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Abstract. Optical full-field techniques have a great importance in modern experimental mechanics. 

Even if they are reasonably spread among the university laboratories, their diffusion in industrial 

companies remains very narrow for several reasons, especially a lack of metrological performance 

assessment. A full-field measurement can be characterized by its resolution, bias, measuring range, 

and by a specific quantity, the spatial resolution. The present paper proposes an original procedure to 

estimate in one single step the resolution, bias and spatial resolution for a given operator (decoding 

algorithms such as image correlation, low-pass filters, derivation tools ...). This procedure is based 

on the construction of a particular multi-frequential field, and a Bode diagram representation of the 

results. This analysis is applied to various phase demodulating algorithms suited to estimate in-plane 

displacements. 
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1 Introduction 

Full-field optical methods are commonly used in experimental mechanics to obtain displacement and 

strain fields. Most of these methods are powerful tools which are now easy to use, but their 

metrological performances are neither clearly defined nor completely characterized. In particular, 

there is no standard available to calibrate these measurement systems. This lack of information 

undoubtedly leads to limit their use in industry, especially when quantitative and reliable information 

is needed to characterize the mechanical response of materials or structures. 

A recent EC-funded project named SPOTS [1] proposed a procedure suitable to calibrate various 

full-field measurement systems [2, 3]. This procedure is based on the use of a testing device and a 

specific specimen for which the displacement/strain/stress distributions are assumed to be reliably 

known, thus leading to a reference for the systems to be calibrated. This project has not (yet) turned 

into a standard. 



 

Another approach proposed by the French network of research groups GDR CNRS 2519 devoted to 

full-field measurement techniques and named “Full-field measurement methods and identification in 

solid mechanics” [4], consists in generating synthetic images containing a reference displacement 

and in extracting this displacement with the software to be tested. Comparing this synthetic 

“measured” displacement field and the reference one enables one to assess the performance of the 

algorithm. This type of approach has been recently proposed to assess the metrological performance 

of various Digital Image Correlation (DIC) packages [5]. Several series of pairs of synthetic images 

of random patterns (reference and deformed ones) were generated. The displacement used to 

construct the deformed images was assumed to be sinusoidal. These images were processed by 

various DIC programs. This led to observe some interesting trends in the obtained results, which do 

not directly depend on the programs themselves, but on the underlying algorithms. 

DIC is a technique which has recently widely spread in the experimental solid mechanics 

community, but there are also some very popular techniques in which the information is encoded in 

the phase modulation of a temporal or spatial carrier and not in a random pattern. The most popular 

techniques based on carrier modulation encoding are moiré, moiré interferometry, speckle 

interferometry and the grid method [6-7]. In these cases, fringes are processed and the sought 

displacement is contained in the phase of the signal. Many phase-extraction algorithms have been 

proposed in the literature [8-9] but there is no general study aimed at assessing the performance of 

these algorithms, which could be considered as equivalent to that proposed for DIC in [5]. A 

thorough investigation of various procedures used to extract phases from fringe patterns is proposed 

in [10], but no simulated images are processed in this study. 

In this context, the aim of this paper is to examine the metrological performances of various 

algorithms developed by some of GDR CNRS 2519 partners. These programs are suitable for phase 

extraction from a single fringe patterns. Consequently, they should be used especially with the grid 



 

method, but also to many high speed implementations (for example: fringe projection, deflectometry 

or speckle or moiré interferometry). 

The proposed methodology is based on a generic synthetic image undergoing sinusoidal 

displacements. The procedure used to generate original images containing very rich information in 

terms of frequency and phase distributions is presented and justified in the first section of this paper. 

Displacements are computed by seven fringe analysis codes for various parameters. The measured 

displacements are compared to the prescribed ones which serve as a reference through a specific 

method which is described. The two main interests are i- to rely on a reference phase distribution 

which is perfectly known a priori and ii-  to control any additive noise that can potentially be added 

to this reference, thus leading to a precise assessment of its influence on the measurements provided 

by various algorithms. Obtained results are presented, analyzed and discussed. 

 

2 Principle of error assessment 

Introduction 

The performance of a given algorithm depends on various properties, among which its ability to 

detect localized phase variations. This type of information is somewhat difficult to be taken into 

account in a systematic way in a synthetic image. However, it is well-known that, when using a 

spatial Fourier transform, any arbitrary displacement can be expressed as a sum of single spatial 

frequency functions, each of them featuring a given amplitude, frequency, phase and direction. 

