Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Asymmetric power distribution model of wavelet subbands for texture classification

Nour-Eddine Lasmar 1 Alexandre Baussard 2, 3 Gilles Le Chenadec 4, 2, 5
3 Lab-STICC_ENSTAB_CID_TOMS ; REMS
STIC - Pôle STIC [Brest], Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
4 Lab-STICC_ENSTAB_CID_SFIIS ; OSM
STIC - Pôle STIC [Brest], Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
5 Lab-STICC_ENSTAB_CID_PRASYS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : The generalized Gaussian distribution (GGD) is a well established statistical model for wavelet subband characterization used in several applications. However, it is not really suitable for eventual asymmetry of probability density functions. Therefore, in this paper we propose to exploit the asymmetric power distribution (APD) which is a more general and flexible model than the GGD. The APD parameters are estimated through the maximum-likelihood estimation. A supervised texture classification problem is proposed as an application in this work. It is based on the Bayesian framework which has led to the definition of the closed form of the corresponding Kullback–Leibler divergence considered as a similarity measure. To validate the APD model, the goodness-of-fit using the classical Kolmogorov–Smirnov test is used. Finally, classification results on four databases demonstrate the interest of the proposed approach.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01090055
Contributeur : Annick Billon-Coat <>
Soumis le : mardi 2 décembre 2014 - 18:56:09
Dernière modification le : mercredi 24 juin 2020 - 16:19:56

Identifiants

Citation

Nour-Eddine Lasmar, Alexandre Baussard, Gilles Le Chenadec. Asymmetric power distribution model of wavelet subbands for texture classification. Pattern Recognition Letters, Elsevier, 2015, 52, pp.1-5. ⟨10.1016/j.patrec.2014.08.004⟩. ⟨hal-01090055⟩

Partager

Métriques

Consultations de la notice

598