
PLiMoS, a DSML to Reify Semantics
Relationships: An Application to Model-Based

Product Lines

Stephen Creff and Joël Champeau

Lab-STICC, ENSTA Bretagne, UEB - 2, Rue F. Verny 29806 Brest Cedex 9, France
{stephen.creff,joel.champeau}@ensta-bretagne.fr

Abstract. In the Model-Based Product Line Engineering (MBPLE)
context, modularization and separation of concerns have been introduced
to master the inherent complexity of current developments. With the aim
to exploit efficiently the variabilities and commonalities in MBPLs, the
challenge of management of dependencies becomes essential (e.g. hierar-
chical and variability decomposition, inter-dependencies between mod-
els). However, one may observe that, in existing approaches, relational
information (i) is mixed with other concerns, and (ii) lacks semantics and
abstraction level identification. To tackle this issue, we make explicit the
relationships and their semantics, and separate the relational concern
into a Domain Specific Modeling Language (DSML) called PLiMoS. Re-
lationships are treated as first-class entities and qualified by operational
semantics properties, organized into viewpoints to address distinct objec-
tives, e.g. product derivation, variability consistency management, archi-
tectural organization. This paper provides a description of the PLiMoS
relationships definition and its implementation in a model-based product
line process using two variability languages: Feature Model and OVM.
The independence with variability and core assets modeling languages
provides benefits to cope with the product line maintenance.

Keywords: Model-Based Engineering, Product Lines, Dependencies,
Semantics Relationships, DSML.

1 Introduction

Product Line Engineering (PLE) [1] aims at increasing product quality, enhanc-
ing time-to-market, and reducing production costs. Product Lines (PLs) pro-
mote intra-organizational reuse through the explicitly planned exploitation of
similarities (commonality) among related products. A PL is a family of products
built in a prescribed manner from a common set of core development assets [2].
The explicit modeling and management of the variability and commonality is a
key point in PLE [2]. Several techniques, and thus Domain Specific Languages
(DSLs), have been defined to explicitly model the variability. Some of them are
defined as orthogonal approaches, dealing with the variability as a separated

viewpoint connected to core assets to automate the product derivation. The
most popular, and historical one introduced by Kang et al. [3], is the Feature
Model (FM), another one, also used later on in this paper, is the Orthogonal
Variability Model (OVM) language [2].

In the Model-Based Product Line Engineering (MBPLE) context, clear mod-
ularization and separation of concerns have been introduced to master the in-
herent complexity of current developments. With the aim to exploit efficiently
the variabilities and commonalities in model-based PLs, the challenge of man-
agement of dependencies becomes essential (e.g. hierarchical and variability de-
composition, inter-dependencies between models). Efforts have been provided in
existing variability modeling techniques to separate concerns, either by defining
categories of features and providing classifications (e.g. [2, 4, 5]), or by defining
intra-variability model relations (e.g. [4, 6]) and inter-model ones (e.g. [7, 5]). A
survey on of the variability modeling approaches in the literature that handle
explicit relationships between variable elements [8] shows that many authors
faced the need to define and use specific relationships combined to variability
languages. Relationships are defined for various purposes such as: Hierarchical
refinement, Configuration, Specific Usage, and Inter-concerns management. Nev-
ertheless, the relationships are often buried in the variability model and can lack
semantics: their description can be quite vague and imprecise, especially when
describing the specific usages. Up to now, existing approaches do not consider
relational information as a global preoccupation in the MBPL. However, this
information represent the core concepts necessary to improve the management
of the MBPL and its evolution. For example to integrate extensions in the vari-
ability models, or to take into account evolution of the application models and
modeled core assets of the PL. Therefore, efforts have to be provided to (i) clarify
all the relationships, (ii) their semantics and (iii) their corresponding usages, in
order to federate all the models of the MBPL modeling space.

