
HAL Id: hal-00914367
https://hal.science/hal-00914367

Submitted on 5 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Federation in toolchains
Joël Champeau, Vincent Leilde, Papa Issa Diallo

To cite this version:
Joël Champeau, Vincent Leilde, Papa Issa Diallo. Model Federation in toolchains. MODELS 2013,
Sep 2013, Miami, United States. �hal-00914367�

https://hal.science/hal-00914367
https://hal.archives-ouvertes.fr

1

Model Federation in toolchains
 Joël Champeau 1, Vincent Leildé 2, Papa Issa Diallo 1

1 ENSTA Bretagne STIC/IDM LabSTICC

2 Rue François Verny

Brest, FRANCE

joel.champeau@ensta-bretagne.fr , diallopa@ensta-bretagne.fr

2 OPEN Flexo

Brest, FRANCE

vincent.leilde@openflexo.org

Abstract

In this paper we introduce the toolchain topic as a
federation of models based on an abstraction of differents
tool definitions. We consider the toolchain in the context of
embedded systems, in particular the co-design which
implies a co-engineering approach with many tools. Our
main goal is to define a tool integration model to carry out
an abstraction of several data formats and for a domain
model as a reference vocabulary. This model gathers the
concepts for managing the development process artifacts
and the roles attributed to these artifacts over the process.
We have experimented this approach during the europeen
ARTEMIS iFEST project over the OSLC layer (Open
Services for Lifecycle Collaboration).

Keywords: tool integration, model federation, roles, OSLC.

1 Introduction and challenges of the integration of
tools

Embedded systems are becoming increasingly complex in the last recent years
and the higher level of expected requirements, both in terms of robustness, scalability
and design costs, also increases. This change requires designers to adapt their
practices to use specialized software tools for the different phases of the system
development cycle, from requirements elicitation to product deployment. These tools
are by nature independents and allow to develop different kinds of artifacts during the
system development, such as models in several formats, documentations and source

2

code in several languages. The main objective of this situation is the separation of
concerns and the use of dedicated tool for each concern. During the development
process, it is necessary to enable the collaboration and the exchange of process
artifacts. To do so tools supporting the process artifacts should be connected to each
other to constitute a toolchain. The embedded systems and specially the co-design
domain is highly representative of this situation due to an association of the software
and hardware design. In this context, the heterogeneity of languages and models is an
evidence and requires specific attention to build toolchains to cover the whole process
development.

Currently, the toolchains exist in two forms, the point-to-point chains, and
integration frameworks. The point-to-point one is an ad-hoc connection between two
tools, thereby efficient but these toolchains are not scalable if we want to integrate a
new tool interacting with the other tools. The second form of integration is more
durable, it integrates a set of tools based on common rules, such as a common format
and data type definitions. In this context the tools can be attached or detached more
easily on this toolchain. However defining such kind of framework remains complex
and mainly based on a trade off on the common definition. A generic definition
allows the integration of many tools, in contrario the specialization, maximizing
efficiency while reducing the number of connectable tools. In the modeling context,
the modelBus [30] is one of the most significant approaches based on transformations
and models to create a toolchain.

In the case of modeling approaches, the common definition can be achieved from
a common metamodel. Then models conform to this metamodel can be generated or
created from model transformations. The scope of this common meta-model is the
major issue with this kind of approaches. The challenge is to have a relevant common
definition that must be abstract enough to cover a large scope but also contain details
enough to take into account specialized concepts. Most of the time, this relevant
trade-off is difficult to achieve if we want to limit the size of the metamodel. Another
challenge is the management of the evolution of this common metamodel that
constrains to update the transformations and the resulting models over time.

