fap1 +fo.

i=1

Proof. Denote the affine form AF1 of f over = by ?(a:) Here the components f; in the
formulation depend also on «:

fl@) =fo+ Zfiﬁi + foti1€x,

i=1
with Vi € {0,1,...,n},f; e R, f,11 € RT,
Vie{l,2,...,n},¢e €€ =[-1,1 and ex € ex =[-1,1].

By definition, the affine form AF1 is an inclusion function:

VY S €T, f(SC) S fo D ZﬂEZ D fn+1€:|:.
i=1
But Vy € € = [-1,1]",3z € ¢,y = T (z) where T is an affine function, then:

Ve ex, f(x e(Zﬂ (x;) ®fo ® frg1]— 1,1]),
1=1
- (7)
Vo €, f(x) =Y fiTi(w:) € [fo — fat1,fo + Fusal,
i=1
where 7; are the components of T

Thus the result follows. O

Proposition 5 Consider (fo,...,fnt1,fnto,fnts), the components of the affine form AF2 of a
function f over x. .

If Vx € x, f(x) <0 then Vy € [-1,1]", Zfiyi <fnt1 +fnrs —fo.
i=1
Zfiyi < fnt1 + futs — fo,
If Ve ez, f(x) =0 thenVy € [-1,1]", { =1,
=Y fiys < fupr + fuga + o,
i=1
Proof. If we replace AF1 with AF2 in Equations (7), we have the following inclusion:

n

Ve ex, f(zx) - Zfz,];(xz) € [fo — frt1 — fys, fo + frop1 + frpol. o

i=1

Consider a constrained global optimization problem (8), defined below, a linear approximation
of each of the expressions for f, g; and h; is obtained using AF1 or AF2. Each inequality constraint
is relaxed by one linear inequality and each equality constraint by two linear inequalities. Thus,
the linear program (9) is automatically generated.

:nGHmliCnR" f(SC) () fnm | cTy
st. gr(x) <0, Vke{l,...,p}, 8 ye[-1,1]"
h(z) =0, Vie{l,....q} st. Ay <b.

The linear objective function ¢ of the linear program (9) is obtained from the linear part of the
affine form of the objective function f of the original problem (8): i.e. ¢ = (f;,fa,...,f,)T. The
linear constraints (Ay < b) are composed using Proposition 4 or 5 over each constraints g and hy
of the original problem (8).

Remark 6 The size of the linear program (9) still remains small. The number of variables is the
same as in the general problem (8) and the number of inequality constraints cannot exceed twice
its number of constraints.

Let us denote by S the set of feasible solutions of the initial problem (8), S2 the set of
feasible solutions of the linear program (9), 7 the bijective affine transformation between x and
e = [—1,1]", and E; the lower bound of the error of the affine form of f. Using AF1, E; =
inf(fo®fy11€x) = fo—fp+1 and using AF2, Ey = inf(fo®f,41 €L Bfproe1Bfr3e_) = fo—fp1—Frs.

Proposition 7 Assume that x is a feasible solution of the original problem (8), hence y = T (x)
is a feasible solution of the linear program (9) and therefore, one has T (S1) C Ss.

Proof. The proposition is a simple consequence of Propositions 4 and 5. g

Corollary 8 If the relazed linear program (9) of a problem (8) does not have any feasible solution
then the problem (8) does not have any feasible solution.

Proof. Using directly Proposition 7, So = 0 implies S; = @) and the result follows. 0
Proposition 9 If ysu is a solution which minimizes the linear program (9), then
vV € S17 f(SC) Z (fla "'afn)TySol + Efa

with By = fo—f,11 if AF1 has been used to generate the linear program (9), and Ey = fo—fp41—fni3
if AF2 has been used.

Proof. Using Proposition 7, one has Vz € S,y = T(x) € So. Moreover, ys, denotes by
assumption the solution which minimizes the linear program (9), hence one obtains Vy € Sy, ¢’y >
cTysor. Using Proposition 4 and Proposition 5, we have Vo € Sy,3y € [-1,1], f(z) — Ty > Ef
and therefore Vo € Sy, f(x) > ¢l ysor + Ey. a

We remark that equality occurs when the problem (8) is linear, because, in this case, AF1 and
AF2 are just a rewriting of program (8) on [—1,1]", instead of «.

Proposition 10 Let us consider a polynomial program; i.e., f and all g;, h; are polynomial func-
tions. Denote a minimizer point of a relaxed linear program (9) using AF1 form by y,.,, and
another one using AF2 form by y,.,. Moreover, using the notations c, .., E¢ ., and c .y, Efip,
for the reformulations of f using AF1 and AF2 forms respectively, we have:

T T
Va € Sl,f(SC) > CoapoYars + EfAFz > Cop1Yarm T EfAF1'

Proof. By construction of the arithmetics defined in [25] (with corrections as in [44]) and
mentioned in Proposition 3, if y € Ss, we have:

CZ‘:FZy + Efyps = Cz;ply + Efaps

T T T T
CAF2y Z CAFZyAF2 and CAFly Z CAF1yAF1‘

But Proposition 7 yields Vo € Sy, y = T (x) € Sy and then,
Vo € Sla f(ZL') > cz:pgyAFz =+ EfAFz > C’Z;FlyAFQ =+ EfAFl > cz:plyAFl + EfAFl' a

Remark 11 Proposition 10 could be generalized to factorable functions depending on the defini-
tion of transcendental functions in AF1 and AF2 corresponding arithmetic. In [25], only affine
operations and the multiplication between two affine forms were taken into account.

Proposition 12 If a constraint of the problem (8) is proved to be satisfied by interval analysis,
then the associated linear constraint can be removed from the linear program (9) and the solution
does not change.

Proof. If a constraint of the original problem (8) is satisfied on @ (which is guaranteed by interval
arithmetic based computation), then the corresponding linear constraint is always satisfied for all
the values of y € [—1,1] and it is not necessary to have it in (9). o

Example 13 Let us consider the following problem with x = [1,1.5] x [4.5,5] x [3.5,4] x [1,1.5]:

mein 23+ (x1 + @2 + w3)x124
recx

s.t. xiwox3T4 > 25,
2% + a3 + 2% + 23 = 40,
S} — 23 + 1123 + 6™ < 50.

We denote the first constraint by c1, the second one by co and the last one by c3.
First we compute an enclosure of each constraint by interval arithmetic:
ci(x) = [15.75,45.0], ca(x) = [34.5,45.5] and c3(x) = [—93.940309, 45.952635].

So, Va € x, c3(x) < 50. Thus we do not need to linearize the last constraint.

This example is constructed numerically by using the double precision floating point represen-
tation. To simplify the notations, the floating point numbers are rounded to rational ones with two
decimals. The aim is to illustrate how the technique ART is used. By using the affine form AF1,
the linear reformulations of the above equations provide:

3+ (x1 + @2 + w3)r124 —> 18.98 4 3.43¢1 + 0.39¢5 + 0.64e3 + 3.04e4 + 11264,
25 — x1x0w3ry —> —2.83 — 5.56e1 — 1.46€9 — 1.85€3 — 5.56e4 + 2.71e4,
x% + x% + x% + xi —40 — —0.25+0.62¢1 + 2.37¢5 + 1.87¢3 + 0.62¢4 + 0.25¢.

We have now to consider the following linear program:

min 3431 + 0399 + 0.64ys + 3.04y,
yel—1,
st. —5.56y; — 1.46ys — 1.85y3 — 5.56ys < 5.54,

0.62y1 + 2.37ys + 1.87y3 + 0.62y, < 0.5,
—0.62y, — 2.37ys — 1.87y3 — 0.62y, < 0.

After having solved the linear program, we obtain the following optimal solution:
Ysor = (—1,-0.24,1,-0.26), c’ysq =—3.70, cTysoi +Ef =14.15.

Hence, using Proposition 9, we obtain a lower bound 14.15. By comparison, the lower bound
computed directly with interval arithmetic is 12.5 and 10.34 using directly only AF1 on the objective
function, respectively. This is due to the fact that we do mot consider only the objective function
to find a lower bound but we use the constraints and the set of feasible solutions as well.

Remark 14 This section defines a methodology for constructing relaxed linear programs using dif-
ferent affine forms and their corresponding arithmetic evaluations. These results could be extended
to the use of other forms such as those defined in [25] and in [29], which are based on quadratic
formulations.

Remark 15 The expression of the linear program (9) depends on the box x. Thus, if changes,
the linear program (9) must be generated again to have a better approximation of the original

problem (8).

4 Reliable Affine Reformulation Technique: TART A

The methodology explained in the previous section has some interests in itself; (i) the constraints
are applied to compute a better lower bound on the objective function, (ii) the size of the linear
program is not much larger than the original and (iii) the dependence links among the variables
are exploited. But the method is not reliable in the presence of numerical errors due to the
approximations provided by using some floating point representations and computations. In the
present section, we explain how to make our methodology completely reliable.

