N

N

Model Federation in toolchains
Joél Champeau, Vincent Leilde, Papa Issa Diallo

» To cite this version:

Joél Champeau, Vincent Leilde, Papa Issa Diallo. Model Federation in toolchains. MODELS 2013,
Sep 2013, Miami, United States. hal-00914367

HAL Id: hal-00914367
https://hal.science/hal-00914367
Submitted on 5 Dec 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00914367
https://hal.archives-ouvertes.fr

M odd Federation in toolchains

Joél Champealy Vincent Leildé’, Papa Issa Dialld
'ENSTA Bretagne STIC/IDM LabSTICC
2 Rue Francois Verny
Brest, FRANCE
joel.champeau@ensta-bretagne.fr , diallopa@enstadme.fr

20PEN Flexo
Brest, FRANCE

vincent.leilde@openflexo.org

Abstract

In this paper we introduce the toolchain topic as a
federation of models based on an abstraction déreifits
tool definitions. We consider the toolchain in twntext of
embedded systems, in particular the co-design which
implies a co-engineering approach with many to@sr
main goal is to define a tool integration modektory out
an abstraction of several data formats and for mailo
model as a reference vocabulary. This model gatties
concepts for managing the development processaetdif
and the roles attributed to these artifacts overptocess.
We have experimented this approach during the eermp
ARTEMIS iFEST project over the OSLC layer (Open
Services for Lifecycle Collaboration).

Keywor ds: tool integration, model federation, roles, OSLC.

1 Introduction and challenges of the integration of
tools

Embedded systems are becoming increasingly comipleke last recent years
and the higher level of expected requirements, boterms of robustness, scalability
and design costs, also increases. This changeresqdesigners to adapt their
practices to use specialized software tools for dhferent phases of the system
development cycle, from requirements elicitatiorptoduct deployment. These tools
are by nature independents and allow to develdprdifit kinds of artifacts during the
system development, such as models in several fsyrdacumentations and source

code in several languages. The main objective igf shuation is the separation of

concerns and the use of dedicated tool for eaclteran During the development

process, it is necessary to enable the collaboratiod the exchange of process
artifacts. To do so tools supporting the procetifaats should be connected to each
other to constitute a toolchain. The embedded systand specially the co-design
domain is highly representative of this situatiaredo an association of the software
and hardware design. In this context, the hetersigenf languages and models is an
evidence and requires specific attention to buitdahains to cover the whole process
development.

Currently, the toolchains exist in two forms, theim-to-point chains, and
integration frameworks. The point-to-point one iisaa-hoc connection between two
tools, thereby efficient but these toolchains avestalable if we want to integrate a
new tool interacting with the other tools. The s@tdorm of integration is more
durable, it integrates a set of tools based on comiales, such as a common format
and data type definitions. In this context the sochn be attached or detached more
easily on this toolchain. However defining suchdkof framework remains complex
and mainly based on a trade off on the common idefin A generic definition
allows the integration of many tools, in contratlee specialization, maximizing
efficiency while reducing the number of connectaiolels. In the modeling context,
the modelBus [30] is one of the most significanpraaches based on transformations
and models to create a toolchain.

In the case of modeling approaches, the commomitlefi can be achieved from
a common metamodel. Then models conform to thismetlel can be generated or
created from model transformations. The scope isf tbmmon meta-model is the
major issue with this kind of approaches. The e@mage is to have a relevant common
definition that must be abstract enough to coviarge scope but also contain details
enough to take into account specialized conceptsstMf the time, this relevant
trade-off is difficult to achieve if we want to linthe size of the metamodel. Another
challenge is the management of the evolution of twmmon metamodel that
constrains to update the transformations and thdtneg models over time.

So abstract the tool inputs/outputs by a modeliampdement the tool connections
by transformations, this is not sufficient to ohta powerful toolchain framework.
Mainly this kind of approaches promotes solutionsere each tool element is
created, or instantiated, for each model elemedtadterwards transformed, and so
recreated, for another model. Most often after yppl a transformation, no
semantics link is maintained between the tool elgmen this case the semantics link
is the information that a specific transformatioasaperformed on tool elements. So
this semantics information, that the new tool eleimegas created from another tool
element, is lost. By extension, several transfoionatare applied during the process
development, the links between all the tool elemané lost and the evolution of the
primary tool element is disconnected from the otioet elements. At the opposite,
the last tool element is agnostic of its past Injsto the process development which
prevents any impact analysis, for example.