So abstract the tool inputs/outputs by a model and implement the tool connections

by transformations, this is not sufficient to obtain a powerful toolchain framework.
Mainly this kind of approaches promotes solutions where each tool element is
created, or instantiated, for each model element and afterwards transformed, and so
recreated, for another model. Most often after applying a transformation, no
semantics link is maintained between the tool elements. In this case the semantics link
is the information that a specific transformation was performed on tool elements. So
this semantics information, that the new tool element was created from another tool
element, is lost. By extension, several transformations are applied during the process
development, the links between all the tool elements are lost and the evolution of the
primary tool element is disconnected from the other tool elements. At the opposite,
the last tool element is agnostic of its past history in the process development which
prevents any impact analysis, for example.

The current modeling approaches to abstract over the tool format are too fragile
and too close of the input/output format and don’t provide any support to manage the
semantics evolution of a tool element during all the process development.

To improve the tool integration, we promote a flexible approach, independent and
non intrusive of the tool format (or model or metamodel) as well as independent of
the tool integration platform. This approach ensures semantics consistency between

3

tool elements all along the process development. Also this kind of approach can
support semantics evolution of the tool element, impact analysis and support of
collaborative works. Our approach is similar to a virtualization of the tool integration
platform. We produce an abstraction based on the artifact concept, to represent the
tool elements, and semantic roles are associated to this artifact, to symbolize all the
types of the artifact evolution.

The article is organized as follows: the section 2 presents the state of the art of the

tool integration frameworks. Secondly the section 3 presents our approach and the
core concepts. The section 4 is related our experiments included in the iFEST project,
and based on OSLC, dedicated to a tool integration framework for the embedded
systems. Finally we conclude on our approach and experiments before some further
works.

2 Context and state of the art

Tool integration is an active research area since the begining of 90’s [27] and
several characterizations were attempted. In the paper [4], a clear separation is
achieved on 2 axes, one Conceptual which try to define the integration, itself, and the
other Mechanical which focuses on the technological space of the integration space.
For [26], the tool integration is based on five dimensions control, data, presentation,
process and platform. [5] characterizes the integration levels of interoperability
among the syntactic level which represents the degree of agreement between the tools
on a data structure, and semantics that addresses the meaning of the data exchanged.
Many frameworks have been established and have never converged, often a toolchain
is a coexistence of several frameworks and several individual tools.

As presented in the introduction two integration patterns exist, point to point,
which is an ad-hoc connection between two tools, and common frameworks can be
based on standardized architectures [9], formats [7], or infrastructure to facilitate the
inter-tools [14] collaborations. Some aspects are most important for us like the
communication layer between tools, the sharing of data on both levels syntactic and
semantic, but also the adaptation of the tool chain and its products to the context and
specially to the engineering domain targeted.

Through the years, communication between tools was established on several
technologies and more recently the service approach and specially web services are
applied with standardized communication protocols (WSOA), favoring a weak
coupling between the tools. More recently, an open initiative was launched and called
OSLC for Open Services for Lifecycle Collaboration. This community provides a
framework based on a REST architecture [6] and a common format. This emerging
standard has also been chosen by many research projects and including IFEST [13] in
where we were involved.

The tool integration is increasingly based on the models, taking advantage of a
meta level which provides the defintiion of the models. The models, conform to the
metamodel, become the data exchanged between tools[15]. There are different use of
these metamodels in the integration of tools, Fujaba [10] approach provided a generic
integration solution based on different patterns, VMTS [8] targets only design tools
based models, MOFLON [1] GeneralStore [22] and Semantic integration [16] is

4

based on a generic integration but do not take into account the context of integration.
Wotif [17] Jeti [19], and ModelBus [24], are also based on web services. Besides
using metamodels, some approaches manipulate ontologies as more favorable to the
reasoning. In this case, the ontology is considered as a domain model and defines the
model of this area. ModelCVS [18] uses ontologies to define the semantics of the data
and seeks to establish a link between the tool metamodels.

Such tools can be combined in different contexts, the semantics of the produced
data changes over the context of the tool usage and objectives of the toolchain. The
role concept provides a dynamic adaptation by allowing to objects to have different
needs depending on the roles that are attached [21] [3]. [25] provides an overview of
these different defintion and properties, while [23] provides an example of meta-
modeling approach based on roles for tool integration.