First, we need to use a reliable affine arithmetic. The first version of affine arithmetic defined
by Comba and Stolfi [4], was not reliable. In [41], De Figueiredo and Stolfi proposed a self-
validated version for standard affine arithmetic; i.e., all the basic operations are done three times
(including the computations of the value of the scalar, the positive and the negative numerical
errors). Another possibility is to use the Reliable Affine Arithmetic such as defined by Messine
and Touhami in [29]. This affine arithmetic replaces all the floating numbers of the affine form by
an interval, see Equation (10), where the variables in bold indicate the interval variables.

n
X =Xo + E Xi€i,

=1
with Vi € {0,1,...,n},x; = [2;,T;] € IR and Vi € {1,...,n},¢ € € = [-1,1].

(10)

The conversions between interval arithmetic, affine arithmetic and reliable affine arithmetic are
performed as follows:

Reliable Affine Form — Interval Affine Form — Reliable Affine Form

X= X0+ Z?:l Xi€i, — T =ux0+ Z?:l T;€4, —
n (11) Vie{l,2,...,n}, x5 = ay,
€T = Xo@ Z(XlG[_l’l]) . n
im1 x:oneriei.
=1

Reliable Affine Form — Affine Form Interval — Reliable Affine Form

X= X0+ . Xi€, — x=z,T], —

Vie {1,2,...,n},z; = mid(x;), xo = mid(x)

7 n (12) e

T= X0+, Ti€+ X% Xo+max(Xo O x, T O Xo)ér,
(>or, max(z; © X4, X5 © @) €4 where €, € €, is a new variable.

In this Reliable Affine Arithmetic, all the affine operations are done as for the standard affine
arithmetic but using properly rounded interval arithmetic [31] to ensure its reliability. In [29], the
multiplication was explicitly given, and the same principle is used in this paper to define other
nonlinear operations.

Algorithm 1 is a generalization of the min-range linearization introduced by De Figueiredo and
Stolfi in [41], for finding that linearization, which minimizes the range of a monotonic continuous
convex or concave function in reliable affine arithmetic. Such as in the algorithm of De Figueiredo
and Stolfi, Algorithm 1 consists of finding, in a reliable way, the three scalars «,(and d, see
Equation (6) and Figure 1.

Algorithm 1 Min-range linearization of f for reliable affine form on X

1: Set all local variables to be interval variables (d, e, ¢ and 8),
2: f := natural interval extension of f, f' := natural interval extension of the first derivative of f,

3: X := the reliable affine form under study, « := the interval corresponding to X (see Equa-
tion (11)),

4: f(X) := the reliable affine form of f over X.

If (W < 0) . a:=f(x), d:=inf(f(x)oao?),supf(z)oacz).
5: If f is constant, « :=0, d:=wx.

It (f’(a:) > o) . a=f(z), d:=[nff(z)oac),swpf(x)oacs).
6: ¢ := Inid(d), _
7: § := max (sup(¢ © d),sup(d © ()),
8 f(X) = ¢ +a- %+ e

Remark 16 The arithmetic in Algorithm 1 is a particular case of the generalized interval arith-
metic introduced by E. Hansen in [12]. Hansen’s generalized arithmetic is equivalent to an affine
form with interval coefficients. The multiplication has the same definition as in reliable affine arith-
metic. However, the division is not generalizable and the affine information is lost. Furthermore,
for monlinear functions, such as the logarithm, exponential, and square root, nothing is defined in
[12]. In our particular case of a reliable affine arithmetic, these difficulties to compute the division
and nonlinear functions are avoided.

Indeed, using the principle of this reliable affine arithmetic, we obtain reliable versions for
the affine forms AF1 and AF2, denoted by rAF1 and rAF2. Moreover, as in Section 3, we apply
Proposition 4 and 5 to rAF1 and rAF2 to provide a reliable affine reformulation for every factorable
function; i.e., we obtain a linear relaxation in which all variables are intervals. Consequently, using
the reformulation methodology described in Section 3 for rAF1 or rAF2, we produce automatically
a reliable linear program, i.e. all the variables of the linear program (9) are intervals, and the
feasibility of a solution z in Proposition 7 can exactly be verified.

When the reliable linear program is generated, two approaches can be used to solve it; (i) the
first one relies on the use of an interval linear solver such as LURUPA [15, 20] to obtain a reliable
lower bound on the objective function or a certificate of infeasibility. Thus, these properties are ex-
tended to the general problem (8) using Proposition 9 and Corollary 8; (ii) the second one is based
on generating a reliable linear reformulation of each function of the general problem (8). Then,

10

we use the conversion between rAF1/AF1 or rAF2/AF2 (see Equation (12)) to obtain a linear
reformulation in which all variables are scalar numbers, but, in this case, all numerical errors are
taken into account as intervals, and moved to the error variables of the affine form by the conver-
sion. Indeed, we have a linear program which satisfies the conditions of Proposition 7 in a reliable
way. Then, we use a result from Neumaier and Shcherbina [33] to compute a reliable lower bound
of our linear program or a reliable certificate of infeasibility. This method applied to our case yields:

- T
/\GR%}EERQ biA+ ; (i + i)
s.t. AN —l+u=—c.
The linear program (13) corresponds to the dual formulation of the linear program (9). Let
(As,ls,ug) be an approximate dual solution given by a linear solver, the bold variables indicate
the interval variables and (Ag, Lg, Ug) is the extension of (Ag,ls, us) into interval arithmetic, i.e.
As = [Xs], Ls = [ls] and Ug = [ug]. This conversion makes it possible to perform all computations

using rounded interval arithmetic. Then, we can compute the residual of the dual (13) by interval
arithmetic, such as:

(13)

rcR=c®ATAs o Ls @ Us. (14)

Hence, using the bounds calculated in [33], we have:

Yy € 8y, cTy e (RTE O AT [~00,b] @ LsTe o Us’e)

(15)
where € = ([-1,1],...,[-1,1]))T and [~o0,b] = ([-00,b1], ..., [0, bm])T.

Proposition 17 Let (Ag,ls,us) be an approximate solution which minimizes (13), the dual of the
linear program (9). Let As = [As], Ls = [lg] and Ug = [ug]. Then,

Ve e Sy, f(z) > inf (RTe o AST[—oo, b] & LsTecoUsTem Ef))

Proof. The result is obtained by applying Equation (14), Equation (15) and Proposition 9.
O

When the bounds cannot be computed, the dual program (13) can be unbounded or infeasible.
If it is the case, the primal (9) must be infeasible or unbounded. Since the feasible set of the
primal (9) is included in the bounded set [—1,1]™, it must be infeasible. Indeed, to prove that the
dual (13) is unbounded, we look for a feasible solution of the constraint satisfaction problem (16) (it
is a well-known method directly adapted from [33]), since such a solution provides an unbounded
direction:

BIA+ D (li+wi) #0

=1
AT — 1+ u=0,
A€R™, u,l €R™.

(16)

Proposition 18 Let (A, l.,u.) be the approximate solution of the constraint satisfaction prob-
lem (16). Let Ac = [A.], Le = [lc] and U = [u].

If0 ¢ ((ATAc OL:® UC)TG o ACT[—oo, b] & L.t eo UCTG) then the general problem (8) is
guaranteed to be infeasible.

Proof. By applying the previous calculation with the dual residual r € R = ATA. — L + Uk,
we obtain that:
if 0 & ((ATAC SL:® Uc)Te o ACT[—oo, b L. eo UCTG), then the primal program (9) is
guaranteed to be infeasible. Thus by applying Corollary 8, Proposition 18 is proven. g

Indeed, using Propositions 17 and 18, we have a reliable way to compute a lower bound on the
objective function and a certificate of infeasibility by taking into account the constraints. In the
next section, we will explain how to integrate this technique into an interval branch and bound
algorithm.

11

5 Application within an Interval Branch and Bound Algo-
rithm

In order to prove the efficiency of the reformulation method described previously, we apply it
in an Interval Branch and Bound Algorithm named IBBA, previously developed by two of the
authors [27, 35]. The general principle is described in Algorithm 2. Note that there exist other
algorithms based on interval arithmetic such as for example GlobSol, developed by Kearfott [16].
The fundamental principle is still the same, except that different acceleration techniques are used.

Algorithm 2 Interval Branch and Bound Algorithm: IBBA

1: @ := initial hypercube in which the global minimum is searched, {x C R"}
2: f := 00, denotes the current upper bound on the global minimum value,
. L:= {(x, —00)}, initialization of the data structure of stored elements,
{all elements in £ have two components: a box z and f,, a lower bound of f(z)}
4: repeat
5. Extract from £ the element which has the smallest lower bound,
6: Choose the component which has the maximal width and bisect it by the midpoint, to get

w

z1 and zo,
: for j:=1to2do
8: Pruning of z; by a Constraint Propagation Technique [26],
9: if z; is not empty then
10: Compute f.;, a lower bound of f(z;), and all the lower and upper bounds of all the
constraints over z;,
11: if (f— e max(|f],1) > fzj) and no constraint is unsatisfied then
12: Insert (zj, f-;) into L,
13: f:=min(f, f(mid(z;))), if and only if mid(z;) satisfies all the constraints,
14: if fis modified then
15: & :=mid(z;),
16: Discard from L all the pairs (z, f.) which (fz > f— ey max(|f|, 1)) is checked,
17: end if
18: end if
19: end if

20: end for

ot until (- win . < emax(|1) or (£ == 0
z,fz)€

In Algorithm 2, at each iteration, the domain under study is chosen and bisected to improve
the computation of bounds. In Line 11 of Algorithm 2, boxes are eliminated if and only if it is
certified that at least one constraint cannot be satisfied by any point in such a box, or that no point
in the box can produce a solution better than the current best solution minus the required relative

accuracy. The criterion (f — ¢y max(| f [,1) > fzj) has the advantage of reducing both the cluster

problem [8, 38] and the excess processing that occurs when an infinity of equivalent non-isolated
solutions exists.