To tackle this issue, we make explicit the relationships and their semantics,
and separate the relational concern into a Domain Specific Modeling Language
(DSML) called PLiMoS. Relationships are treated as first-class entities and qual-
ified by operational semantics properties, organized into viewpoints to address
distinct objectives, e.g. product derivation, variability consistency management,
architectural organization. We consider PLiMos as an independent relational
language to federate models of the MBPL, supporting dependency processings
and semantic consistency checkings. The language is amalgamated with exist-
ing variability modeling languages to introduce model management capabilities,
allowing interrelating heterogeneous variability languages. This paper provides
a description of the PLiMoS language and an implementation in a model-based
product line process using two variability languages (Feature Model, and OVM),
and existing modeling core assets (models at different levels of abstraction). The
independence with variability and core assets modeling languages provides ben-
efits to cope with the product line maintenance and evolution.

The remainder of this paper is organized as follows. In the second part, as
the root of our work, we give a brief overview of the background on relation-

ships in PLE, describing the lack of related approaches and our motivations. In
the third section, we present and formalize the PLiMoS DSML. In the fourth
section, we describe an application of the language to two variability modeling
languages (FM and OVM) for illustration purpose. The fifth section outlines the
implementation, providing details on the concrete syntax and tooling. The last
section draws our conclusion and introduces future works.

2 Relationships in PLE

Modularization and Separation of Concerns (SoC) has been used as an effec-
tive solution to tackle the growing complexity of products and to enhance the
understandability of software development. The variability models describe ab-
stractions from core modeling artifacts related through variability mechanisms,
and the relational information between these core artifacts is sometimes rep-
resented into the variability modeling viewpoint. Moreover, efforts have been
made to refine variability and separate concerns, even though sometimes lacking
some formalization in relating manipulated artifacts, e.g. FORM [4]. Besides,
the modularization issue has been pointed out by many authors, e.g. [5, 9, 10].
A survey of the relationships in the variability models literature reveals some
categories [8]:
– Logical group relationships: are found in any variability language and de-

scribe the implication/exclusion of variants from a given logical group (e.g. Or,
And, Card).

– Hierarchical refinement relationships: where initially called Consist-of [3].
These co-implication relationships are symmetric and transitive, and are
specialized, depending on the approaches, into generalization, aggregation,
decomposition, and classification, e.g. [4, 6].

– Configuration dependencies: are mainly based on the two following con-
straints: Implication (dissymmetric and transitive), and Exclusion (symmet-
ric but not transitive), e.g. [2–4, 6, 11, 12].

– Usage specific relationships: correspond to various viewpoints (e.g. runtime
dependencies [6]), and delimits one concern.

– Inter-concerns dependencies: can be defined in a single variability model
(e.g. [4, 6]), between variability models (e.g. [2, 5, 7, 9, 10]), or between vari-
ability models and core artifacts (e.g. [2, 13]).
The relationships lack semantics: their description can be quite vague and

imprecise, especially when describing the specific usages, e.g. [4, 9]. Some ap-
proaches provide formalizations through metamodels (like in [12, 14]), or with
mathematical formalisms (e.g. [5, 15]), but do not cover the entire range of re-
lationships. For example, a relationship like recommends (e.g. [16]), which is a
weak form of requires has no precise semantics and associated operations. More-
over, existing approaches introduce relationships buried in the variability model,
every one extending variability languages with some relationships. Our approach
differs in that we do not focus on variability but only on relationships between
the variation point and variants, providing a generic language to describe specific

relationships adapted to a given PL. The relationships described are not limited
to Boolean equivalent relations like in [5] and associated to consistency checking,
but can be established for various purposes. Moreover, unlike other approaches,
relations considered cover the modeling core assets space.

Besides, related to traceability approaches, a recent work [17] identifies four
orthogonal traceability dimensions in PLE (refinement, similarity, time and vari-
ability) and provides an implementation of traceability mechanisms in a generic
framework, which does not enforce the semantics. Some applications of the trace-
ability domain have been made to PLE [18, 19], with the aim to enforce the rela-
tionships semantics. In comparison, our approach is more pragmatic and targets
domain concerns first (variability modeling and the PLE process) to extract se-
mantics relationships that can be a basis for classical traceability activities. As a
result, our approach goes further in describing the relationships granularity and
usage.