3 Semantics integration in toolchains

The context of our toolchain is applied on embedded system domain and
specially focused on the co-design. This domain involves a co-engineering
development process for the software and the hardware part. In this domain, the tools
are mainly specific to dedicated tasks like code parallelization, mapping on hardware,
dedicated modeling, etc. This heterogeneity is also valid for the input/output formats
with several programming and modeling languages. Regarding this situation, many
times one domain concept, such as Parallel Entity, is realized in different languages
and formats like a behavior function in Haskell, a C structure with a set of functions
or a UML class with a MARTE stereotype.

In this context to improve our toolchain, we focus our approach on defining
an engineering domain model, the co-design domain, to have a reference and a usage
context for the tools. But also mainly, we define a mechanism to manage at the same
level, the metatypes of the tool elements and our engineering domain types. Our goal
is to create a federated model for our toolchain, based on our tool integration model to
aggregate information at several level of abstraction.

First, we present our domain model in the goal to manage it in the tool
integration model, detailed in the second part of this section.

3.1 A domain model for the semantics integration
Most of the time, tool integration consists of exchanging not directly

interpretable data between tools, thus transformations are required. As such in order
to keep the semantics consistency in the process, the semantics of tools as well as the
mappings between the tools must be defined. We take as an example two tools used in
the context of design and implementation.

A UML modeler produces UML models representing various concerns of the
system under study. In our case study described latter, some of these models have to
be processed by the Bluebee compiler/mapper for heterogeneous hardware
architectures. This compiler requires two kinds of inputs either algorithmic or
architectural ones, in two different formats respectively C and XML. In the UML
model a StructuredComponent, a specialized metatype, can be interpreted as a
functional bloc as well as a hardware component, so transformation rules towards

5

Bluebee require specific information to generate either C or XML. And if we extend
the development process towards the verification and validation phases, the semantics
of the StructuredComponent would change again as a test case definition, for
example. So a context definition is required to ensure the semantics consistency in the
tool integration framework.

In this context, the most classical way is to base the tool integration on a
common metamodel which provides the shared semantics according to the addressed
domain. The tool models can be independent of the common metamodel but model
transformations are required to produce models to and from this metamodel.

In the one hand this common metamodel gathers all the concepts of each integrated
tool, but in this case the metamodel must evolve when new tools are integrated and
thus might be hard to manage. In the other hand if this metamodel is fixed to a set of
concepts, and thus properties can be lost if new tools with new concepts are inserted
into the toolchain.

To bring both flexibility and efficiency, another approach is necessary for not
defining a common metamodel from which models are conformed to. But rather an
independent domain model is created to qualify the tool models. This domain model
captures a semantics reference among all the domain tools and applies it on every
new inserted tool. In any case, this domain model is never instantiated since it is
strictly used as metadata to qualify the model elements exchanged between tools.

In conformity with ISO/CEI 15940 we define an engineering domain as a set
of tools and process activities. In the domain of embedded systems engineering, there
is unfortunately no consensus on a standard to represent the domain with the purpose
of tool integration. Therefore we propose a new model called D&I (Design and
Implementation) adapted to tool integration and aligned with current standards like
the MARTE UML profile. Our model consists of three viewpoints namely
application, architecture and mapping. Application viewpoint defines functional
aspects of the system under study, while the Architecture viewpoint describes the
topology of the physical platform in which the application will be allocated thanks to
the rules given by the Mapping viewpoint.

The main objective of this model is to define a contextual reference
regarding the tool usage in the engineering domain, design and implementation. The
content of this domain model can be improved certainly but our purpose is to explicit
the management of this model for an integration scenario between tools rather to
define yet another new domain model. The experiment performed in our integration
scenario shows that the mechanism used to manage the mapping between the tool
model and the engineering domain is not specialized to a domain and also
independent of the content of the engineering domain model.

3.2 A tool integration model to explicit semantics
consistency

In order to define a general mechanism to manage this domain model and the tool
models, we based our work on a modeling approach to create an abstraction to ensure
semantics consistency in the framework. The purpose of this model is to support a
general mechanism to manage the evolution of the tool elements through the

6

development process from a semantics point of view. Our artifact and role model is
the support of the semantics management.