At the end of the execution, Algorithm 2 is able to provide only one global minimizer z, if a
feasible solution exists.

Z is reliably proven to be a global minimizer with a relative guaranteed error €y which depends
on the magnitude of f If Algorithm 2 does not provide a solution, this proves that the problem
is infeasible (case when (f == oo) and (£ == (). For more details about this kind of interval
branch and bound algorithms, please refer to [13, 16, 27, 35, 37].

Remark 19 On a computer, each real number is represented by a flaoting point number. This

12

approzimation introduces numerous difficulties to certify numerical solutions provided by an algo-
rithm. Denote the set of floating point numbers by F and the expressions of f, gr and h; in floating
point arithmetic by fT, g]}i and h]lF respectively. Notice that in Problem (8), if we replace R by F, in
many cases, there will be no floating point number satisfying the equality constraints. That is why
the constraints must be relaxed. Hence, optimization codes have to deal with the following problem:

min fF(x)

zex” CFn
s.t. gr(z) <ey , Vk e {1,...,p}, (17)
hIlF(:C) S [*Ehyfh] B Vil e {1,...,(]}.

where €4 and €y, are small positive floating point numbers, and the box xF is the smaller box such
that @ is included in its convex hull. Thus, by considering Problem (17) over R™ in place of F™, we
obtain a relaxation of Problem (8). Therefore, at the end of Algorithm 2, it is proven that there is
no real vector x satisfying the relazed constraints such that: f(z) < f- ey max(|f|, 1). Hence, the
returning floating point vector & is certified to be a € y—global optimum of Problem (17). Notice that
Algorithm 2 could not find such a point T if the set defined by the constraints is too small or does
not contain any floating point vector. Moreover, using our upper bounding technique, we can find
a solution of Problem (17) better and also different from the real one of Problem (8). Nevertheless,
notice that the solutions of Problem (17) depend directly on €4 and €5, given by the user.

One of the main advantages of Algorithm 2 is its modularity. Indeed, acceleration techniques
can be inserted or removed from IBBA. For example at Line 8, an interval constraint propagation
technique is included to reduce the width of boxes z;; for more details refer to [26]. Another
implementation of this method is included in the code RealPaver [11], the code Couenne of the
project COIN-OR [3] and the code GlobSol [18]. This additional technique improves the speed of
the convergence of such a Branch and Bound algorithm.

Affine reformulation techniques described in the previous sections can also be introduced in
Algorithm 2. This routine must be inserted between Lines 8 and 9. At each iteration, as described
in Section 3, for each z; and zs, the associated linear program (9) is automatically generated and
a linear solver (such as CPLEX) is applied. If the linear program is proved to be infeasible, the
element is eliminated. Otherwise the solution of the linear program is used to compute a lower
bound of the general problem over the boxes z; and z».

Remark 20 In order to take into account the value of the current minimum in the affine refor-
mulation technique, the equation f(x) < f is added to the constraints when f# oo.

Algorithm 3 describes all the steps of the affine reformulation technique ART pp. The purpose
of this method is to accelerate the solution by reducing the number of iterations and the com-
putation time of Algorithm 2. At Line 11 of Algorithm 3, Proposition 12 is used to reduce the
number of constraints; this limits the size of the linear program without losing any information.
The computation performed in Line 18 provides a lower bound for the general problem over a
particular box by using Proposition 9. Corollary 8 involves the elimination part which corresponds
to Line 20. If the linear solver cannot produce a solution in an imposed time or within a given
number of iterations, the bound is not modified and Algorithm 2 continues.

Remark 21 Affine arithmetic cannot be used when in an intermediate node of the computation
tree, the resulting interval is unbounded. For example {minze[,lyl] % s.t. % > 1/4}, it is impossible
to construct a linearization of the objective function with our method. Therefore, if the objective
function corresponds to this case, the bound is not modified and Algorithm 2 continues without
using the affine reformulation technique at the current iteration. More generally, if it is impossible
to linearize a constraint, the method continues without including this constraint into the linear
program. Thus, the linear program is more relaxed, and the computation of the lower bound and
the elimination property are still correct.

13

Algorithm 3 Affine Reformulation Technique by Affine Arithmetic: ART gz

1. Let (z, f.) be the current element and f, a lower bound of f over z,

2: Initialize a linear program with the same number of variables as the general problem (8),

3: Generate the affine form of f using AF1 or AF2,

4: Define ¢ the objective function of (9), E; the lower bound of the error term of the affine form
of fy c:=(fi,...,f,), Ef :==fo — fop1 with AF1, or resp. Ef :=fy — f,41 — fq3 with AF2,

5: for all constraints g or resp. h; of the general problem (8) do

6: Calculate g(z) or resp. h;(z), (e.g., using the natural interval extension inclusion function),

if the constraint gi(z) or resp. h;(z) is proved to be infeasible then
: Eliminate the element (z, f)
9: Exit Algorithm 3

10: end if

11 if g, € gg(2) or resp. hi(z) € [—en,en] then

12: Generate the affine form of gj or resp. h; using AF1 or AF2,

13: Add the associated linear constraint(s) into the linear program (9), such as described in
Section 3,

14: end if

15: end for

16: Solve the linear program (9) with a linear solver such as CPLEX,
17: if the linear program has a solution ys,; then

18 f. = max(fs, L yso + Ey),

19: else if the linear program is infeasible then

20: Eliminate the element (z, f,)

21: end if

In Section 4, we have explained how the affine reformulation technique can be reliable and
rigorous. Algorithm 4 summarizes this method named rART A and adapts Algorithm 3. We
first use rAF1 or rAF2 with the conversion between rAF1/AF1 or rAF2/AF2 to produce the linear
program (9), using Equations (12), Propositions 4 and 5. Then, Proposition 12 is used in Line 11
of Algorithm 4 to reduce the number of constraints. Thus, in most cases, the number of added
constraints is small, and the dual solution is improved. Moreover, we do not need to explicitly
give the primal solution, thus we advise generating the dual (13) directly and solving it with a
primal solver. If a dual solution is found, Proposition 17 guarantees a lower bound of the objective
function, Line 20 of Algorithm 4. Otherwise, if the solver returns that the dual is unbounded or
infeasible, Proposition 18 produces a certificate of infeasibility for the original problem (8).

In this section, we have described two new acceleration methods, which can be added to an
interval branch and bound algorithm. rART A (Algorithm 4) included in IBBA (Algorithm 2)
allows us to take rounding errors into account everywhere in the interval branch and bound codes.
In the next section, this method will be tested to several numerical tests to prove its efficiency
concerning CPU-times and the number of iterations.

6 Numerical Tests

In this section, 74 non-linear and non-convex constrained global optimization problems are consid-
ered. These test problems come from Library 1 of the COCONUT website [32, 34]. We take into
account all the problems with constraints, having less than 25 variables and without the cosine
and sine functions which are not yet implemented in our affine arithmetic code [25, 35]; however
square root, inverse, logarithm and exponential functions are included, using Algorithm 1. For all
74 test problems, no symbolic reformulation has been done. The expressions of the equations are
exactly the same as those provided in the COCONUT format. No modification has been done on

14

Algorithm 4 reliable Affine Reformulation Technique by reliable Affine Arithmetic: rART A

10:
11:
12:

13:

14:
15:
16:
17:
18:
19:

20:

21:
22:
23:
24:

25:
26:
27:
28:
29:

Let (z, f.) be the current element and f. a lower bound of f(z),
Initialize a linear program with the same number of variables as the general problem (8),
Generate the reliable affine form of f using rAF1 or rAF2,
Using the conversion rAF1/AF1 or rAF2/AF2, generate E; and ¢ of the linear program (9),
for all constraints gj or resp. h; of the general problem (8) do
Calculate gi(z) or resp. h;(z), (e.g, using the natural interval extension inclusion function),
if the constraint gi(z) or resp. h;(z) is proved to be infeasible then
Eliminate the element (z, f.)
Exit of Algorithm 4
end if
if e, € gr(2) or resp. hi(z) € [—en,en] then
Generate the affine form of g or resp. h; using rAF1 or rAF2 forms and conversions
rAF1/AF1 or rAF2/AF2,
Add the associated linear constraint(s) into the linear program (9), such as described in
Section 3,
end if
end for
Generate the dual program (13) of the corresponding linear program (9),

Solve the dual (13) with a primal linear solver,
if the dual program has a solution (Ag,ls,us) then
As :=[)\g], Lg := [lg] and Ug := [ug],
f. := max (fz, inf (RTe & AsT[00,b] @ LsTe 0 UsTed Ef))
else
Solve the program (16) associated with the dual (13),
if program (16) has a solution (A, I, u.) then
Ac =[], Le :=[l.] and Ug := [u.],
if 0¢ ((ATAc O Le ® Ue) €0 AT [-00,] @ LeTe © UeTe) then
Eliminate the element (z, f.)
end if
end if
end if

15

the expressions of those functions and constraints, even when some of them are clearly unadapted
to the computation of bounds with interval and affine arithmetic.