3 The PLiMoS DSML

In this section, to tackle the exposed issue, we make explicit the relationships
and their semantics, and separate the relational concern into a Domain Specific
Modeling Language called PLiMoS to model the relational information of the
Product Line Modeling Space. The section introduces (i) the approach, and
provides details on the PLiMoS (specification) generic metamodel, a base to
generate the PLiMoS (implementation) specific metamodel.

3.1 Overview of the Approach

We define the semantics of the PLiMoS language on the basis of the abstract
syntax. The DSML is implemented with Ecore (eclipse modeling framework) con-
cepts and gathers various concerns. Figure 1 depicts the process associated to
each concern; in the process, a PLiMoSspecification metamodel provides facilities
to build a specific part of the DSML (PLiMoSimplementation), dedicated to a par-
ticular modeling space, by generating it from a PLiMoSspecification model. This
paper provides a description of the PLiMoS language in this section and its ap-
plication and implementation to a modeling space, using Feature Model and the
OVM language in Section 4: due to space limitation, the model transformation
(specification to implementation) stays out of the scope of the paper.

3.2 The PLiMoS Specification Language

This section introduces the PLiMoSspecification metamodel. A separation of con-
cerns is applied to reveal the basic relationships and the associated operational
semantics. So, conceptually, the language is based on a set of Basic Relationships
(BR), some Semantics Interpretations (SI), and functions to bind SI to BR.

PLiMoSspecification , 〈BR,SI, Φ(SI)→ BR〉

Fig. 1. Overview of the PLiMoS language

In traceability approaches, relations are very often deeply qualified by their
causality (if not unidirectional), i.e. relationships usually have a source (the
cause) and a target (the effect). With the aim to add genericity, we consider
a BasicRelationship to be a mapping (symmetrical link) established between
two sets of artifacts, i.e. with a Left Hand Side (LHS) and Right Hand Side
(RHS). Figure 2 presents an excerpt of the metamodel. One may note that
the BasicRelationship associate EObjects as mapping ends; this implementation
details allows to associate the links in PLiMoSspecification models to variability
and core assets metamodel elements. Moreover, the BasicRelationships have by
default multi-cardinality on both sides and could be constrained later to a specific
range. These relationships can be defined to realize a structural infrastructure
(serializable) or considered to be derivable (and therefore inferred on-demand
for various activities, e.g. consistency checking, viewpoint picturing), volatile
and transient (derived property in Fig. 2).

Furthermore, a relationship can be characterized by the abstraction level
criterion (process Level). It can be either vertical if the relationships cross lev-
els, or horizontal whether it does not. Another characteristic is the homogene-
ity/heterogeneity nature of the relationships: within the variability model, within
core assets or between the two. No property is associated to such a characteristic
in PLiMoS as it is inferred from lhs and rhs relations ends type.

Variability models describe abstractions of core modeling artifacts related
through variability mechanisms. Any variability technique defines propositional
connectors and associations among variable elements that are translated in the
basic types: implication (noted ι, is non-symmetric but transitive), co-implication
(noted I, is symmetric and transitive) and exclusion (noted η, is symmetric and
non-transitive). For example, the FM language uses “consist-of” (co-implication
between feature and sub-feature), and the Or operator (exclusion between sub-
features), or other languages like OVM defines specific constraints equivalent to
implication and exclusion (e.g. “requiresv vp” or “excludesvp vp”). Some specific
rationales and descriptions can refine the relationship to add semantics; these
rationale properties are detailed in Section 3.3.

Fig. 2. Excerpt of the PLiMoS language

Every model syntactically correct and conforms to the metamodel must be
interpreted as a definition for a dedicated modeling space relational language.

3.3 Defining Semantics Relationships

Relationships need semantics connected to specific usage and activities, the lan-
guage contains some usual PL relationships.