The current modeling approaches to abstract owvetdbl format are too fragile
and too close of the input/output format and dpndvide any support to manage the
semantics evolution of a tool element during all inocess development.

To improve the tool integration, we promote a fldgiapproach, independent and
non intrusive of the tool format (or model or metatal) as well as independent of
the tool integration platform. This approach enswsemantics consistency between

tool elements all along the process developmerdo Ahis kind of approach can
support semantics evolution of the tool elementpaot analysis and support of
collaborative works. Our approach is similar toiualization of the tool integration
platform. We produce an abstraction based on ttifactrconcept, to represent the
tool elements, and semantic roles are associatdusartifact, to symbolize all the
types of the artifact evolution.

The article is organized as follows: the sectiqgmweésents the state of the art of the
tool integration frameworks. Secondly the sectiopr8sents our approach and the
core concepts. The section 4 is related our exgarisnincluded in the IFEST project,
and based on OSLC, dedicated to a tool integrdtamework for the embedded
systems. Finally we conclude on our approach ameréxents before some further
works.

2 Context and state of the art

Tool integration is an active research area siheebtegining of 90’s [27] and
several characterizations were attempted. In theemp@d], a clear separation is
achieved on 2 axes, o@@nceptual which try to define the integration, itself, arebt
otherMechanical which focuses on the technological space of thegiation space.
For [26], the tool integration is based on five dimsions control, data, presentation,
process and platform. [5] characterizes the integralevels of interoperability
among the syntactic level which represents theeegf agreement between the tools
on a data structure, and semantics that addressendaning of the data exchanged.
Many frameworks have been established and have seneerged, often a toolchain
is a coexistence of several frameworks and seiratalidual tools.

As presented in the introduction two integratioritgras exist, point to point,
which is an ad-hoc connection between two toolsl, @mmon frameworks can be
based on standardized architectures [9], formdtsof7infrastructure to facilitate the
inter-tools [14] collaborations. Some aspects astmimportant for us like the
communication layer between tools, the sharingatédn both levels syntactic and
semantic, but also the adaptation of the tool chaith its products to the context and
specially to the engineering domain targeted.

Through the years, communication between tools established on several
technologies and more recently the service appraachspecially web services are
applied with standardized communication protocdl8SQA), favoring a weak
coupling between the tools. More recently, an dpérative was launched and called
OSLC for Open Services for Lifecycle Collaboratiorhis community provides a
framework based on a REST architecture [6] andranoon format. This emerging
standard has also been chosen by many researdttgrajnd including IFEST [13] in
where we were involved.

The tool integration is increasingly based on thedefs, taking advantage of a
meta level which provides the defintiion of the retsd The models, conform to the
metamodel, become the data exchanged betweenlBpl$here are different use of
these metamodels in the integration of tools, Faujdl®] approach provided a generic
integration solution based on different patternsT\ [8] targets only design tools
based models, MOFLON [1] GeneralStore [22] and Seimantegration [16] is

based on a generic integration but do not takeaotmunt the context of integration.

Wotif [17] Jeti [19], and ModelBus [24], are alsaded on web services. Besides
using metamodels, some approaches manipulate gigslas more favorable to the

reasoning. In this case, the ontology is considased domain model and defines the
model of this area. ModelCVS [18] uses ontolog@dédfine the semantics of the data
and seeks to establish a link between the tool mzdals.

Such tools can be combined in different contexts,demantics of the produced
data changes over the context of the tool usageohjattives of the toolchain. The
role concept provides a dynamic adaptation by afigwo objects to have different
needs depending on the roles that are attached3RIR5] provides an overview of
these different defintion and properties, while J[#8ovides an example of meta-
modeling approach based on roles for tool integnati

3 Semanticsintegration in toolchains

The context of our toolchain is applied on embeddgstem domain and
specially focused on the co-design. This domainolwves a co-engineering
development process for the software and the hasdpat. In this domain, the tools
are mainly specific to dedicated tasks like codelpelization, mapping on hardware,
dedicated modeling, etc. This heterogeneity is afdm for the input/output formats
with several programming and modeling languagegaRing this situation, many
times one domain concept, such as Parallel Eigitsealized in different languages
and formats like a behavior function in HaskellC atructure with a set of functions
or a UML class with a MARTE stereotype.