The code is written in Fortran 90/95 and compiled using the £90 ORACLE compiler which
includes a library for interval arithmetic. In order to solve the linear programming relaxation,
CPLEX version 11.0 is used. All tests are performed on a Intel-Xeon based 3 GHz computer with
2 GB of RAM and using a 64-bit Linux system (the standard time unit (STU) is 13 seconds which
corresponds to 10% evaluations of the Shekel-5 function at the point (4,4, 4,4)”). The termination
condition is based on the precision of the value of the global minimum: f —ming; s yer fr <

e¢max(|f |,1). This relative accuracy of the objective function is fixed to £; = 1078 for all the
problems and the accuracies of the constraints are ¢, = 107® and &5, = 107%. The accuracy to
solve the linear program by CPLEX is fixed to 10~® and we limit the number of iterations of a
run of CPLEX to 15. Furthermore, two limits are imposed: (a) on the CPU-time which must
be less than 60 minutes and (b) on the maximum number of elements in £ which must be less
than two millions (corresponding approximately to the limit of the RAM of our computer for the
largest problem). When the code terminates normally the values corresponding to (i) whether the
problem is solved or not, (ii) the number of iterations of the main loop of Algorithm 2, and (iii)
the CPU-time in seconds (s) or in minutes (min), are respectively given in columns ’ok?’, ’iter’ and
't” of Tables 1, 2 and 3.

The names of the COCONUT problems are in the first column of the tables; in the COCONUT
website, all problems and best known solutions are given. Columns N and M represent the number
of variables and the number of constraints for each problem. Test problem hs071 from Library 2
of COCONUT corresponds to Example 13 when the box is = [1,5]* and the constraints are only
c1 and cs.

For all tables and performance profiles, IBBA+CP indicates results obtained with Algorithm 2
(IBBA) and the constraint propagation technique (CP) described in [26]. IBBA+rART A9 rep-
resents results obtained with Algorithm 2 and the reliable affine reformulation technique based
on the rAF2 affine form (Algorithm 4) and the corresponding affine arithmetic [25, 35, 29].
IBBA+rART A9 +CP represents results obtained with Algorithm 2 and both acceleration tech-
niques. GlobSol+LR and GlobSol represent the results extracted from [17] and obtained using (or
not) the linear relaxation based on RLT [19].

The performance profiles, defined by Dolan and Moré in [7], are visual tools to benchmark
algorithms. Thus, Tables 1, 2 and 3 are summarized in Figure 3 accordingly. The percentage of
solved problems is represented as a function of the performance ratio; the latter depending itself
on the CPU-time. More precisely, for each test problem, one compares the ratio of the CPU-time
of each algorithm to the minimum of those CPU-times. Then the performance profiles, i.e. the
cumulative distribution functions for the ratio, are computed.

Remark 22 Algorithm 2 was also tested alone. The results are not in Table 1 because Algorithm 2
does not work efficiently without one of the two acceleration techniques. In this case, only 24 of
the 74 test problems were solved.

6.1 Validation of the reliable approach

In Table 1, a comparison is made among the basic algorithm IBBA with constraint propagation
CP, with the new relaxation technique rART and with both. It appears that:

e IBBA+CP solved 37 test problems, IBBA+rART Ao 52 test problems and
IBBA+rART Ap9 +CP 61 test problems.

e The solved cases are not the same using the two distinct techniques (CP or rART Ap9)-
Generally, IBBA+CP finished when the limit on the number of elements in the list is reached
(corresponding to the limitation of the RAM). In contrast, the IBBA+rART A9 code
stopped when the limit on the CPU-time was reached.

16

% of success for 74 test problems % of success for 39 test problems
A

100
90
80
70
60
50
40
30
20

100 """ ratio
1 2 10 100 1000 10000 1 2 10 100 1000 10000
--- IBBA+CP === GlobSol+LR
— IBBA+1ART .AF2 — GlobSol
— IBBA+1ART .Apo+CP — IBBA+1ART .Apo+CP

% of success for 74 test problems

100
90
80
70 -
¥ IBBA+ ARTAFQ_prima1+CP

60 — IBBA+ ARTAF2_dua1+CP
501 /e IBBA+ TART A9 +CP
40 i — IBBA+ rART Apo+CP
30f
20
10
o ratio

1 2 10 100 1000 10000

Figure 3: Performance Profile comparing the results of various versions of algorithms

e All problems solved with one of the acceleration techniques are solved also when both are
combined. Moreover, this is achieved in a moderate computing time of about 1 min 9 s on
average.

e Considering only the 33 cases solved by all three methods (in the tables), in the line *Av-
erage when T for all’ of Table 1, we obtain that average computing time of IBBA+CP is
three times the one of IBBA+rART 19, but is divided by a factor of about 10 when
those two techniques are combined. Considering the number of iterations, the gain of
IBBA+rART Ap9 +CP is a factor of about 200 compared to IBBA+CP, and about 3.5
compared to IBBA+rART . A19.

The performance profiles of Figure 3 confirm that IBBA+rART . pf9+CP is the most effi-
cient and effective of the three first studied algorithms. Considering the curve of the algorithms
IBBA+rART A9 and IBBA+CP shows that IBBA+CP is in general faster than the other but
IBBA+rART AF9 solves more problems, which implies a crossing of the two curves.

By observing how the acceleration techniques work on a box, the reformulation TART Ao
is more precise when the box under study is small. This technique is slow at the beginning and
becomes very efficient after a while. In contrast, CP enhances the convergence when the box is
large, but since it considers the constraints one by one, this technique is less useful at the end.
That is why the combination of CP and rART | pp9 is so efficient: CP reduces quickly the size
of boxes and then rART . 5 pg considerably improves the lower bound on each box and eliminates
boxes which do not contain the global minimum.

In Table 2, column ’our guaranteed UB’ corresponds to the upper bound found by our algorithm
and column 'UB of COCONUT’ corresponds to the upper bound listed in [32] and found by
the algorithm of the column ’Algorithm’. We remark that all our bounds are close to those of
COCONUT. These small differences appear to be due to the accuracy guaranteed on the constraint

17

satisfactions.

6.2 Comparison with GlobSol

Kearfott and Hongthong in [19] have developed another technique based on the same principle
such as Reformulation Linearization Technique (RLT), by replacing each nonlinear term by lin-
ear overestimators and underestimators. This technique was well-known and already embedded
without interval and affine arithmetics in the software package BARON [42]. Another paper by
Kearfott [17] studies its integration into an interval branch and bound algorithm named GlobSol.
In [17], the termination criteria of the branch and bound code are not exactly the same for GlobSol
and IBBA+rART A1 9+CP. The stopping criterion of GlobSol ensures enclosures of all exactly
optimizing points. This difference leads to favor IBBA. Thus, this empirical comparison between
GlobSol and IBBA+rART . A9+ CP should be considered as a first approximation. Moreover, (i)
the CPU-times in Table 2 depend on the performances of the two different computers (Kearfott
used GlobSol with the Compaq Visual Fortran version 6.6, on a Dell Inspiron 8200 notebook with
a mobile Pentium 4 processor running at 1.60 GHz), (ii) the version of GlobSol used in [17] is
not the last one, and (iii) it is the first version of IBBA+rART . pp9+CP which does not include
classical accelerating techniques as the use of a local solver to improve the upper bounds. However,
this does not modify our conclusions. It appears that:

e GlobSol+LR solves 26 among the subset of 39 test problems attempted, GlobSol without LR
solves 32 of them, and IBBA+rART . A9 +CP solves 36.

e Kearfott limited his algorithm to problems with 10 variables at most. Indeed problems
solved by GlobSol without LR have at most 8 variables and 9 constraints. Problems solved
by IBBA+rART Ao+ CP have at most 24 variables and 17 constraints.

e GlobSol without LR solved 1 problem in 53 minutes that IBBA+rART pApo +CP does
not solve in 60 minutes (ex6_1_1). IBBA+rART pp9+CP solved 5 problems that GlobSol
without LR does not solve and 10 that GlobSol+LR does not solve.

Turning now to the performance profile of Figure 3, we observe that: (i) the linear relaxation
of Kearfott and Hongthong slows down their algorithm on this set of test problems; (ii) the per-
formance of IBBA+rART ppo+CP dominates those of GlobSol with and without LR, it still
remains true if we multiply the computation time by 2 to overestimate the difference between the
computers.