Product Line Relationships Characteristics Based on the observation from
the survey [8], the relationships in PL approaches can be classified by five main
properties: (1) Concern: the relationships do or do not cross concerns (intra or
inter concerns); (2) Artifact Related : the relationships link the same set of arti-
facts (homogeneous) or different sets (heterogeneous); (3) Abstraction level : the
relationship is defined as vertical (crossing abstraction levels) or horizontal; (4)
Time: the relationships is temporally related to (i) design time, being structural
(established by logical groups or hierarchy) or dependency (basic configuration
or usage specific ones), (ii) run-time (operational activities), or (iii) over-time
(evolution concerned); (5) Impact : the relationships define (i) induction (im-
plication, exclusion or activation), (ii) modification (interaction, substitution,
deletion).

For example, the five main categories of relationships described in Section 2
are combinations of the previous properties:
– Logical group relationships: intra-concern, homogeneous, horizontal, struc-

tural design, co-implication;
– Hierarchical refinement relationships: intra-concern, homogeneous, vertical,

structural design, co-implication;

– Configuration dependencies: intra-concern, homogeneous, horizontal, design
dependencies, implication or inclusion impact;

– Usage specific relationships: intra-concern, homogeneous/heterogeneous, hor-
izontal, dependencies, various impacts;

– Inter-concerns dependencies: inter-concern, homogeneous/heterogeneous, hor-
izontal, dependencies, various impacts.

The PLiMoS language is designed to be generic, allowing the specialization
of all existing relationships.

Semantic Properties in a Library PLiMoSspecification includes predefined
rationale properties to reveal the causality of the relationship, and provides se-
mantics for understandability and process enactment. It includes the four hierar-
chical roles to specialize a co-implication links (viz. generalization, aggregation,
decomposition and classification), necessary to connect PLiMoS to feature mod-
eling languages.

Considering a given intention, the dependency relationships (ι, I, and η) can
express specific causality, i.e. depending on the usage, as a base for activities like
product derivation or consistency checking. The rational property for constraints
may offer benefits to various usages, and PLiMoS includes the properties listed in
the following. For implication and co-implication relations: NA (Not Applicable
by default, whether the causality is not informed), depends-on, requires, resource,
includes (implication only), impacts, satisfies, uses, allocate-to, induces, design,
core, implemented-by. For exclusion: incompatible, mutex-with, and conflict. The
three relationships rational property can be set to “other” and can be filled with
the “Description” property. As built upon basic relationships of implication and
exclusion, a translation of the implementation language to the propositional logic
technological space is eased.

Some of the properties are illustrated and described with more details in
Section 4. One may note that the PLiMoS language does not consider, up to
now, runtime activation dependencies, like those defined in [6].

Relationships are treated as first-class entities and qualified by operational
semantics properties. The relationships typed and qualified by their rationales
are specified for a given concern; the latter define viewpoints (cf. graphical filters
in the Section 5). Typed relationships can be organized into viewpoints to address
distinct objectives, e.g. product derivation, variability consistency management,
architectural organization. For example, many constraints have to be checked
and verified for product derivation: typed“resource”relationships, allocation and
implementation, and so forth; on the other side, only operational relationships
have to be used to perform a run-time simulation.

The semantics relationships layers provide semantic enrichment of variability
modeling languages and consequently of the entire PL.

4 Application to Two Variability Modeling Languages

This section illustrates the adaptation (generative realization of the
PLiMoSimplementation part) of our DSML to a given modeling process intro-
duced by Metzger et al. [5]. Briefly, the variability space is modeled with two
kinds of variability models, for i) the PL variability, ii) the software design so-
lution. The core assets space, which is composed of Model-Based Engineering
(MBE) artifacts, is represented at two levels of abstraction: problem specifica-
tion (e.g. with Use-Cases), solution design (e.g. Component, class diagrams), as
depicted in Fig. 3. In the following, for representation convenience, the proposed
formalisation does not reflect the separation between the relational structure and
the semantics interpretations (i.e. the main interpretation is used to define the
relation).

Fig. 3. Applicative Modeling Space Overview

4.1 Introducing the Variability Languages

The variability is modeled with two types: FM for PL variability, and OVM for
the Software one. This section describes the two languages used. Every model
that is syntactically correct and conforms to the metamodel must be interpreted
as a valid variability model (FM or OVM).