In this context to improve our toolchain, we foaus approach on defining
an engineering domain model, the co-design dontaihave a reference and a usage
context for the tools. But also mainly, we definmachanism to manage at the same
level, the metatypes of the tool elements and agmeering domain types. Our goal
is to create a federated model for our toolcha@segll on our tool integration model to
aggregate information at several level of abstoacti

First, we present our domain model in the goal &mage it in the tool
integration model, detailed in the second parh&f $ection.

3.1 A domain model for the semanticsintegration

Most of the time, tool integration consists of eanfing not directly
interpretable data between tools, thus transfoomatare required. As such in order
to keep the semantics consistency in the procdessdmantics of tools as well as the
mappings between the tools must be defined. Wedalen example two tools used in
the context of design and implementation.

A UML modeler produces UML models representing @asi concerns of the
system under study. In our case study describéet,|laome of these models have to
be processed by the Bluebee compiler/mapper forerbgeneous hardware
architectures. This compiler requires two kinds imputs either algorithmic or
architectural ones, in two different formats respety C and XML. In the UML
model a StructuredComponent, a specialized metatgpa be interpreted as a
functional bloc as well as a hardware componenttransformation rules towards

Bluebee require specific information to generatheziC or XML. And if we extend
the development process towards the verificatiahwatidation phases, the semantics
of the StructuredComponent would change again desh case definition, for
example. So a context definition is required toueathe semantics consistency in the
tool integration framework.

In this context, the most classical way is to bteetool integration on a
common metamodel which provides the shared sensaaticording to the addressed
domain. The tool models can be independent ottimemon metamodel but model
transformations are required to produce modelstbfeom this metamodel.

In the one hand this common metamodel gatherdialconcepts of each integrated
tool, but in this case the metamodel must evolverwhew tools are integrated and
thus might be hard to manage. In the other hatlidsfmetamodel is fixed to a set of
concepts, and thus properties can be lost if n®s teith new concepts are inserted
into the toolchain.

To bring both flexibility and efficiency, anothepgroach is necessary for not
defining a common metamodel from which models amef@med to. But rather an
independent domain model is created to qualifyttied models. This domain model
captures a semantics reference among all the dotoals and applies it on every
new inserted tool. In any case, this domain modehéver instantiated since it is
strictly used as metadata to qualify the model elimexchanged between tools.

In conformity with ISO/CEI 15940 we define an erggning domain as a set
of tools and process activities. In the domainrabedded systems engineering, there
is unfortunately no consensus on a standard t@sept the domain with the purpose
of tool integration. Therefore we propose a newdebccalled D&l (Design and
Implementation) adapted to tool integration andradd with current standards like
the MARTE UML profile. Our model consists of thredewpoints namely
application, architecture and mapping. Applicatisiewpoint defines functional
aspects of the system under study, while the Agchire viewpoint describes the
topology of the physical platform in which the apption will be allocated thanks to
the rules given by the Mapping viewpoint.

The main objective of this model is to define a teatual reference
regarding the tool usage in the engineering dondgsign and implementation. The
content of this domain model can be improved celgdiut our purpose is to explicit
the management of this model for an integratiomaiie between tools rather to
define yet another new domain model. The experirpenformed in our integration
scenario shows that the mechanism used to managmapping between the tool
model and the engineering domain is not specialimeda domain and also
independent of the content of the engineering donmaidel.

3.2 A tool integration model to explicit semantics
consistency

In order to define a general mechanism to manaigeditmain model and the tool
models, we based our work on a modeling approachet@te an abstraction to ensure
semantics consistency in the framework. The purpdsthis model is to support a
general mechanism to manage the evolution of tlwd &ements through the

development process from a semantics point of viewr. artifact and role model is
the support of the semantics management.

3.2.1 Artifact and role mode

Each tool manipulates models composed of elemeamfoen to the tool
metamodel, for instance an UML tool manipulates Ublksses. In this example the
metamodel is the tool metamodel. For a C compiler, must create a dedicated
metamodel which is not necessarily the C languageamodel. This metamodel is
more an abstraction of the structure of a C progdedticated to hardware synthesis
or hardware mapping. Because, this kind of compéd&es into account C programs
with some coding restrictions and annotations.