6.3 Comparison with the non-reliable methods

In Table 3, results for non-rigorous global optimization algorithms are presented to evaluate the
cost of the reliability in our algorithm combining CP and ART A9 techniques. Thus, we test for
all three cases an IBBA algorithm associated with the CP and ART A9 techniques (Algorithm 3)
when the affine arithmetic corresponding to the affine form AF2 is not strictly reliable (the rounding
errors are not taken into account). In the first and second main data column, Algorithm 3 is
used and the associated linear programs for computing bounds are solved by using the primal
formulation of program (9) for the column IBBA+ART AF2_primal +CP and the dual formulation
for the column IBBA+ART A9 qual +CP- In the third columns IBBA+rART Ao +CP, we use
Algorithm 4 but the linear program is generated directly with AF2 instead of rAF2, thus the linear
program is not completely reliable. It appears that:

e Comparing to the reliable code IBBA+rART Ao +CP, two new test problems, ex6_1_1 and
ex7-2_3 of COCONUT, are now solved by all the three non-reliable algorithms, see Table 3.
However, this is only due to the stopping criterion on the CPU-time which is fixed to one
hour.

18

Name IBBA+CP IBBA+7rART A2 IBBA+7rART pApp+CP

ok? iter t (s) | ok? iter t (s) | ok? iter t (s)

hs071 T 9,558,537 72234 | T 1,580 244 [T 804 1.04
ex2_1_1 T 26,208 117 | T 151 032 [T 151 0.23
ex2.1.2 T 105 0.00 | T 289 046 | T 105 0.18
ex2.1.3 F 2,004,691 106.02 | T 352 074 | T 266 0.52
ex2.1.4 T 5,123 025 | T 641 074 | T 250 0.27
ex2.1.5 T 172,195 3270 | T 844 198 | T 263 0.66
ex2.1.6 T 5,109,625 565.22 | T 286 077 | T 285 0.69
ex2.1.7 F 7,075,425 1,735.15 | T 1,569 16.26 | T 1,574 16.75
ex2.1.8 F 2,005,897 280.95 | T 3,908 53.38 | T 1,916 26.78
ex2.1.9 F 1,999,999 93.57 | T 66,180 160.10 | T 60,007 154.02
ex2.1.10 F 1,999,999 635.95 | T 938 881 | T 636 5.91
ex3_1_1 8 6 | F 38,000,000 3,604.46 | T 81,818 137.02 | T 131,195 115.92
ex3.1.2 5 6| T 6,571 044 | T 144 036 | T 111 0.19
ex3.1.3 6 6| T 4,321 021 | T 243 055 | T 182 0.24
ex3.1.4 3 3| T 21,096 1.06 | T 171 037 | T 187 0.25
ex41.8 2 1] T 78,417 231 [T 137 032 [T 128 0.11
ex4.1.9 2 2| T 49,678 638 | T 171 019 | T 157 0.17
ex5_2_2_casel 9 6| F 4,266,494 308.90 [F 2,300,000 3,699.67 | T 5,233 8.05
ex5.2.2_case2 9 6| F 7,027,892 529.41 | F 2,200,000 3,646.14 | T 9,180 14.73
ex5.2.2_case3 9 6| F 3,671,986 257.71 | F 2,300,000 3,682.61 | T 2,255 3.44
ex5.2.4 7 6| F 3,338,206 51099 | T 128,303 14242 | T 9,848 11.30
ex5.4.2 8 6 | F 43,800,000 3,606.12 | T 8,714 1272 | T 201,630 121.45
ex6_1_1 8 6 | F 5,270,186 2,805.03 | F 1,600,000 3,756.88 | F 1,500,000 3,775.80
ex6.1.2 4 3| T 15,429 083 | T 1,813 239 | T 108 0.26
ex6.1.3 12 9| F 4,534,626 3,233.97 | F 900,000 3,704.39 | F 1,000,000 3,913.87
ex6.1_4 6 4| F 2,444,266 20492 | T 148,480 262.65 | T 1,622 2.70
ex6.2_5 9 3| F 1,999,999 192.80 | F 800,000 3,934.43 | F 800,000 4,055.02
ex6.2_6 3 1| F 2,097,277 124.56 | F 2,100,000 3,719.93 | T 922,664 1,575.43
ex6.2.7 9 3| F 1,999,999 22994 | F 500,000 3,973.21 | F 500,000 4,036.90
ex6.2_8 3 1| F 2,003,020 11881 | T 634,377 1,122.06 | T 265,276 457.87
ex6.2.9 4 2| F 3,724,203 369.78 | F 1,500,000 3,700.92 | T 203,775 522.57
ex6-210 6 3| F 1,999,999 241.17 | F 1,300,000 3,872.20 | F 1,200,000 3,775.14
ex6.2.11 3 1| F 2,729,823 149.66 | T 214,420 346.71 | T 83,487 140.51
ex6.2.12 4 2| F 2,975,037 202.77 | T 1,096,081 2,136.20 | T 58,231 112.58
ex6.2.13 6 3| F 2,007,671 33247 | F 1,600,000 3,605.98 | F 1,500,000 3,650.76
ex6-2.14 4 2| T 8,446,077 988.14 | T 450,059 956.88 | T 95,170 207.78
ex7_2_1 714 F 9,324,644 2,512.97 | T 18,037 50.64 | T 8,419 24.72
ex7.2.2 6 5| F 4,990,110 1,031.30 | T 4,312 564 | T 531 0.87
ex7.2.3 8 6| F 41,000,000 3,607.35 | F 2,300,000 3,684.73 | F 2,200,000 3,716.02
ex7.2.5 5 6| T 6,000 067 | T 249 052 | T 186 0.40
ex7.2.6 3 1| F 7,022,520 326.38 | T 2,100 1.89 | T 1,319 1.23
ex7.2.10 11 9| T 1,417 0.09 | T 2,605 3.96 | T 1,417 2.19
ex7.3_1 4 7| T 33,347 423 | T 2,713 621 | T 1,536 3.50
ex7.3.2 4 7| T 141 0.08 | T 2,831 3.05 | T 141 0.28
ex7.3.3 5 8| T 18,603 214 | T 1,104 174 | T 373 0.66
ex7.3.4 12 | 17 | F 3,194,446 467.81 | F 800,000 3,756.89 | F 1,000,000 3,971.41
ex7.3.5 13|15 | F 3,017,872 513.88 | F 500,000 4,291.36 | F 500,000 4,259.44
ex7-3-6 17 | 17| T 1 0.00 | T 84 555 | T 1 0.14
ex8.1.7 5 5 F 3,807,889 395.30 | T 6,183 1225 | T 1,432 2.64
ex8.1.8 6 5| F 4,990,110 1,029.01 | T 4,312 565 | T 531 0.87
ex9_2_1 9| T 161 0.02 | F 1,800,000 3,637.95 | T 64 0.26
ex9.2.2 1 | F 5,902,793 314.66 | F 2,000,000 3,653.05 | F 4,700,000 3,602.48
ex9.2.3 15| T 884 015 | F 1,500,000 3,740.15 | T 156 0.50
ex9.2.4 7| T 77 0.00 | T 4,682 7.96 | T 49 0.25
ex9.2.5 7| T 51,303 759 | T 6,331 12.69 | T 136 0.44
ex9.2.6 12 | F 2,895,007 233.85 | F 1,000,000 3,611.39 | F 1,200,000 3,756.22
ex9.2.7 9| T 161 0.02 | F 1,700,000 3,643.63 | T 64 0.35
ex14_1_1 4] T 367 013 [T 1,728 275 [T 301 0.54
ex14.1.2 6 9| T 619,905 145.68 | T 59,677 206.88 | T 24,166 54.58
ex14.1.3 3 4| T 94 0.00 | F 8,000,000 3,629.02 | T 91 0.26
ex14.1.5 6 6| T 165,381 18.06 | T 3,961 6.38 | T 1,752 2.99
ex14.1.6 9|15 | T 42,139 8.88 | T 6,326 26.61 | T 2,531 12.45
ex14.1.7 10| 17| F 9,600,000 3,635.90 | F 600,000 4,155.17 | F 1,100,000 3,703.00
ex14.1.8 3 4| T 98 0.01 | T 2,011 230 | T 77 0.25
ex14.1.9 2 2| T 1,300 0.05 | T 23,465 1784 | T 223 0.35
ex142_1 5 7| T 12,017,408 1,683.62 | T 30,436 6413 | T 16,786 36.73
ex14.2.2 4 5| T 8,853 0.67 | T 2,671 364 | T 1,009 1.39
ex14.2.3 6 9| F 13,800,000 3,622.13 | T 70,967 252.31 | T 47,673 173.28
ex14.2.4 5 7| T 1,975,320 455.49 | T 62,245 27442 | T 30,002 127.56
ex14.2.5 4 5| T 18,821 192 | T 5,821 11.75 | T 2,041 3.70
ex14.2.6 5 7| F 9,543,033 2,12491 | T 138,654 407.27 | T 74,630 237.56
ex14.2.7 6 9| F 7,678,896 2,844.60 | F 800,000 4,021.63 | F 700,000 3,841.44
ex14.2.8 4 5| T 2,085,323 279.49 | T 31,840 57.17 | T 10,044 19.13
ex14.2.9 4 5| T 463,414 7083 | T 19,474 4044 | T 6,582 14.59
[Average when T’ 37 1,108,213.51 135.16 | 52 64,547.85 131.89 | 61 37,556.70 69.3
| Average when 'T’ for all | 33 1,242,503.03 151.564 [33 22,023.73 52.23 | 33 5,977.39 14.98