Consequently, the objective here is to examine how such functions are identified by the algorithms 

under study, as already proposed for DIC [5]. Rather than examining separately various reference 

functions, each of them exhibiting given frequencies and phases, this approach proposed to construct 

an image in which these quantities could spatially change. The main advantage is that processing 

only one image provides very rich information concerning the influence of these parameters 



 

(frequency, phase) on the obtained result. The construction of this image is detailed in the following 

section. 

From phase to displacements 

The results of phase extraction algorithms are either a phase or a phase variation. In common cases, 

this quantity can be related to mechanical information, depending on the nature of the set-up and of 

the fringe generation. If considering only the geometrical techniques (Fig. 1), the fringes may be 

projected onto the surface; the diffused light image, and consequently its phase, contains the shape of 

the specimen (fringe projection technique [11, 12]); the reflected light contains information on the 

slope of the surface (deflectometry [13]). For the grid method [14], the “fringes” are directly 

represented by the lines of a grid transferred or engraved on the surface of the specimen under study; 

the information encoded in the phase map is the in-plane displacement. Last, some interferometry 

techniques also lead to fringe patterns with in-plane or out-of-plane sensitivity, such as speckle 

[15~17] or moiré interferometry [18], digital holographic interferometry [19, 20] (displacement), 

shearography [21] (displacement gradients).  

 

{Figure 1 might be around here} 

 

A general model for fringe images encoded with a spatial-carrier frequency has been described for 

example in [9] or [22]. The measurand (i.e. the displacement in the case of grid technique) is linked 

(linearly or not) to the phase of the signal. Let us consider for example a unidirectional spatial 

carrier; y is one of the directions of the reference set of coordinates attached to the surface of the 

specimen under study. Any point C of the sensor of the camera corresponds to a physical point M of 

the object, denoted M0 in the reference configuration and M1 in the current configuration. The light 

distribution modeling the fringes can be modeled as follows: 
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where I0 is the average intensity, γ (0<γ<�) is the contrast or visibility of the signal, frng is a 

2π periodic continuous function (i.e. cosine function in case of harmonic pattern), yf
r

 is the spatial-

carrier frequency vector associated to the fringes. Its components in the (x,y) basis are (0, f0), with 

f0=1/Pcar (Pcar: carrier period). 

 

When the object is deformed, in the current configuration, M0 becomes M1. M1 is characterized, in 

the reference configuration, by a position vector ( )yx,r1
r

 in the Cartesian reference basis. The 

intensity at point M1 can be written as follows: 
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However, the deformation from the reference state to the current state is mathematically described 

by the displacement field 101 r-r)(MU
rrr

= . Hence Eq. 2 becomes: 
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If the deformation is small between two images, displacements )(MU 1

r
 and )(MU 0

r
 are almost 

equal. From the reference state to the current state, the phase ( )[ ]002 MUrf yy

rrr
−= πϕ  of the frng 

function evolves in such a way that ( )02 MUf yy
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⋅−=∆ πϕ . 

 



 

Modeling the displacement field 

The current work is based on the analysis of synthetic fringes which were created from a known 

displacement field Uy. Analyzing a periodical signal Uy is a common way to characterize a signal 

processing algorithm, as already used in [5] for instance. The main problem in this previous work 

was the great number of images which had to be generated and processed. In order to solve this 

problem, multiple frequency responses are analyzed with only two images: a reference one and a 

deformed one. Of course, frequencies must be clearly identified in the displacement field. For the 

deformed image, the use of a periodic displacement featuring a variable period along the y-axis is 

proposed. This displacement can be written as follows: 

 ( )FA=U Uy cos  with 
maxy

y

P

π
=F

2

 (4) 

where AU is a constant amplitude, ymax is the image height and P is the minimal wavelength of the 

periodic displacement. This choice is justified by the fact that it leads to a linear evolution of the 

local frequency according to y:  
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This leads to a wide frequency range adjusted by the parameters ymax and P. It can be noted that the 

minimal wave length of the created periodic displacement is reached at the bottom of the image.  

As mentioned above, the idea is to investigate with a unique image all the possible frequencies. The 

local optical phase should add some specific errors, such as, for example the presence of harmonics 

[23]. So as to separate the effect of the phase from that of the frequency, a term corresponding to a 

linear evolution of the displacement phase along the x-axis was added. The displacement can 

eventually be written as follows: 
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Fig. 2 illustrates the displacement field obtained with AU=0.3, P=5, ymax=1024 and xmax=512 

(dimensions are in pixels). 