Feature Model Starting from the work performed by Schobbens et al. [20] and
the FFD pivot, we derive a metamodel for feature models in Ecore with OCL
constraints. A Feature Model fm ∈ Lfm is represented in the article as a 8-tuple
〈F, P,C,E, r, λ, CE,Φ〉 where:
– F is non-empty and finite set of Features;

– P ⊆ F is a set of Primitive features (i.e. leaves);
– C ⊆ F is a set of Concrete features (i.e. non abstract, connected to other

artifacts, to be consistent P ⊆ C);
– E ⊆ F × F is a finite set of Edges. As FMs are directed, features f1, f2 ∈
F, (f1, f2) ∈ E will be noted f1 → f2 where f1 is the parent and f2 the child.
E is acyclic: @f1, . . . , fk ∈ F.f1 → .. → fk → f1. E is a tree: @f1, f2, f3 ∈
F.f1 → f2 ∧ f3 → f2;

– r ∈ F is the root of the FM, r is unique and has no parent (∀f ∈ F.(@f ′ ∈
F.f ′ → f)⇐⇒ f = r);

– the function λ : F → O labels each node with an operator - O - from
(And ∪Or ∪Xor ∪ {Opt1});

– CE ⊆ F×GCT×F is the set of intra-model constraint edges, GCT - Graph-
ical Constraint Type - is {implication, co-implication, exclusion}, relations
described hereinafter;

– A set Φ ∈ B(F) of textual constraints in propositional formulae;

Orthogonal Variability Model From the description by Pohl et al. [2], we
formalize the OVM DSML, considering that an OVM model Ω is a 7-tuple
〈V P, V, λV P , DEV P , Opt, Parent, CD〉, such that:
– V P (6= ∅) is the non-empty set of Variation Points (VP);
– V (6= ∅) is the non-empty set of Variants; V P ∩ V = ∅;
– the function λV P : V P → N×N labels each variation point with the possible

variant cardinality;
– DEV P ⊆ V P × V is the finite set of decomposition relations between a VP

and its Variants.
– Opt : V → B provides insight on a variant optionality;
– Parent : V ∪ V G → V P is the function that returns the parent Variation

Point of a given Variant;
– CD ⊆ (V P × CTOVM × V P) ∪ (V P × CTOVM × V) ∪ (V × CTOVM × V),

with CTOVM ={implication, exclusion} represents the set of configuration
constraints;

Some additional constraints are defined to ensure that: each VP is a parent of
at least one V, a V has only one parent, cardinalities are correct.

4.2 The PLiMoS Implementation Metamodel

PLiMoSimplementation makes an overlap with variability languages and core as-
sets ones (cf. Fig. 1). PLiMoSimplementation is generated from a specification
given by a PLiMoSspecification model. We consider in the paper, the
PLiMoSimplementation specific language to be composed of a set of FM relation-
ships (FMR), a set of OVM ones (OVMR), and a set of inter-model relation-
ships (IMR): PLiMoSimplementation , 〈FMR,OVMR, IMR〉.

Relationships Specialized for the VMs Feature Model relationships (FMR)
are defined as a tuple 〈E, IDC,CIDC,EDC〉:
– Consist-of (χ): are co-implication and 1-to-1 relationships, homogeneous,

non-derived, and vertical. This basic hierarchical relation is refined giving an
intention, e.g. part-of, generalization (E ⊆ F× {generalization, decomposition}×F);

– Implication (ι): the “requires” is a non-symmetric but transitive configura-
tion constraint (IDC ⊆ F × F , IDC ⊆ CE); The CoImplication (I) is a
symmetric ι (CIDC ⊆ F ×F , CIDC ⊆ CE); these relationships are 1-to-1,
homogenous, non-derived and horizontal;

– Exclusion (η): is a symmetric and non-transitive “mutex” dependency con-
straint (EDC ⊆ F × F , EDC ⊆ CE); this relationship is 1-to-1, homoge-
nous, non derived and horizontal;

And obviously, E∩IDC∩CIDC∩EDC = ∅. Considering a given intention, the
dependency relationships (ι, I, η) may express specific causality, i.e. depending on
the usage, as a base for activities like product derivation or consistency checking.
In the running example we do not define any specific usage.