3.2.1 Artifact and role model

Each tool manipulates models composed of elements conform to the tool
metamodel, for instance an UML tool manipulates UML classes. In this example the
metamodel is the tool metamodel. For a C compiler, we must create a dedicated
metamodel which is not necessarily the C language metamodel. This metamodel is
more an abstraction of the structure of a C program dedicated to hardware synthesis
or hardware mapping. Because, this kind of compiler takes into account C programs
with some coding restrictions and annotations.

Our main goal is to avoid point-to-point model transformations between
tools or between a tool and the engineering domain model. So we have created an
abstraction only dedicated to the integration framework to be independent of the tool
models and to provide a support for the semantics evolution in the tools integration
space. Our approach is similar to a virtualization of this tools integration space with
an abstraction based on an artifact concept. The artifact concept is an abstract
representation of tool models or tool modeling elements. This artifact owns only
semantic properties favoring the tool integration like tool intern properties or lifecycle
properties.

While the artifact is the representation of modeling elements inside the tool chain, we
associate the role concept to the artifact as a property of the artifact. The role concept
was used to modeling knowledge[28] and also to provide flexibility in object oriented
programming[25]. The role concept provides three kinds of properties to another
concept, or an object, that lacks semantic rigidity regarding its primary type, secondly
a role depends on relationships between objects and finally an object may play
different roles simultaneously. We reuse the role concept according to the properties,
extracted from the Steimann's paper[25]:

− Of course an artifact is created to represent a dedicated tool element but in
the tool integration space and during the process development, the semantics
of this artifact is evolving in flexible way to take into account several
transformations. The flexible way means that a role can be added or removed
dynamically during the process development.

− A role is modeling the relationships between an artifact and a tool element
without applying a particular transformation. The role models a tool specific
property for a given artifact.

− At a specific step in the process development, an artifact can play several
roles simultaneously according to several tools. Each role models the result
of applying a transformation on the original tool element. A role can be also
the support of the engineering domain type independently of any tools.

This modeling approach based on artifact and roles is orthogonal to the tool elements
and completely dedicated to the tool integration space.

Figure 1 illustrates concepts and relations of the integration model. As described
previously an artifact plays a set of roles, which are related to the engineering domain

(like D&I :Architecture
increase the decoupling between the tool integration space and the tool elements, a
artifact accesses to a modeling element through the roleproxy allowing different
representations of model

Figure 1: Entities and relations of the integration model

3.2.2 Artifact and

Adding roles to artifacts may be assimilated to annotation mechanisms or in the UML
context as stereotypes.
provide a generic mechanism to manage
space independently of the tool formats.
the dynamic adding and removing of the roles during the process development.
Indeed the roles being dynamic, an artifact fits always to the current tooling and all
along the process development.
dynamically in the tool integration space without any impact on the previous role
definitions and the previous life of the tool integration space.

Whether roles are linked to a

tool/language, they make explicit the semantic interpretation of tool elements, in the
context of the engineering domain. This might be useful to improve the semantics
relationships between several tool elemen
example, characterizing the model of computation combined with a UML component
helps to improve the underlying transformations to another tool. Once these roles are
shared between different tools, it becomes possible to c
between tool concepts. For example, a UML StructuredComponent can be referenced
by an artifact with the role ApplicationComponent of the D&I domain and so
interpreted as a set of functions by the Bluebee compiler, but also an
StructuredComponent can be referenced by an artifact with the role
ArchitectureComponent of the D&I domain and so interpreted as a computing
ressource (like a processor) in the scope of the Bluebee compiler.

7

:Architecture role) or relying to a tool (Rhapsody UML:Class
increase the decoupling between the tool integration space and the tool elements, a
artifact accesses to a modeling element through the roleproxy allowing different
representations of model elements in a same tool for the same artifact.