Our main goal is to avoid point-to-point model frmations between
tools or between a tool and the engineering domaidel. So we have created an
abstraction only dedicated to the integration framr to be independent of the tool
models and to provide a support for the semantrcugon in the tools integration
space. Our approach is similar to a virtualizatidrihis tools integration space with
an abstraction based on an artifact concept. Tkiaar concept is an abstract
representation of tool models or tool modeling edata. This artifact owns only
semantic properties favoring the tool integratiiée kool intern properties or lifecycle
properties.

While the artifact is the representation of modgktements inside the tool chain, we
associate the role concept to the artifact as pguty of the artifact. The role concept
was used to modeling knowledge[28] and also toideoflexibility in object oriented
programming[25]. The role concept provides threedgi of properties to another
concept, or an object, that lacks semantic rigichtyarding its primary type, secondly
a role depends on relationships between objectsfiaatly an object may play
different roles simultaneously. We reuse the raecept according to the properties,
extracted from the Steimann's paper[25]:

— Of course an artifact is created to represent acdtmtl tool element but in
the tool integration space and during the procesgldpment, the semantics
of this artifact is evolving in flexible way to tekinto account several
transformations. The flexible way means that a cale be added or removed
dynamically during the process development.

— Avrole is modeling the relationships between aifeatt and a tool element
without applying a particular transformation. Tlodéermodels a tool specific
property for a given artifact.

- At a specific step in the process development, riifaet can play several
roles simultaneously according to several toolehEale models the result
of applying a transformation on the original totdreent. A role can be also
the support of the engineering domain type indepetiyg of any tools.

This modeling approach based on artifact and tislesthogonal to the tool elements
and completely dedicated to the tool integraticsicsp

Figure 1 illustrates concepts and relations ofititegration model. As described
previously an artifact plays a set of roles, which related to the engineering domain

(like D&l :Architecturerole) or relying to a tool (RhapsodyML:Class role). To
increase the decoupling between the tool integragfwace and the tool elementn
artifact accesses to a modeling element throughroteproxy allowing differen
representations of moc elements in a same tool for the same artifact.

H Resourcelement

= URL: EString
= uid ; Elnt

: E Mapping |
oupce L
e T § target
_ H RoleProxy 7 i
B Artifact H ArtefactRole type [B Type
0.* roleProxigs o T isNative ; EBoolean — odl -
Artefacts 0. i
rpleProxy
model [H Model
artefactRoles 1’! I
0~

b [s o)
assodation | confainedartifacts l 5| DG“W“ROlEI IE TOO‘T"FEMlEi

Figure 1:Entities and relations of the integration mo

3.2.2 Artifact and role properties

Adding roles to artifacts may be assimilated tocation mechanisms or in the UN
context as stereotypeln contrast with stereotypes, the purpasdethe rolesis to
provide a generic mechanism to manthetypes of the artifact in the tool integrat
space independently of the tool forméAlso, this approach is more flexible due
the dynamic adding and removing of the roles duithg process developme
Indeed the roles being dynamic, an artifact fitgagls to the current tooling and
alongthe process developmeNew roles, related to new toolingan be also adde
dynamically in the tool integration space withomyampact on the previous rc
definitions and the previous life of the tool intatjon spact

Whether roles are linked tcn engineering domain like D&l and related t
tool/language, they make explicit the semanticrprigtation of tool elements, in tl
context of the engineering domain. This might befuisto improve the semanti
relationships between several tool elets and the engineering domain. |
example, characterizing the model of computatiomlmioed with a UML componel
helps to improve the underlying transformationanother tool. Once these roles
shared between different tools, it becomes possibtreate executiosemantic links
between tool concepts. For example, a UML Struct@mmponent can be referenc
by an artifact with the role ApplicationComponert the D&l domain and s
interpreted as a set of functions by the Bluebempiler, but also eother UML
StructuredComponent can be referenced by an artifaith the role
ArchitectureComponent of the D&l domain and so ripteted as a computir
ressource (like a processor) in the scope of thelisde compile