Table 1: Numerical results for reliable IBBA based methods
19

Globsol

GlobSol

IBBA+ CP

Name N| M L LR 4 rART, Ar2 our g“g%a“teed COUCBO(l)\fUT Algorithm
ok?7 t(min) | ok? t(min) | ok? t(min)
hs071 4 2 T 0.02 17.014017363 17.014 DONLP2
ex2.1_1 5 1 T 0.09 T 0.02 T 0 -16.999999870 -17 BARONT7.2
ex2.1.2 6 2 T 0.08 T 0.06 T 0 -212.999999704 -213 MINOS
ex2.1.3 13 9 T 0.01 -14.999999864 -15 BARONT7.2
ex2_1.4 6 5 0.16 0.09 T 0 -10.999999934 -11 DONLP2
ex2_1.5 10 11 T 0.01 -268.014631487 -268.0146 MINOS
ex2.1.6 10 5 T 0.01 -38.999999657 -39 BARONT7.2
ex2_1.7 20 10 T 0.28 -4,150.410133579 -4,150.4101 BARONT.2
ex2_1_8 24 10 T 0.45 15,639.000022211 15,639 BARONT7.2
ex2.1.9 10 1 T 2.57 -0.375 -0.3750 MINOS
ex2.1_10 20 10 T 0.1 49,318.017963635 49,318.018 MINOS
ex3.1_1 8 6 F 60.18 F 60.17 T 1.93 7,049.248020538 7,049.2083 BARONT.2
ex3.1.2 5 6 T 0 | -30,665.538672616 -30,665.54 LINGOS8
ex3.1.3 6 6 T 0 -309.999998195 -310 BARONT7.2
ex3_1.4 3 3 T 0 T 0 T 0 -3.999999985 -4 DONLP2
ex4.1.8 2 1 T 0 T 0 T 0 -16.738893157 -16.7389 MINOS
ex4.1.9 2 2 T 0.01 T 0.01 T 0 -5.508013267 -5.508 BARONT7.2
exb5_2_2_casel 9 6 T 0.13 -399.999999744 -400 DONLP2
ex5_2_2_case2 9 6 T 0.25 -599.999999816 -600 BARONT.2
ex5_2_2_case3 9 6 T 0.06 -749.999999952 -750 DONLP2
ex5.2.4 7 6 F 60.24 F 43.97 T 0.19 -449.999999882 -450 MINOS
ex5.4.2 8 6 T 1.32 T 4.94 T 2.02 7,512.230144503 7,512.2259 BARONT.2
ex6.1_1 8 6 F 100.95 T 53.39 F 62.93 +o00 -0.0202 BARONT7.2
ex6.1_2 4 3 T 0.41 T 0.02 T 0 -0.032463785 -0.0325 BARONT7.2
ex6.1_3 12 9 F 65.23 +o00 -0.3525 BARONT7.2
ex6-1_4 6 4 T 4.49 T 0.24 T 0.05 -0.294541288 -0.2945 MINOS
ex6-2_5 9 3 F 67.58 +o00 -70.7521 MINOS
ex6_2_6 3 1 F 60.24 T 5.1 T 26.26 -0.000002603 0 DONLP2
ex6._2_7 9 3 F 67.28 +o00 -0.1608 BARONT7.2
ex6-2_8 3 1 F 60.01 T 3.4 T 7.63 -0.027006349 -0.027 BARONT7.2
ex6-2_9 4 2 F 60.03 T 7.72 T 8.71 -0.034066184 -0.0341 MINOS
ex6.2_10 6 3 F 60.1 F 60.09 F 62.92 -3.051949753 -3.052 BARONT7.2
ex6-2_11 3 1 F 60.01 T 4.55 T 2.34 -0.000002672 0 MINOS
ex6.2_12 4 2 F 60.03 T 3.27 T 1.88 0.289194748 0.2892 BARONT.2
ex6-2_13 6 3 F 60.08 F 60.07 F 60.85 -0.216206601 -0.2162 BARONT.2
ex6-2_14 4 2 T 10.41 T 0.53 T 3.46 -0.695357929 -0.6954 MINOS
ex7.2_1 7 14 T 0.41 1,227.226078824 1,227.1896 BARONT7.2
ex7.2.2 6 5 T 0.46 T 0.09 T 0.01 -0.388811439 -0.3888 DONLP2
ex7.2.3 8 6 F 61.93 7,049.277305603 7,049.2181 MINOS
ex7.2_5 5 6 T 0.27 T 0.04 T 0.01 10,122.493318794 10,122.4828 BARONT.2
ex7-2_6 3 1 T 0.01 T 0 T 0.02 -83.249728842 -83.2499 BARONT7.2
ex7.2_10 11 9 T 0.04 0.100000006 0.1 MINOS
ex7.3_1 4 7 T 0.2 T 0.04 T 0.06 0.341739562 0.3417 BARONT.2
ex7.3.2 4 7 T 0 T 0.01 T 0 1.089863971 1.0899 DONLP2
ex7.3.3 5 8 T 0.19 T 0.06 T 0.01 0.817529051 0.8175 BARONT7.2
ex7.3.4 12 17 F 66.19 +oo 6.2746 BARONT.2
ex7.3.5 13 15 F 70.99 +o00 1.2036 BARONT7.2
ex7.3.6 17 17 T 0 no solution no solution MINOS
ex8_1.7 5 5 F 60.01 F 60.01 T 0.04 0.029310832 0.0293 MINOS
ex8.1_8 6 5 T 0.46 T 0.09 T 0.01 -0.388811439 -0.3888 DONLP2
ex9.2_1 10 9 T 0 17 17 DONLP2
ex9.2_2 10 11 F 60.04 +oo 99.9995 DONLP2
ex9.2_3 16 15 T 0.01 0 0 MINOS
ex9.2_4 8 7 F 62.8 F 64.04 T 0 0.5 0.5 DONLP2
ex9.2_5 8 7 F 61.2 F 39.02 T 0.01 5.000000026 5 MINOS
ex9_2_6 16 12 F 62.6 56.3203125 -1 DONLP2
ex9_2_7 10 9 T 0.01 17 17 DONLP2
ex14.1_1 3 4 T 0.19 T 0.2 T 0.01 -0.000000009 0 MINOS
ex14.1.2 6 9 T 0.21 T 0.08 T 0.91 0.000000002 0 MINOS
ex14.1.3 3 4 T 0.13 T 1.79 T 0 0.000000008 0 BARONT7.2
ex14_1.5 6 6 T 0.19 T 0.05 T 0.05 0.000000007 0 DONLP2
ex14.1.6 9 15 T 0.21 0.000000008 0 DONLP2
ex14.1.7 10 17 F 61.72 3,234.994301063 0 BARONT.2
ex14.1.8 3 4 T 0 0.000000009 0 BARONT7.2
ex14_.19 2 2 T 0.01 T 0.01 T 0.01 -0.000000004 0 MINOS
ex14.2_1 5 7 T 0.55 T 0.06 T 0.61 0.000000009 0 MINOS
ex14.2_2 4 5 T 0.01 T 0.01 T 0.02 0.000000009 0 MINOS
ex14.2_3 6 9 T 1.34 T 0.17 T 2.89 0.000000004 0 MINOS
ex14.2_4 5 7 T 2.13 0.000000009 0 MINOS
ex14.2.5 4 5 T 0.32 T 0.07 T 0.06 0.000000009 0 MINOS
ex14.2_6 5 7 T 3.96 0.000000004 0 MINOS
ex14.2_7 6 9 F 64.02 0.218278728 0 MINOS
ex14.2_8 4 5 T 0.32 0.000000009 0 MINOS
ex14.2_9 4 5 T 0.24 0.000000009 0 MINOS
Average when T’ for 26 0.83 32 2.69 36 1.65
the sample of 39 problems
Average when "T for all 26 0.83 26 0.33 26 0.39

Table 2: Comparison with GlobSHP approach [17]

and our approach.

e Analyzing the performance profiles on Figure 3, the primal formulation seems to be more
efficient. Indeed up to a ratio of about 2, we note that the largest part of the tests are most
rapidly solved by the version using the primal formulation for solving the linear programs
IBBA+ART AF2_primal +CP. Nevertheless, we also note that some cases are more difficult

to solve using the primal formulation (see ex2_1.9 and ex7.3_1 of Table 3) than using the
dual formulation. This provides the worst CPU-time average for IBBA+ART AF2_primal
+CP even if it is generally the most efficient (see Figure 3). In fact, it appears that
IBBA +ARTAF2_prima1 +CP spends more time to reach the fixed precision of 10~ than the

dual versions; solutions with an accuracy of about 1076 are rapidly obtained with the primal
version, but sometimes, this code spends a huge part of the time to improve the precision
until 1078 is reached (as for example ex2_1.9 in Table 3).

e The increasing CPU-time to obtain reliable computations is about a factor of 2, see last line
of Table 3 and Table 1 where the averages are done for the 61 cases which the reliable code
find the global solution in less than one hour. Indeed, the CPU-time average for the reliable
method is 69.3 seconds for the 61 results solved in Table 1, compared to about 35 seconds
obtained by the two non-reliable dual versions of the code. Similar results are obtained
concerning the number of iterations of reliable and non-reliable dual versions of the code
which confirms that each iteration of the reliable method is about 2 times more consuming
compared to the corresponding non-reliable one.

e All methods presented in Table 3 are efficient: the algorithms are not exactly reliable, but
no numerical error results in a wrong optimal solution.