In order to make the connection with the OVM language, some relationships
need to be specified in the PLiMoSspecification model, those ones are:

OVMR , 〈DEV P , AD,CD〉.
– variability dependencies (DEV P as define before) between VP and V (manda-

tory and optional), are co-implication and 1-to-1 relationships, homogenous,
non-derived, and vertical;

– artefact dependencies (AD) and VP artefact dependencies, as implication
and 1-to-1 relationships, heterogeneous, non-derived, and horizontal (part of
the inter-model relationships);

– constraints dependencies: (CD, as defined before)“requires V V”,“requires V VP”,
“requires VP VP”, ‘excludes V V”,“excludes V VP”,“excludes VP VP”. Con-
secutively, implication and exclusion relationships, 1-to-1, homogenous, non-
derived and moreover, both horizontal and vertical ones are needed (implied
by the modeling space - cf. previous section)

Relationships Specialized to Describe Inter-model dependencies The
PLiMoSspecification model is also concerned with specific modeling space consid-
erations (depicted in Fig. 3), to build operational relationships. In this case, the
inter-model Relationship Model rm is a tuple 〈SR, IR,RR〉 where:

– SR ⊆ P(C) × P(V P) is a finite set of Satisfaction (ζ) relationships. The
marketing Features from the PLVM are satisfied by technical VPs from the
SVM: the design solution variability models meet the expectations and needs
of the PL;

– IR ⊆ (V P × V P)∪ (V × V) is a finite set of Identity (Ξ) relationships. The
identity mapping between two features means the similarity wrt. variability
and concepts; therefore, associated core assets, whether different, must be
totally disjoint; Identity is used to separate concerns at the same level of
abstraction (horizontal relationships);

– RR ⊆ (C × CA) ∪ (V × CA) ∪ (V P × CA) is the set of Realization (P)
relationships. A variant can be realized by a“Core Assets”(CA) entity reified
in the metamodel (CA are specialized for UML or any other DSLs involved).
Refinement (ρ) is the relationship that describes technological refinement
between abstraction levels in a model-based process. A given variant can be
mapped and realized by multiple core assets; however, no n-ary relationships
are defined, the CA concept represents a set of assets (Γ relationships make
the links between the set entity and the assets);
Additional relationships could be introduced as derived, volatile and tran-

sient. In the MDPL context, variability models relate elements with variability
operators; in a complex modeling space, these relations can be made explicit to
help enforce the semantic cohesiveness of the sets of related models.

5 Implementation

In this section we highlight tooling concerned with Domain Engineering: Feature
Model, OVM and relationships representation, giving a concrete syntax to our
infrastructure. One common end user request is to have an integrated, end-to-end
tool support, instead of having different tools for closely related problems. Ex-
isting tools are based on Eclipse and Obeo Designer1 (commercial Model-Based
Tool which provides graphical multi-viewpoint support within an Eclipse inte-
grated environment). A viewpoint is defined for variability modeling (for FM and
OVM), another for relationship modeling, both based on the previously intro-
duced metamodels. The choice of a graphical syntax was made to be consistent
with the selected variability models (FM and OVM are commonly manipulated
through a graphical syntax). This section introduces a running example and
provides insights on the tooling.

5.1 Introducing the Running Example

The running example is simple and abstracts, in some points, real systems
at Thales. Anti-aircraft systems communicate with sensors and actuators e.g.,
radars and consoles (human machine interfaces). In the following we will use two
radars: Radar1 which sends speed and position, Radar2 which sends two posi-
tions (t, t+1). Treatments are position processing and optionally speed process-
ing (whether needed). Resulting data are sent to the user via consoles: Console1
gives polar coordinate, Console2 cartesian ones. Variability comes from a great
extent from external actors like in our applications.