{Figure 2 might be around here} 

 

Generation of synthetic images 

As the goal is to obtain spatially-modulated image fringes, image encoding can be idealized as a 

periodic pattern. In this paper, a perfect sinusoidal modulation is used in the first round robin test 

between various algorithms. Eq. 3 leads to: 
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More complex patterns can also potentially be generated, such as triangular or rectangular ones, only 

by adding harmonic frequencies. For instance, a rectangular pattern will be studied below by using 

60 terms. It is worth noting that the main advantage of this analytical formulation is to introduce no 

bias. Indeed, any approximated solution would have relied on interpolation procedures, and this 

would have led to some bias. 

Image acquisition inevitably induces some differences between ideal and actual patterns. One of 

these differences is due to encoding depth. This phenomenon is simulated here by using 8-bits 

encoding. In the same way, random Gaussian noise can also be added to the images.  

The actual images are also digitized as is done with the CCD sensor of a camera; practically, each 

sensor element acts as a spatial integrator of the image intensity. Hence, perfect sine-wave and 

perfect square signals are deformed and this effect has also been taken into account. In order to 



 

achieve an xmax×ymax final image, an intermediate image which is k times over-sampled along each 

direction is generated. Then, a k×k moving-average filter is applied to the intermediate image. The 

last step is to under-sample this intermediate image to get the final xmax×ymax image, which is 

considered as input data for the algorithms tested in this study. 

Some other effects such as lighting variations or diffraction spots might be analyzed in the same 

way but these issues are not addressed in this study for the sake of simplicity. 

 

The parameters used to generate the images are summarized in Table 1. The reference image is 

built with Uy=0 and the deformed one with the expression given by Equation (3). The following 

parameters are fixed: 

� the image size (xmax, ymax),  

� the minimum displacement wavelength (P),  

� the displacement amplitude (AU), 

� the mean intensity and modulation (I0, γ),  

� the spatial integration of pixels (over-sampling), 

� the encoding depth. 

 

In Table 1 and Table 2, Case 1 represents a reference case, with a perfect sine wave, no noise, and 

parameters which are equal to the typical values characterizing actual sensors. The effects of both 

the noise and the shape of the frng function are considered separately in Cases 2 and 3. Case 4 is 

equivalent to Case 3 but with an additional noise. Last, check tests were carried out to observe and 

quantify the influence of the displacement amplitude (Cases 5 and 6) and the over-sampling on the 

identified displacement (Case 7). 

 

{Table 1 and 2 might be around here}  



 

 

3 Presentation of the different fringe analysis methods 

The information characterizing the simulated displacement fields is encoded in the phase modulation 

of a spatial carrier. Among the various approaches available in the literature to demodulate this 

signal, one can distinguish four different types which are used in practice by the GDR2519 partners: 

by using a defined transformation, by phase-shifting, by morphological analysis or with the DIC 

technique. 

 

Fourier-transform techniques 

Spatial Fourier-Transform (SFT-LAUM) 

The spatial Fourier-transform was proposed first by Takeda [24] and became a very popular method 

for fringe demodulation [25], in particular for surface profilometry [26]. In the Fourier spectrum, the 

spatially modulated fringe image is represented with three orders: the first one is localized at the 

center of the spatial spectrum, the second is localized at spatial frequency +1/Pcar, and the last one is 

localized at spatial frequency 1/Pcar, Pcar being the pitch of the spatial carrier. 

The fringe image recorded by the pixel matrix of the sensor can be simply written as: 
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Developing Eq. 8 leads to: 
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Denoting: 

 ( ) ( ) ( )yxi deyxIyxc ,
0 ,

2
, ϕγ=  (10) 

and applying the spatial Fourier transform to Eq. 8 leads to: 
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with 

 ( ) ( )[ ]( )vuyxIFTvuA ,,, 0=  (12) 

and 

 ( ) ( )[ ]( )vuyxcFTvuC ,,, =  (13) 

where FT means Fourier Transform. 

 

If the spatial frequency spectrum of the three orders is not expanded with “too many” terms, the 

three orders are well separated, so they can be extracted using a filtering mask. Denoting f[...] the 

filtering in the Fourier spectrum, the inverse Fourier transform applied to the filtered spectrum can 

be written as follows: 
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For example, the filtering f[…] can be binary rectangular centered at spatial frequency (0;1/Pcar) with 

width ∆u×∆v pixels-2. 

The phase can be extracted using an arc tangent formula: 
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Where arctan2π corresponds to the four-quadrant inverse tangent defined in the interval [-π,π]. 