4 Experiments

We study the feasability of our approach with d fotegration scenario made in the
context of the Europeen Artemis iFEST project whiaims to define a tool
integration framework for embedded system toolsréviarecisely tools involved are
part of Design and Implementation process phase.olin scenario models
representing the system are defined using a UMHetes (Rhapsody) in the respect
of MoPCoM methodology. MoPCoM defines three levelsabstraction addressing
particular concerns, including the functional sfieation of the system, the
representation of the platform and the allocatibthe functional elements onto the
platform are described. At one point of the proct#ss UML/MoPCoM model
representing the system is transformed to Blueeeprehensible code in order to
generate the system for the target architectungeli#le requires annotated C code as
input in order to describe the mapping onto hargwAn XML file describes features
of the target architecture. The transformationsdamee with MDWorkbench, a model
to model transformation tool[20].

This scenario is interesting because one must tzite of exchanged model's
semantics to keep their consistency over transfiooms Indeed MoPCoM allows to
describe functional as well as hardware elemerdskif to a same UML element
(Structured Component), although Bluebee mades stincion with hardware
elements which are required to be in XML code amttfional's ones required to be
in C.

Besides IFEST extends OSLC, Open Services for YifecCollaboration[29], with
specifications for embedded systems. OSLC is a asmitynproviding specifications
for tool integration based on REST web servicesRD#& data formalism. In addition
IFEST proposes a set of tool adapters facilitatiogl integration by making the
bridge between tools and OSLC. An adapter is anttierver providing services to
OSLC connected tools. It exposes OSLC ressourceppintg or referencing real
model/tool elements. In our approach with artifaod roles, each tool(MoPCoM,
Bluebee, MDWorkbench...) is linked to OSLC via asapter. The adapter maps
artifacts(in a form of OSLC ressource) to a tooldeloelement(for instance a UML
class). Artifacts and Roles are OSLC ressourcesagehby the Model Federation
Adapter(MFA), adapter for the Model Federation Tobhe MFA provides basic
services to other OSLC adapter in order to managédaéts and Roles(CRUD,
mappings) as well as more higher level servicel agdinding artifacts playing a set
of roles.

The various services are sequenced by the orctastoml. In the whole tool chain
given by the figure 2, Bluebee tool is connecte@ &1 C via the Automation Adapter
Server providing a set of common services to autmmaools(this same automation
adapter server is used for Forsyde tool as wdlligge tool).

Process Tool
Adaptor Server

Rhapsody MoPCoM)
Adaptor Server
|]

Automation YIS
Adaptor Server ‘ Forsyde

L |
MDW MDWorkbench Bluebee

Sodius Adaptor Server

-
MFA Server

Model Federation

Figure 2:The experimental toolche

The lifecycle of the artifact is the followi: :

1. When a model element is produced by a tool, afaattis also created in tt
model fedeation tool, and plays a role associated to the tBetides the adapter
the tool handle a r6le proxy which make a bridgevkeen artifact and model elemer

2. If there is a mapping defined between the tool @&l an engineerir
domain role, then enneering domain réle is attached dynamically to dhnfact.
Thus the artifact plays two roles, one relativethie tool and one relative to t
engineering domai

3. The artifact is used by an another tool(a transétion tool for instance), t
produce anew model. In this case two scenarios are possditteer no artifacts a
produced for this new model, and thus this artifast plays a new rdle, or an artif:
is produced and so it might plays two roles, ormmfrthe tool and one from tl
engineergi domain. This scenario can be extended to seeagiheering domain
in this case artifact plays roles from differengiereering domain

The sequence diagram illustrates how integratia@uiecin our scenar :

« Step 1: Tools declare their mappirto the MFA by referencing their own ¢
of roles, and their semantimapping(RoleX, RoleY) regarding an engineerir
domain(RTES, short for Real Time Embedded Systems)). For instanct
MoPCoM concept of FunctionalBehavior and Bluebescept of CFunctior
are both likened to an RTES concept of Structured@mmant in the RTE:
domain mode

» Step 2: Orchestrator gets a FunctionalBehavior tinfoden MoP CoM
Adaptor (funcBehavior(updateTargets)). ConsequeanrthArtifact is create
(MopcomFuncBehavior) for thimodel (createArtifact()). Its semantics
given by Semantics Roles dynamically attached écattifact according to tr
predefined mappin

» Step 3: A transformation service is called throagiiDWorkbench servic
(transfo(mopcomMM, bluebeeMM, MopcomFcBehavior Artifact)). This
service requires three parameters: the source rodilrimopcomMM), th

target metamodel (bluebeeMM) as well as the Artifapresenting the source
model. Bluebee C code is generated (transformMogbd)) and
represented by a new Artifact (bluebeeCFunctioifaat). Roles (Bluebee
CFunction and RTES StrucComponent) are dynamiedifched to this
Artifact.