Entities and relations of the integration model

and role properties

Adding roles to artifacts may be assimilated to annotation mechanisms or in the UML
context as stereotypes. In contrast with stereotypes, the purpose of the roles
provide a generic mechanism to manage the types of the artifact in the tool integration
space independently of the tool formats. Also, this approach is more flexible due to
the dynamic adding and removing of the roles during the process development.
Indeed the roles being dynamic, an artifact fits always to the current tooling and all

the process development. New roles, related to new tooling, can be also added
dynamically in the tool integration space without any impact on the previous role
definitions and the previous life of the tool integration space.

Whether roles are linked to an engineering domain like D&I and related to a
tool/language, they make explicit the semantic interpretation of tool elements, in the
context of the engineering domain. This might be useful to improve the semantics
relationships between several tool elements and the engineering domain. For
example, characterizing the model of computation combined with a UML component
helps to improve the underlying transformations to another tool. Once these roles are
shared between different tools, it becomes possible to create execution semantic links
between tool concepts. For example, a UML StructuredComponent can be referenced
by an artifact with the role ApplicationComponent of the D&I domain and so
interpreted as a set of functions by the Bluebee compiler, but also an
StructuredComponent can be referenced by an artifact with the role
ArchitectureComponent of the D&I domain and so interpreted as a computing
ressource (like a processor) in the scope of the Bluebee compiler.

UML:Class role). To
increase the decoupling between the tool integration space and the tool elements, an
artifact accesses to a modeling element through the roleproxy allowing different

Adding roles to artifacts may be assimilated to annotation mechanisms or in the UML
of the roles is to

types of the artifact in the tool integration
lso, this approach is more flexible due to

the dynamic adding and removing of the roles during the process development.
Indeed the roles being dynamic, an artifact fits always to the current tooling and all

can be also added
dynamically in the tool integration space without any impact on the previous role

n engineering domain like D&I and related to a
tool/language, they make explicit the semantic interpretation of tool elements, in the
context of the engineering domain. This might be useful to improve the semantics

ts and the engineering domain. For
example, characterizing the model of computation combined with a UML component
helps to improve the underlying transformations to another tool. Once these roles are

semantic links
between tool concepts. For example, a UML StructuredComponent can be referenced
by an artifact with the role ApplicationComponent of the D&I domain and so
interpreted as a set of functions by the Bluebee compiler, but also another UML
StructuredComponent can be referenced by an artifact with the role
ArchitectureComponent of the D&I domain and so interpreted as a computing

8

4 Experiments

We study the feasability of our approach with a tool integration scenario made in the
context of the Europeen Artemis iFEST project which aims to define a tool
integration framework for embedded system tools. More precisely tools involved are
part of Design and Implementation process phase. In our scenario models
representing the system are defined using a UML modeler (Rhapsody) in the respect
of MoPCoM methodology. MoPCoM defines three levels of abstraction addressing
particular concerns, including the functional specification of the system, the
representation of the platform and the allocation of the functional elements onto the
platform are described. At one point of the process the UML/MoPCoM model
representing the system is transformed to Bluebee comprehensible code in order to
generate the system for the target architecture. Bluebee requires annotated C code as
input in order to describe the mapping onto hardware. An XML file describes features
of the target architecture. The transformations are done with MDWorkbench, a model
to model transformation tool[20].

This scenario is interesting because one must take care of exchanged model's
semantics to keep their consistency over transformations. Indeed MoPCoM allows to
describe functional as well as hardware elements thanks to a same UML element
(Structured Component), although Bluebee mades a distinction with hardware
elements which are required to be in XML code and functional's ones required to be
in C.