7 Conclusion

In this paper, we present a new reliable affine reformulation technique based on affine forms and
their associated arithmetics. These methods construct a linear relaxation of continuous constrained
optimization problems in an automatic way. In this study, we integrate these new reliable affine
relaxation techniques into our own Interval Branch and Bound algorithm for computing lower
bounds and for eliminating boxes which do not contain the global minimizer point. The efficiency
of this technique has been validated on 74 problems from the COCONUT database. The main
advantage of this method is that the number of variables in the linear programs generated is the
same as in the original optimization problem. Indeed, the linear programs require short times to
be solved. Moreover, when the width of the boxes under study becomes small, the errors generated
by the relaxation are reduced and the computed bounds are more precise.

Furthermore, inserting this new affine relaxation technique with constraint propagation into an
interval Branch and Bound algorithm results in a relatively simple and efficient algorithm.

References

[1] I.P. ANDROULAKIS, C.D. MARANAS, AND C.A. FLOUDAS, Alpha BB: A global optimization

method for general constrained nonconvex problems, Journal of Global Optimization, 7 (1995),
pp. 337-363.

[2] C. AUDET, P. HANSEN, B. JAUMARD, AND G. SAVARD, A4 branch and cut algorithm for non-
convez quadratically constrained quadratic programming, Mathematical Programming Series

A, 87 (2000), pp. 131-152.

[3] P. BELoTTl, J. LEE, L. L1BERTI, F. MARGOT, AND A. WAECHTER, Branching and bounds
tightening techniques for non-convex MINLP, Optimization Methods & Software, 24 (2009),
pp. 597-634.

21

Name ~ o1 | IBBATART A5 primal T CP | IBBATART Apo_dual O IBBAT7ART pApay+CP

ok? iter t (s) | ok? iter t (s) | ok? iter t (s)
hs071 4 2 T 1,182 1.28 T 1,146 1.28 T 809 0.94
ex2.1_1 5 1 T 151 0.10 T 151 0.33 T 151 0.30
ex2.1.2 6 2 T 105 0.07 T 105 0.30 T 105 0.29
ex2.1.3 13 9 T 266 0.19 T 266 0.58 T 266 0.39
ex2_1.4 6 5 T 234 0.20 T 236 0.38 T 245 0.37
ex2.1.5 10 11 T 220 0.28 T 220 0.50 T 268 0.52
ex2.1.6 10 5 T 285 0.22 T 285 0.40 T 285 0.42
ex2_1.7 20 10 T 1,209 2.81 T 1,207 2.59 T 1,574 3.82
ex2.1.8 24 10 T 3,359 8.28 T 3,359 6.10 T 3,359 7.12
ex2.1.9 10 1 T 3,061,982 1,968.72 T 50,557 45.76 T 60,007 53.56
ex2.1_10 20 10 T 640 0.93 T 668 1.07 T 640 1.17
ex3-1_1 8 6 T 93,509 68.60 T 95,277 63.97 T 55,492 53.88
ex3.1.2 5 6 T 111 0.11 T 183 0.32 T 111 0.33
ex3-1.3 6 6 T 620 0.40 T 620 0.59 T 182 0.33
ex3_1_4 3 3 T 169 0.15 T 169 0.33 T 183 0.37
ex4.1.8 2 1 T 121 0.07 T 121 0.21 T 127 0.27
ex4.1.9 2 2 T 159 0.13 T 159 0.30 T 157 0.33
ex5_2_2_casel 9 6 T 5,217 6.52 T 5,228 5.87 T 5,353 6.48
ex5_2_2_case2 9 6 T 9,251 11.87 T 9,243 10.71 T 9,307 11.77
ex5_2_2_case3 9 6 T 2,034 2.43 T 2,031 2.32 T 2,211 2.72
ex5.2.4 7 6 T 9,742 8.13 T 9,684 8.07 T 9,914 8.55
ex5.4.2 8 6 T 24,596 12.27 T 109,474 46.20 T 137,661 59.82
ox611 g 6] T 1,784,279 3,341.20 | T 1,742,005 2,888.04 | T 1,724,012 3,008.62
ex6.1_2 4 3 T 108 0.10 T 108 0.33 T 108 3.36
ex6.1_3 12 9 F 1,400,000 3,714.25 F 1,600,000 3,644.57 F 1,500,000 3,612.44
ex6_1_4 6 4 T 1,605 6.92 T 1,606 1.87 T 1,622 2.08
ex6-2_5 9 3 F 1,999,999 1,463.63 F 1,999,999 1,440.09 F 1,999,999 1,469.85
ex6-2_6 3 1 T 925,230 771.71 T 925,180 767.14 T 923,064 842.48
ex6._2_7 9 3 F 1,900,000 3,784.13 F 1,999,999 3,723.61 F 1,900,000 3,737.05
ex6.2_8 3 1 T 263,014 246.99 T 262,902 226.24 T 265,337 247.04
ex6.2_9 4 2 T 202,409 204.80 T 202,436 212.71 T 203,764 223.66
ex6-2_10 6 3 F 4,630,829 3,265.45 F 4,630,829 3,262.37 F 4,630,829 3,294.58
ex6.2_11 3 1 T 83,306 77.69 T 83,318 70.49 T 83,483 74.96
ex6.2_12 4 2 T 57,667 48.77 T 57,692 50.29 T 58,232 53.54
ex6.2_13 6 3 F 4,287,127 2,594.17 F 4,287,127 2,510.00 F 4,287,127 2,557.77
ex6.2_14 4 2 T 80,960 77.74 T 81,813 79.54 T 95,156 103.80
ex7.2_1 7 14 T 7,365 12.74 T 7,521 11.74 T 8,653 14.58
ex7.2.2 6 5 T 554 0.81 T 554 0.81 T 531 0.76
ex7.2.3 8 6| T 2,211,218 2,322.57 | T 2,377,846 2,398.99 | T 2,387,169 2,579.08
ex7.2_.5 5 6 T 198 0.42 T 201 0.40 T 176 1.36
ex7.2_6 3 1 T 1,301 1.21 T 1,301 1.15 T 1,319 1.11
ex7.2_10 11 9 T 1,417 1.30 T 1,417 1.28 T 1,417 1.31
ex7.3-1 4 7 T 133,163 85.37 T 1,656 1.80 T 1,536 1.93
ex7.3.2 4 7 T 130 0.33 T 130 0.27 T 141 0.29
ex7.3.3 5 8 T 309 0.62 T 280 0.48 T 373 0.57
ex7.3.4 12 17 F 3,414,184 3,413.47 F 3,600,000 3,608.75 F 3,200,000 3,619.05
ex7.3.5 13 15 F 3,439,246 3,402.08 F 3,072,081 3,272.27 F 2,228,770 3,398.21
ex7.3_6 17 17 T 1 0.15 T 1 0.13 T 1 0.18
ex8_1.7 5 5 T 1,273 1.61 T 1,343 1.51 T 1,439 1.55
ex8_1_8 6 5 T 554 0.82 T 554 0.76 T 531 0.76
ex9.2_1 10 9 T 64 0.31 T 64 0.22 T 64 0.24
ex9.2_2 10 11 F 5,902,793 3,065.19 F 5,902,793 3,079.29 F 5,902,793 3,417.14
ex9.2_3 16 15 T 147 0.51 T 154 0.49 T 156 0.41
ex9.2_4 8 7 T 49 0.29 T 49 0.20 T 49 0.24
ex9.2_5 8 7 T 133 0.41 T 133 0.35 T 136 0.40
ex9.2_6 16 12| F 2,476,815 2,960.31 | F 2,476,815 2,773.41 | F 2,476,882 3,409.49
ex9.2_7 10 9 T 64 0.83 T 64 0.31 T 64 0.30
ex14.1_1 3 4 T 2 0.23 T 247 0.44 T 300 0.41
ex14.1.2 6 9 T 23,965 20.39 T 48,087 38.85 T 23,976 20.67
ex14.1.3 3 4 T 2 0.24 T 91 0.30 T 91 0.30
ex14_1.5 6 6 T 5,610 3.42 T 4,836 2.97 T 2,996 3.60
ex14.1.6 9 15 T 2 0.27 T 2,379 4.61 T 2,266 5.32
ex14.1.7 10 17 F 3,900,000 3,700.27 F 3,900,000 3,617.51 F 3,800,000 3,702.24
ex14.1.8 3 4 T 72 0.41 T 74 0.25 T 7 0.29
ex14.1_9 2 2 T 235 0.42 T 235 0.33 T 225 0.32
ex14.2_1 5 7 T 406,852 306.00 T 262,394 198.59 T 16,813 20.75
ex14.2_2 4 5 T 1,950 1.68 T 1,169 1.14 T 1,010 1.02
ex14.2_3 6 9 T 47,495 80.99 T 47,250 75.38 T 48,505 80.69
ex14.2_4 5 7 T 235,435 223.18 T 128,507 126.53 T 29,793 40.65
ex14.2.5 4 5 T 2,257 2.12 T 2,868 2.55 T 2,057 1.99
ex14.2_6 5 7 T 73,827 118.14 T 73,520 106.65 T 74,630 110.38
ex14.2.7 6 9 F 1,800,000 3,727.71 F 1,800,000 3,668.57 F 1,800,000 3,720.75
ex14.2_8 4 5 T 10,327 10.92 T 10,117 10.75 T 10,066 11.01
ex14.2_9 4 5 T 30,200 26.47 T 6,764 7.92 T 6,581 7.78
Average when "T’ 63 155,712.87 160.24 63 105,227.7 118.94 63 99,465.49 123.39
Avg when *T’ for 3rd Alg. Tab. 1 61 95,318.26 72.64 61 41,137.77 36.16 61 35,330.25 34.36