Step 4: Bluebee tool generates the system witledefined target architecture
and this Artifact (executeBluebee(bluebeeCFunchidifact)).

Orchestrator MoPCoM Bluebee MDWorkbench MEA
Adaptor Adaptor Adaptor

POST_mhpping() \ | |
POST appmg MopconLFuncBehawor SemRole RTESStruc’[ComporLem SemRale) ﬁ

POST_mhpping()

! JPOST_mappmng! uebeeCFunction_SemRole, RTESStructCanponent_SemRole)
__ [

GET_funtBehavior(updateTaigets) |
_

|
| MopcomFuncBehavior Aftifact=POST _artifact() | %
| | |
| PUT_ral ‘s(MopcomFuncéehawor_}\rnfact‘ mappingDefinition) _!
| I ["|bindsSemanticsRoles()
| \ |

CFuncﬂon-transformMo};com%b()

| \ |]
| bluebéeCFuriction Amfact:POST _artifact() |

|
| ‘ PUT. role§ (bluebeeC Function Arm’act ,mappingDefinitiol ﬂl)

@

bindsSemanticsRoles()

BluebeeCIFunction_ArtifactzGl%T_transfoArtefa&t(} :
l

t 1
POSTﬁeP«acuteBIuebee(blueqeeCFuncnoanj\fact] |

executeBluebee())
| | . | W

Figure 3: sequence diagram of the experiment

5 Conclusion

In the field of embedded systems there is stillsatisfactory solutions for tools
integration. To facilitate this integration, theBIET project proposed an innovative
framework based in particular on OSLC. Mainly otezh lifecycle, OSLC is not

dedicated to the concepts of embedded systemsafnroach provides primarily a
conceptual model independent of technologies/stasda his model provides the
capacity to build high level services on top onth# federated models like impact
analysis or semantic consistency checkings.

10

Our model allows both to represent the elementheftools in the tool integration
space (artifact) and associates their semanticthgiaoles. A tool chain is prototyped
and semantics of handled data depends on the dgndesgineering domain. This
model can be extended to any engineering domairdéfining and managing the
context of the use of the toolchain.

6 Acknowledgments

The authors would like to thanks the support of ¢weopean ARTEMIS iIFEST
project and all the partners that were contribtitettis work directly and indirectly.

7 References

[1] C. Amelunxen, F. Klar, A. Kdnigs, T. Rotschkand A. Schirr. Metamodel-based
tool integration with moflon. In Proceedings of tB@th international conference on
Software engineering, ICSE '08, pages 807-810, XNesk, NY, USA, 2008. ACM.

[2] D. Aulagnier, A. Koudri, S. Lecomte, P. Soulardl Champeau, J. Vidal, G.
Perrouin, and P. Leray. SoC/SoPC development idib® and MARTE profile. In
Model Driven Engineering for Distributed Real-tinttmbedded Systems. ISTE,
2009.

[3] D. Baumer, D. Riehle, W. Siberski, and M. WuRole Object, pages 15-32.
Addison-Wesley, Massachusetts, 2000.

[4] A. W. Brown, P. H. Feiler, and K. C. Wallnaua®® and future models of CASE
integration. In [1992] Proceedings of the Fifthemtational Workshop on Computer-
Aided Software Engineering, pages 36-45. IEEE Cdnfpoc. Press, 1992.

[5] A. W. Brown and J. A. McDermid. Learning fromse's mistakes. IEEE Softw.,
9:23-28, March 1992

[6] R. T. Fielding. Architectural Styles and the dign of Network-based Software
Architectures. Phd thesis, University of Califorr2800.

[7] R. G. Flatscher. Metamodeling in eia/cdifjmatatamodel and metamodels.
ACM Trans. Model. Comput. Simul., 12:322-342, O&oB002.