Besides iFEST extends OSLC, Open Services for Lifecycle Collaboration[29], with
specifications for embedded systems. OSLC is a community providing specifications
for tool integration based on REST web services and RDF data formalism. In addition
iFEST proposes a set of tool adapters facilitating tool integration by making the
bridge between tools and OSLC. An adapter is a client/server providing services to
OSLC connected tools. It exposes OSLC ressources wrapping or referencing real
model/tool elements. In our approach with artifact and roles, each tool(MoPCoM,
Bluebee, MDWorkbench...) is linked to OSLC via an adapter. The adapter maps
artifacts(in a form of OSLC ressource) to a tool model element(for instance a UML
class). Artifacts and Roles are OSLC ressources managed by the Model Federation
Adapter(MFA), adapter for the Model Federation Tool. The MFA provides basic
services to other OSLC adapter in order to manage Artifacts and Roles(CRUD,
mappings) as well as more higher level services such as finding artifacts playing a set
of roles.

The various services are sequenced by the orchestrator tool. In the whole tool chain
given by the figure 2, Bluebee tool is connected to OSLC via the Automation Adapter
Server providing a set of common services to automation tools(this same automation
adapter server is used for Forsyde tool as well as DiVine tool).

Figure 2: The experimental toolchain

The lifecycle of the artifact is the following
1. When a model element is produced by a tool, an artifact is also created in the

model federation tool, and plays a rôle associated to the tool. Besides the adapter of
the tool handle a rôle proxy which make a bridge between artifact and model element.

2. If there is a mapping defined between the tool rôle and an engineering
domain rôle, then engi
Thus the artifact plays two roles, one relative to the tool and one relative to the
engineering domain.

3. The artifact is used by an another tool(a transformation tool for instance), to
produce a new model. In this case two scenarios are possible, either no artifacts are
produced for this new model, and thus this artifact just plays a new rôle, or an artifact
is produced and so it might plays two roles, one from the tool and one from the
engineergin domain. This scenario can be extended to several engineering domains,
in this case artifact plays roles from different engineering domains.

The sequence diagram illustrates how integration occurs in our scenario

• Step 1: Tools declare their mappings
of roles, and their semantics(
domain (RTES, short for Real Time Embedded Systems)
MoPCoM concept of FunctionalBehavior and Bluebee concept of CFunction,
are both likened to an RTES concept of StructuredComponent in the RTES
domain model

• Step 2: Orchestrator gets a FunctionalBehavior model from MoPCoM
Adaptor (funcBehavior(updateTargets)). Consequently an Artifact is created
(MopcomFuncBehavior) for this
given by Semantics Roles dynamically attached to the artifact according to the
predefined mapping

• Step 3: A transformation service is called through a MDWorkbench service
(transfo(mopcomMM, bluebeeMM, MopcomFun
service requires three parameters: the source metamodel (mopcomMM), the

9

The experimental toolchain

The lifecycle of the artifact is the following :
When a model element is produced by a tool, an artifact is also created in the

ation tool, and plays a rôle associated to the tool. Besides the adapter of
the tool handle a rôle proxy which make a bridge between artifact and model element.

If there is a mapping defined between the tool rôle and an engineering
domain rôle, then engineering domain rôle is attached dynamically to the artifact.
Thus the artifact plays two roles, one relative to the tool and one relative to the
engineering domain.

The artifact is used by an another tool(a transformation tool for instance), to
new model. In this case two scenarios are possible, either no artifacts are

produced for this new model, and thus this artifact just plays a new rôle, or an artifact
is produced and so it might plays two roles, one from the tool and one from the

n domain. This scenario can be extended to several engineering domains,
in this case artifact plays roles from different engineering domains.

The sequence diagram illustrates how integration occurs in our scenario :

Step 1: Tools declare their mappings to the MFA by referencing their own set
of roles, and their semantics(mapping(RoleX, RoleY) regarding an engineering

(RTES, short for Real Time Embedded Systems)). For instance
MoPCoM concept of FunctionalBehavior and Bluebee concept of CFunction,
re both likened to an RTES concept of StructuredComponent in the RTES

domain model

Step 2: Orchestrator gets a FunctionalBehavior model from MoPCoM
Adaptor (funcBehavior(updateTargets)). Consequently an Artifact is created
(MopcomFuncBehavior) for this model (createArtifact()). Its semantics is
given by Semantics Roles dynamically attached to the artifact according to the
predefined mapping