In the reference state, the demodulated phase ϕd represents a constant phase difference between the 

fringe carrier and the real experimental state, summing up experimental set-up errors (material 

alignment, grid defects ...) or phase extraction assumption (pitch error due to discretization). All 

these errors are supposed to be constant during the experiment. So far, in the initial state,  

 

( ) ( )yxyxd ,, εϕ =

 

(16) 

 
When the object is deformed, the extracted phase becomes: 

 ( ) ( ) ( )yx
P

y
yxyx

car

,2,,2 ϕπεϕ ∆++=  (17) 

Then, the phase change due to the simulated specimen deformation is calculated with ∆ϕ =ϕ2 -ϕ1. 
 
The spectral bandwidth ranges from a cut-off frequency of fmin=0.9/Pcar up to the highest frequency 

involved in the discretized signal (fmax=1/2).  

 

Spectral Analysis (SA-Institut P’) 

This spectral analysis method is based on the calculation of a local spatial Fourier transform (Eq. 11) 

of a sinusoidal signal (Eq. 8) on subsets with a size of M×N pixels (M lines and N columns). As in 

the SFT technique, the spectrum can be decomposed in three peaks: assuming that the signal 

frequency is constant over the subset, the second peak in the frequency spectrum is a function of the 

characteristics of the sinusoidal signal. Its location is given by the number of fringes along the 

horizontal and vertical directions. The process of calculation is the same for the two directions. For 

the vertical direction (i.e. position in y direction) the number of fringes is given by:  K=M/Pcar. As a 



 

discrete Fourier transform is used, K is an integer value, so an interpolation process is used to obtain 

a fractional part β [26] in order to obtain an accurate value of the pitch:  

Pcar=M/(K+β) with -0.5<β<0.5  (18) 

β is defined by [27][28]: 
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with CK the complex value of the Fourier-transform of the signal for the peak of coordinate K and 

CK-1, CK+1 the adjoining complex values of the peak K. The same process is applied in the x direction 

in order to obtain the pitch and orientation of the grating [28]. Then this procedure can be applied for 

the study of various materials with natural grating like textile [28], or with artificial grating like 

paper [28, 29] or single lap joint [30].   

The complex amplitude and the reference phase are given by: 
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The reference phase on a subset may be obtained by this last expression. The whole phase fields in 

the reference state and in the current state are obtained by shifting the subset. Eq. 17 is used to obtain 

the phase change.  

The spectral bandwidth limits, in this case, range from K-1 to K+1, i.e. fmax-fmin=2/M. 



 

For this study, the sizes of the computation subset are respectively 32x32 and 16x16 pixels, 

commonly used, and 32x8 pixels, an optimized subset taking into account the geometry of the 

studied gratings. 

Spatial Phase-Shifting method (SPS-IP, LGF, LMPF) 

Eq. 1 is the general form of a measured intensity field. Without any assumption on the frng function, 

there are an infinity of unknown parameters: among them, of course, the phase, which will have to 

be identified. Thus, the phase cannot be deduced by recording the intensity field only, since there is 

one equation for at least four unknowns: the mean intensity I0, the contrast γ, the fringe pitch Pcar and 

the phase ϕ (if function frng is harmonic). This is the reason why supplementary equations are 

required to solve the system. These additional equations can be obtained by two different methods of 

phase shifting, which are: 

– spatial phase-shifting: the information is searched at the vicinity of the considered pixel. This 

approach is used especially when there is a regular dense carrier fringe, as in the grid technique. 

– temporal phase shifting: the information is searched at the considered pixel from a set of images 

obtained with a known phase shift. This method is used with interferometry or fringe projection 

set-ups, leading to very high spatial resolution. 

The first technique is chosen here because the idea is to extract displacement (i.e. phase 

variation) from only one fringe image. The technique used here is based on a N-bucket algorithm 

[14]. The number of pixels sampling one period of the fringe signal is an integer denoted N. The 

principle is to get M intensity samples noted Ik, with k=0,1,…,M-1, separated by a constant phase 

shift δ=2π/N: 

 ( )δk+φI=I k ⋅  (22) 



 

These sampling points enable one to determine the best fitting harmonic function. With this 

approach, the general form of the phase detection algorithm is given by the following equation: 
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The quality of the phase strongly depends on the way the ak and bk coefficients are chosen. By 

choosing a windowed discrete Fourier transform (W-DFT) algorithm with a triangular windowing, 

harmonics are eliminated up to the (N-2)th order and the influence of the uncertainty on the 

calibration (number of pixels per period i.e., N) is reduced [14]. 