Describing the PL variability The Product Line Variability Model (PLVM)
(cf. Fig. 3, and Fig. 4-a) can be seen as an interface, as it contains the user-visible
variability, in the problem space. The model encompasses variabilities seen from
a marketing perspective. This VM is specific to the missions of the family. This

1 http://obeo.fr/pages/obeo-designer/en

Fig. 4. Variability Models: air defense case study

model containing the PL variability does not, per se in its hierarchy, reveal design
constraints of the solution - technical and architectural.

Fig. 4-a represents our running example: a simple control system family;
variability visible for the market is limited to: type of data to treat (delivered by
the external radars), type of processing consequently needed, presence/absence
of internal memory and type of data processed and delivered. The variability
comes here, for a part, from external actors, e.g. connecting a new radar with
different properties; a characteristic of real applications.

Describing the Software variability The Software Variability Model (SVM),
expressed in the OVM language, contains the internal variability of the architec-
ture and design. The OVM model is organized upon architectural concerns and
related to MBE solution artifacts (Component, class diagrams, etc.).

Note, in the simple example Fig. 4-b, that the architectural decomposition
appears, e.g. Fig. 4-b pictures, from left to right, Entities (treatment rules en-
tities and their relationships), Data (data management, including persistence),
Controls (interface data consistency and translation into core data) and Bound-
aries (interface rules) features which come from a logical pattern application.
Given a domain thesaurus, features and variants can have different names be-
tween the PLVM and the SVM, the tree hierarchy can be modified and variation
points can be duplicated (e.g. red shape in Fig. 4 part b that corresponds to the
one in part a); co-implication constraints may appear to keep the VM consis-
tent. All the requires constraints are not represented in the figure for readability
reason.

Overview of the inter-model relationships Product management for a PL
comprises the positioning of the PL, seen in light of the interplay between the
technical view of a product line (common technical platform, SVM) and the
marketing view of a PL (products targeting a similar market, not necessarily
technically related, PLVM). Figure 5 illustrates some Satisfaction and Realiza-
tion relationships: The “HMIData” feature is satisfied by the “O.B.” variation
point, the “O.B.” Variation Point is identical to “OutputB.”, and the “Vel” vari-
ant is realized by a core asset.

5.2 Variability Models Designer Viewpoints

Over the“classical”FM representation, specific Obeo Designer filters are built for
relationship representations: i) features can show/hide satisfaction link presence
(Example Fig. 6 a), the “2 Pos.” satisfied feature is colored differently) and
represent technical constraints into an optional layer; ii) features can show/hide
realization and link presence. It provides stakeholders an initial understanding
of the relations among features and assets.

The same kind of filters are defined for the OVM viewpoint to show/hide
realization relationships.

Fig. 5. Some inter-model relationships: air defense case study

Fig. 6. Variability modeling and dependencies

5.3 Dependency Designer Viewpoint

The dark side of features is feature interaction, which is implicit in feature com-
position and therefore difficult to understand. We define the dependency view-
point to get the big picture of the overall dependencies. One could choose an
epicenter element; dependencies will be extracted, or computed whether neces-
sary, and shown (we define the operator: extract relationships(element,range)).
For example, in Fig. 6 b) the focus is made on the element “O.B.”, with a limit
of two links visibility. “HMIData” is part of the PLVM; “O.B.”, “OutputB.” and
“HMI Protocol” are elements of the SVM. The set of required features (of a
particular feature) - required features(feature) operator - is given by a transitive
closure operator.

Graphical filters on relationship types are provided to focus on one specific
concern, e.g., away from our example, to only show resource relationships (ex-
pressing resource dependencies).

6 Conclusions and Future Works

This article describes a Domain Specific Modeling Language called PLiMoS. This
language does not focus on variability operators but only on relational knowl-
edge. We propose to consider relationships between elements as an indepen-
dent language to be merged with any variability modeling language to introduce
model management capabilities. Relationships are treated as first-class entities
and qualified by operational semantics properties, organized into viewpoints to
address distinct objectives, e.g. product derivation, variability consistency man-
agement, architectural organization. We aim at providing a solution that allows
the engineers to focus on their domain and reason about the relationships be-
tween the elements of the different spaces, abstraction levels and concerns.