[8] T. L. Gergely Mezei, Sandor Juhasz. Integratngdel transformation systems
and asynchronous cluster tools. In 7th InternatioBgmposium of Hungarian
Researchers on Computational Intelligence, 2006.

[9] O. M. Group. The common object request broker:

Architecture and specifcation. Technical report,jgdb Management Group, Oct.
1999.

[10] S. Henkler, J. Meyer, W. Schéafer, M. von Detteand U. Nickel. Legacy
component integration by the fujaba real-time tadte. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Ergiring - Volume 2, ICSE '10,
pages 267-270, New York, NY, USA, 2010. ACM

[11] Iso/iec 15940:2006 software engineering envinent services. Technical report,
International Organization for Standardizationohnfiation technology, 2006.

11

[12] Edward A. Lee and Alberto L. Sangiovanni-Vintsi, Component-based
design for the future DATE 2011

[13] iIFEST Project. iFEST - industrial Frameworkr fEBmbedded Systems Tools.
ARTEMIS-2009-1-100203, 2010.

[14] Jazz. http:/jazz.net/.

[15] E. Kapsammer and T. Reiter. Model-based totddration- state of the art and
future perspectives 1.

[16] G. Karsai and J. Gray. Component generatiahrtelogy for semantic tool
integration. 2000 IEEE Aerospace Conference PrangsdCat NoOOTH8484, pages
491-499, 2000.

[17] G. Karsai, A. Ledeczi, S. Neema, and J. Smiipits. The model-integrated
computing toolsuite: Metaprogrammable tools for edded control system design.
In Computer Aided Control System Design, 2006 |IHEErnational Conference on
Control Applications, 2006 IEEE International Symspon on Intelligent Control,
2006 IEEE, pages 50 -55, oct. 2006.

[18] G. Kramler, G. Kappel, T. Reiter, E. Kapsamméf. Retschitzegger, and W.
Schwinger. Towards a semantic infrastructure supmpr model-based tool
integration. In Proceedings of the 2006 internatiomorkshop on Global integrated
model management, GaMMa '06, pages 43-46, New York,USA, 2006. ACM.

[19] T. Margaria, R. Nagel, and B. Ste en. JETITAol for Remote Tool Integration
Tools and Algorithms for the Construction and Asayof Systems. Volume 3440 of
Lecture Notes in Computer Science, chapter 38, 9&§F-562. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2005.

[20] MDWorkbench. MDWorkbench. http://www.mdworkbdncom, 2012

[21] T. Reenskaug, P. Wold, and O. A. Lehne. Wagkimith objects: the Ooram
software engineering method. Manning Publicati@rgenwich, CT, 1996.

[22] C. Reichmann, M. Kiihl, P. Graf, and K. Mull&laser. Generalstore - a case-
tool integration platform enabling model level cbog of heterogeneous designs for
embedded electronic systems. In Engineering of GmenfBased Systems, 2004.
Proceedings. 11th IEEE International Conference\iodkshop on the, pages 225 -
232, may 2004.

[23] M. Seifert, C. Wende, and U. Amann. Anticipati Unanticipated Tool
Interoperability using Role Models. pages 52-6d,&20

[24] P. Sriplakich, X. Blanc, and M.-P. Gervais.ll@borative software engineering
on large-scale models: requirements and experiancenodelbus. In R. L.
Wainwright and H. Haddad, editors, SAC, pages 634-8CM, 2008.

[25] F. Steimann. On the representation of role®bject-oriented and conceptual
modelling. Data Knowledge Engineering, 35(1):83-12@00.

[26] A. I. Wasserman. Tool integration in softwagagineering environments. In
SEE, pages 137-149, 1989.

[27] M. N. Wicks and R. G. Dewar. A new researclersdp for tool integration.
Journal of Systems and Software, 80(9):1569-15867 2

[28] N. Guarino. Concepts, attributes and arbitreelations. Data and Knowledge
Engineering 8, 1992, 249-261.

[29] OSLC, Open Services for Lifecycle Collaboratiattp://open-services.net/

[30] Hein, C., Ritter, T., Wagner, M.: Model-Driveaol integration with ModelBus.
Workshop Future Trends of Model-Driven Developm¢2009)

12