Step 3: A transformation service is called through a MDWorkbench service
(transfo(mopcomMM, bluebeeMM, MopcomFuncBehavior Artifact)). This
service requires three parameters: the source metamodel (mopcomMM), the

When a model element is produced by a tool, an artifact is also created in the
ation tool, and plays a rôle associated to the tool. Besides the adapter of

the tool handle a rôle proxy which make a bridge between artifact and model element.
If there is a mapping defined between the tool rôle and an engineering

neering domain rôle is attached dynamically to the artifact.
Thus the artifact plays two roles, one relative to the tool and one relative to the

The artifact is used by an another tool(a transformation tool for instance), to
new model. In this case two scenarios are possible, either no artifacts are

produced for this new model, and thus this artifact just plays a new rôle, or an artifact
is produced and so it might plays two roles, one from the tool and one from the

n domain. This scenario can be extended to several engineering domains,

to the MFA by referencing their own set
regarding an engineering

). For instance
MoPCoM concept of FunctionalBehavior and Bluebee concept of CFunction,
re both likened to an RTES concept of StructuredComponent in the RTES

Step 2: Orchestrator gets a FunctionalBehavior model from MoPCoM
Adaptor (funcBehavior(updateTargets)). Consequently an Artifact is created

model (createArtifact()). Its semantics is
given by Semantics Roles dynamically attached to the artifact according to the

Step 3: A transformation service is called through a MDWorkbench service
cBehavior Artifact)). This

service requires three parameters: the source metamodel (mopcomMM), the

10

target metamodel (bluebeeMM) as well as the Artifact representing the source
model. Bluebee C code is generated (transformMopcom2bb()) and
represented by a new Artifact (bluebeeCFunction Artifact). Roles (Bluebee
CFunction and RTES StrucComponent) are dynamically attached to this
Artifact.

• Step 4: Bluebee tool generates the system with a predefined target architecture
and this Artifact (executeBluebee(bluebeeCFunction Artifact)).

Figure 3: sequence diagram of the experiment

5 Conclusion

In the field of embedded systems there is still no satisfactory solutions for tools
integration. To facilitate this integration, the IFEST project proposed an innovative
framework based in particular on OSLC. Mainly oriented lifecycle, OSLC is not
dedicated to the concepts of embedded systems. Our approach provides primarily a
conceptual model independent of technologies/standards. This model provides the
capacity to build high level services on top on all the federated models like impact
analysis or semantic consistency checkings.

11

Our model allows both to represent the elements of the tools in the tool integration
space (artifact) and associates their semantics via the roles. A tool chain is prototyped
and semantics of handled data depends on the co-design engineering domain. This
model can be extended to any engineering domain for defining and managing the
context of the use of the toolchain.

6 Acknowledgments
The authors would like to thanks the support of the european ARTEMIS iFEST
project and all the partners that were contributed to this work directly and indirectly.

7 References
[1] C. Amelunxen, F. Klar, A. Königs, T. Rötschke, and A. Schürr. Metamodel-based
tool integration with moflon. In Proceedings of the 30th international conference on
Software engineering, ICSE '08, pages 807-810, New York, NY, USA, 2008. ACM.
[2] D. Aulagnier, A. Koudri, S. Lecomte, P. Soulard, J. Champeau, J. Vidal, G.
Perrouin, and P. Leray. SoC/SoPC development using MDD and MARTE profile. In
Model Driven Engineering for Distributed Real-time Embedded Systems. ISTE,
2009.
[3] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf. Role Object, pages 15-32.
Addison-Wesley, Massachusetts, 2000.
[4] A. W. Brown, P. H. Feiler, and K. C. Wallnau. Past and future models of CASE
integration. In [1992] Proceedings of the Fifth International Workshop on Computer-
Aided Software Engineering, pages 36-45. IEEE Comput. Soc. Press, 1992.
[5] A. W. Brown and J. A. McDermid. Learning from ipse's mistakes. IEEE Softw.,
9:23-28, March 1992
[6] R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. Phd thesis, University of California, 2000.
[7] R. G. Flatscher. Metamodeling in eia/cdif|meta-metamodel and metamodels.
ACM Trans. Model. Comput. Simul., 12:322-342, October 2002.
[8] T. L. Gergely Mezei, Sandor Juhasz. Integrating model transformation systems
and asynchronous cluster tools. In 7th International Symposium of Hungarian
Researchers on Computational Intelligence, 2006.
[9] O. M. Group. The common object request broker:
Architecture and specifcation. Technical report, Object Management Group, Oct.
1999.
[10] S. Henkler, J. Meyer, W. Schäfer, M. von Detten, and U. Nickel. Legacy
component integration by the fujaba real-time tool suite. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 2, ICSE '10,
pages 267-270, New York, NY, USA, 2010. ACM
[11] Iso/iec 15940:2006 software engineering environment services. Technical report,
International Organization for Standardization. Information technology, 2006.