The approach enforces the semantics of the relationships and provides ben-
efits to cope with heterogeneous variability languages focusing on relations be-
tween concepts (the paper describes the amalgamation with two languages, a
FM and OVM). The independence with variability and core assets modeling
languages provides benefits to cope with the product line maintenance and evo-
lution.

Future work will focus on adding automation to the tooling design process
in relation with the PLiMoS relationships (design model generation), within a
model-based process. Works will also investigate the connection to other tech-
nological spaces to perform various activities, but mainly for behavioral compo-
sition, and simulation for operational consistency checking.

References

1. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI
Series in Software Engineering. Addison-Wesley (August 2001)

2. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer NY, Inc., Secaucus, NJ, USA (2005)

3. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Technical report (1990)

4. Kang, K.C., Kim, S., Lee, J., Kim, K.: Form: A feature-oriented reuse method
with domain-specific reference architectures. Ann. Softw. Eng. 5 (1998)

5. Metzger, A., Pohl, K., Heymans, P., Schobbens, P.Y., Saval, G.: Disambiguating
the documentation of variability in software product lines: A separation of concerns,
formalization and automated analysis. Requirements Engineering Conference 0
(2007) 243–253

6. Lee, K., Kang, K.C.: Feature dependency analysis for product line component
design. In: Lecture Notes in Computer Science, Springer (2004) 69–85

7. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: Covamof: A framework for mod-
eling variability in software product families. In Nord, R.L., ed.: SPLC. Volume
3154 of LNCS., Springer (2004) 197–213

8. Creff, S., Champeau, J.: Relationships in variability modeling approaches: A survey
and classification. In: Proceedings of Journée Lignes de Produits ’12, Lille, France
(2012)

9. Reiser, M.O., Weber, M.: Multi-level feature trees: A pragmatic approach to man-
aging highly complex product families. Requir. Eng. 12(2) (May 2007) 57–75

10. Hartmann, H., Trew, T., Matsinger, A.: Supplier independent feature modelling.
SPLC ’09, Pittsburgh, PA, USA, Carnegie Mellon University (2009) 191–200

11. Ye, H., Liu, H.: Approach to modelling feature variability and dependencies in
software product lines. Software, IEE Proceedings - (2005)

12. Mei, H., Zhang, W., Zhao, H.: A metamodel for modeling system features and
their refinement, constraint and interaction relationships. Software and Systems
Modeling 5 (2006) 172–186

13. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping Features to
Models. In: Companion Proceedings of ICSE’08, ACM (2008)

14. Fey, D., Fajta, R., Boros, A.: Feature modeling: A meta-model to enhance usability
and usefulness. In: Proceedings of the Second International Conference on Software
Product Lines. SPLC 2, London, UK, UK, Springer-Verlag (2002) 198–216

15. Zhu, C., Lee, Y., Zhao, W., Zhang, J.: A feature oriented approach to mapping
from domain requirements to product line architecture. In Arabnia, H.R., Reza, H.,
eds.: Software Engineering Research and Practice, CSREA Press (2006) 219–225

16. Riebisch, M., Streitferdt, D., Pashov, I.: Modeling variability for object-oriented
product lines. In: ECOOP 2003 Workshop Reader. Volume 3013 of LNCS. Springer
Heidelberg (2004) 165–178

17. Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.C., Rummler, A.,
Sousa, A.: A model-driven traceability framework for software product lines.
SoSyM 9 (2010) 427–451

18. Jirapanthong, W., Zisman, A.: Xtraque: traceability for product line systems.
Software and Systems Modeling 8 (2009) 117–144 10.1007/s10270-007-0066-8.

19. Lamb, L.C., Jirapanthong, W., Zisman, A.: Formalizing traceability relations for
product lines. In: TEFSE ’11 Proceedings, New York, NY, USA, ACM (2011)
42–45

20. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of
feature diagrams. Comput. Netw. 51(2) (2007) 456–479