Table 3: Numerical results for non reliable but exact global optimization methods

22

[4]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

J.L.D. CoMBA AND J. STOLFI, Affine arithmetic and its applications to computer graphics,
in Proceedings of SIBGRAPI’93 - VI Simpdsio Brasileiro de Computacdo Gréfica e Processa-
mento de Imagens, 1993, pp. 9-18.

L. DE FIGUEIREDO, Surface intersection using affine arithmetic, in Proceedings of Graphics
Interface’96, 1996, pp. 168-175.

L. DE FIGUEIREDO AND J. STOLFI, Affine arithmetic: Concepts and applications, Numerical
Algorithms, 37 (2004), pp. 147-158.

E.D. DOLAN AND J.J. MORE, Benchmarking optimization software with performance profiles,
Mathematical Programming Series A, 91 (2002), pp. 201-213.

K. Du AND R. B. KEARFOTT, The cluster problem in multivariate global optimization, Jour-
nal of Global Optimization, 5 (1994), p. 253265.

E. F1TAN, F. MESSINE, AND B. NOGAREDE, The electromagnetic actuator design problem:
A general and rational approach, IEEE Transactions on Magnetics, 40 (2004), pp. 1579-1590.

J. FONTCHASTAGNER, F. MESSINE, AND Y. LEFEVRE, Design of electrical rotating machines

by associating deterministic global optimization algorithm with combinatorial analytical and
numerical models, IEEE Transactions on Magnetics, 43 (2007), pp. 3411-3419.

L. GRANVILLIERS AND F. BENHAMOU, RealPaver: an interval solver using constraint satis-
faction techniques, ACM Transactions on Mathematical Software, 32 (2006), p. 138156.

E.R. HANSEN, A generalized interval arithmetic, Lecture Notes in Computer Science, 29
(1975), pp. 7-18.

E.R. HANSEN AND W.G. WALSTER, Global Optimization Using Interval Analysis, Marcel
Dekker Inc., New York, 2°M€ ed., 2004.

R. HorsT AND H. Tuy, Global Optimization: Deterministic Approaches, Springer-Verlag,
Berlin, third ed., 1996.

C. JANSSON, Rigorous lower and upper bounds in linear programming, SIAM Journal on
Optimization, 14 (2003), pp. 914-935.

R.B. KEARFOTT, Rigorous Global Search: Continuous Problems, Kluwer Academis Publish-
ers, Dordrecht, 1996.

——, Discussion and empirical comparisons of linear relaxations and alternate techniques
in validated deterministic global optimization, Optimization Methods & Software, 21 (2006),
pp. 715-731.

——, GlobSol user guide, Optimisation Methods & Software, 24 (2009), pp. 687—708.

R.B. KEARFOTT AND S. HONGTHONG, Validated linear relaxations and preprocessing: Some
experiments, STAM Journal on Optimization, 16 (2005), pp. 418-433.

C. Ke1L, LURUPA: Rigorous error bounds in linear programming, in Algebraic and Numerical
Algorithms and Computer-assisted Proofs, Nov 2006.

J.-B. LASSERRE, Global optimization with polynomials and the problem of moments, SIAM
Journal on Optimization, 11 (2001), pp. 796-817.

Y. LEBBAH, C. MICHEL, AND M. RUEHER, Efficient pruning technique based on linear re-
lazations, in Proceedings of Global Optimization and Constraint Satisfaction, vol. 3478, 2005,
pp. 1-14.

23

23]

24]

[25]

[26]

[27]

[28]

[31]
32]

[33]

C.D. MARANAS AND C.A. FLouDAs, Global optimization in generalized geometric program-
ming, Computers & Chemical Engineering, 21 (1997), pp. 351-3609.

M.C. MARKOT, J. FERNANDEZ, L.G. CASADO, AND T. CSENDES, New interval methods
for constrained global optimization, Mathematical Programming, 106 (2006), pp. 287-318.

F. MESSINE, Extensions of affine arithmetic: Application to unconstrained global optimization,
Journal of Universal Computer Science, 8 (2002), pp. 992-1015.

———, Deterministic global optimization wusing interval constraint propagation techniques,
RATIRO-Operations Research, 38 (2004), pp. 277-293.

——, A deterministic global optimization algorithm for design problems, in Essays and Surveys
in Global Optimization, C. Audet, P. Hansen, and G. Savard, eds., Springer, New York, 2005,
pp. 267-294.

F. MESSINE, B. NOGAREDE, AND J.-L. LAGOUANELLE, Optimal design of electromechanical
actuators: A new method based on global optimization, IEEE Transactions on Magnetics, 34

(1998), pp. 299-308.

F. MESSINE AND A. TouHAMI, A general reliable quadratic form: An extension of affine
arithmetic, Reliable Computing, 12 (2006), pp. 171-192.

A. Mitsos, B. CHACHUAT, AND P.I. BARTON, McCormick-based relaxations of algorithms,
STAM Journal on Optimization, 20 (2009), pp. 573-601.

R.E. MOORE, Interval Analysis, Prentice-Hall Inc., Englewood Cliffs, 1966.

A. NEUMAIER, Set of test problems COCONUT.
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html.

A. NEUMAIER AND O. SHCHERBINA, Safe bounds in linear and mixed-integer linear program-
ming, Mathematical Programming Series A, 99 (2004), pp. 283-296.

A. NEUMAIER, O. SHCHERBINA, W. HUYER, AND T. VINKO, A comparison of complete
global optimization solvers, Mathematical Programming Series B, 103 (2005), pp. 335-356.

J. NININ, Optimisation Globale basé sur I’Analyse d’Intervalles: Relazation affine et limitation
de la mémoire, PhD thesis, Institut National Polytechnique de Toulouse, 2010.

S. PERRON, Applications jointes de 'optimisation combinatoire et globale, PhD thesis, Ecole
Polytechnique de Montréal, 2004.

H. RATSCHEK AND J. ROKNE, New Computer Methods for Global Optimization, Ellis Hor-
wood Ltd, Chichester, 1988.

H. ScHicHL, M. C. MARKT, AND A. NEUMAIER, Fzclusion regions for optimization problems,
Journal of Global Optimization, (2014).

H. ScHICHL AND A. NEUMAIER, Interval analysis on directed acyclic graphs for global opti-
mization, Journal of Global Optimization, 33 (2005), pp. 541-562.

H.D. SHERALI AND W.P. AbpAMS, A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvexr Problems, Kluwer Academis Publishers, Dordrecht, 1999.

J. SToLFl AND L. DE FIGUEIREDO, Self-Validated Numerical Methods and Applications,
Monograph for 21st Brazilian Mathematics Colloquium, IMPA /CNPq, Rio de Janeiro, Brazil,
1997.

24

http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

[42] M. TAWARMALANI AND N.V. SAHINIDIS, Global optimization of mized-integer nonlinear
programs: A theoretical and computational study, Mathematical Programming Series A, 99

(2004), pp. 563-591.

[43] P. VAN HENTENRYCK, L. MICHEL, AND Y. DEVILLE, Numerica: a Modelling Language for
Global Optimization, MIT Press, Massachusetts, 1997.

[44] X.-H. Vu, D. SAM-HAROUD, AND B. FALTINGS, Enhancing numerical constraint propagation
using multiple inclusion representations, Annals of Mathematics and Artificial Intelligence, 55
(2009), pp. 295-354.

25

	Introduction
	Affine Arithmetic and Affine Forms
	Affine Reformulation Technique based on Affine Arithmetic
	Reliable Affine Reformulation Technique: rARTrAF
	Application within an Interval Branch and Bound Algorithm
	Numerical Tests
	Validation of the reliable approach
	Comparison with GlobSol
	Comparison with the non-reliable methods

	Conclusion