12

[12] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli, Component-based
design for the future DATE 2011

[13] iFEST Project. iFEST - industrial Framework for Embedded Systems Tools.
ARTEMIS-2009-1-100203, 2010.
[14] Jazz. http://jazz.net/.
[15] E. Kapsammer and T. Reiter. Model-based tool integration- state of the art and
future perspectives 1.
[16] G. Karsai and J. Gray. Component generation technology for semantic tool
integration. 2000 IEEE Aerospace Conference Proceedings Cat No00TH8484, pages
491-499, 2000.
[17] G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits. The model-integrated
computing toolsuite: Metaprogrammable tools for embedded control system design.
In Computer Aided Control System Design, 2006 IEEE International Conference on
Control Applications, 2006 IEEE International Symposium on Intelligent Control,
2006 IEEE, pages 50 -55, oct. 2006.
[18] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and W.
Schwinger. Towards a semantic infrastructure supporting model-based tool
integration. In Proceedings of the 2006 international workshop on Global integrated
model management, GaMMa '06, pages 43-46, New York, NY, USA, 2006. ACM.
[19] T. Margaria, R. Nagel, and B. Ste en. jETI: A Tool for Remote Tool Integration
Tools and Algorithms for the Construction and Analysis of Systems. Volume 3440 of
Lecture Notes in Computer Science, chapter 38, pages 557-562. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2005.
[20] MDWorkbench. MDWorkbench. http://www.mdworkbench.com, 2012
[21] T. Reenskaug, P. Wold, and O. A. Lehne. Working with objects: the Ooram
software engineering method. Manning Publications, Greenwich, CT, 1996.
[22] C. Reichmann, M. Kiihl, P. Graf, and K. Muller-Glaser. Generalstore - a case-
tool integration platform enabling model level coupling of heterogeneous designs for
embedded electronic systems. In Engineering of Computer-Based Systems, 2004.
Proceedings. 11th IEEE International Conference and Workshop on the, pages 225 -
232, may 2004.
[23] M. Seifert, C. Wende, and U. Amann. Anticipating Unanticipated Tool
Interoperability using Role Models. pages 52-60, 2010.
[24] P. Sriplakich, X. Blanc, and M.-P. Gervais. Collaborative software engineering
on large-scale models: requirements and experience in modelbus. In R. L.
Wainwright and H. Haddad, editors, SAC, pages 674-681. ACM, 2008.
[25] F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data Knowledge Engineering, 35(1):83-106, 2000.
[26] A. I. Wasserman. Tool integration in software engineering environments. In
SEE, pages 137-149, 1989.
[27] M. N. Wicks and R. G. Dewar. A new research agenda for tool integration.
Journal of Systems and Software, 80(9):1569-1585, 2007.
[28] N. Guarino. Concepts, attributes and arbitrary relations. Data and Knowledge
Engineering 8, 1992, 249-261.
[29] OSLC, Open Services for Lifecycle Collaboration http://open-services.net/
[30] Hein, C., Ritter, T., Wagner, M.: Model-Driven tool integration with ModelBus.
Workshop Future Trends of Model-Driven Development. (2009)