The phase extraction is performed by seeking the particular term argument of the local Fourier-

transform of the intensity map. It is necessary to define an arbitrary pitch to demodulate the signal of 

the phase. This arbitrary pitch is obviously different from the effective grid pitch, because it is 

difficult to determine it precisely in a real experiment, and because the grid pitch is effectively 

different in the reference and the current states. In this case, for a given set of 2N-1 pixels, the phase 

is defined by: 
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where k is the coordinate of the current point and �� is the local intensity of the image. This 

formulation is in fact a mere convolution between a Fourier-transform of the signal and a triangular 

window. The implementation used in laboratories [31~33] supposes an adaptation of the coding 

pitch to each situation (5-6-7 or 8 pixels per pitch). The width of the bi-triangular window used here 

is 2N-1 pixels, i.e.: 9, 11, 13 or 15 pixels respectively.  



 

Last, even if the principle of the technique is the same among the three groups using this technique, 

results might be different for the same technique because of the implementation. Some valuable 

examples using the SPS should be found for concrete [34], steel [35] or composite 

materials [36].  

Correlation techniques 

Modulated Phase Correlation (MPC-Institut P’) 

The principle of the Modulated Phase Correlation algorithm (MPC) lies in the adaptation of the 

correlation technique. In a zone of interest, it estimates the degree of similarity between a real fringe 

pattern and a mathematical model [37-38]. 

From Eq. 1, a mathematical representation of a two-dimensional fringe pattern can be globally 

expressed by: 

 ( ) ( ) ( ) ( )( )]yx,[φyx,yx,I=yx,Iv cos10 γ+  (25) 

where I0(x,y) is the amplitude modulation, γ(x,y) the fringe contrast, and ϕ(x,y) the phase value. In 

this global representation I0, γ and ϕ are complicated functions that depend on coordinates x and 

y. If a smaller zone of interest centered at coordinates (x,y) is considered, the global expression can 

be reduced to a simpler one in which ϕ depends on local coordinates (ξ,γ), and where x and y are 

fixed. The current mathematical model representing fringes with constant pitch and orientation is 

described by: 

 ( )[ ]( )γξϕθϕγ ,,,,cos10 dcarpI +  (26) 

 with: 
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Variables Pcar and θ are respectively the pitch and orientation of the fringe pattern and φd is the 

term of the demodulated phase. Indeed, I0 and γ parameters are considered as constant in this zone of 

interest. Eq. 26 is valid if the zone of interest is limited to a few pixels. 

For the calculation of the degree of similarity between the mathematical expression denoted I and 

the real fringe pattern denoted Ir, the following formulation is used at coordinates (x, y): 
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A gradient method under constraint is employed here to minimize the ψ function because 

periodic functions that depend on α and φd are used. The minimum of ψ directly gives the five 

sought parameters: 

 ( ) ( )[ ]dcar

φ,p,,,I

i
d

i
car

iii
φ,p,,,Iψ=φ,p,,,Iψ Min

dcar

θγθγ
θγ

00

0

 (29) 

A discrete formulation of ψ is used in practice. This technique has been employed for the 

study of material behaviors and for example to determine J-Integrals in fracture mechanics 

[39]. For the present study, computation is done with zones of interest with dimensions equal to 

(8×2), (1×24), (Pcar×16) and (Pcar×1) pixels. 

Digital Image Correlation technique (DIC-Laboratoire Navier) 

Digital Image Correlation (DIC) techniques aim at identifying an approximation of a mechanical 

transformation linking a reference image to a deformed image, assuming grey level convection by 

the transformation. Standard implementations split this problem into several independent local ones, 

defined on small windows usually regularly spread over the whole region of interest. The local 



 

mechanical transformation on these windows is based on a local expansion of the displacement field, 

to some chosen low orders. The purpose of the DIC algorithm is to determine the best parameters of 

this expansion. They maximize the correlation coefficient measuring the similarity of the grey level 

distribution in the considered window in the reference image, with that in the deformed image back-

convected according to the assumed local transformation. Sub-pixel accuracy can be achieved by 

means of some interpolations of the grey levels in between the pixels of the deformed image. In 

practice, one often retains the sole value of the optimal transformation at the center of the windows 

as an estimate of the displacement at this pixel position of the reference image. This operation can be 

repeated over all pixels in the reference image as long as the associated windows belong to the 

image, so as to generate a dense estimate of the displacement field.  

Such a procedure has been applied to the present sets of pairs of images, by means of the in-house 

CMV code developed at Navier, with the following particular choice of parameters. Windows are 

one pixel wide and 5, 9 and 17 pixels high; the local transformation over these windows is 

prescribed to be a uniform translation along the vertical direction, characterized by a single value 

which is the intensity of this translation. The images were interpolated by means of a biquintic 

interpolation function, using the 6×6 neighboring pixels for a given position. The optimization of the 

translation parameter was performed with a first-gradient minimizing procedure, which is stopped 

when the last step is smaller than 0.4×2-15=10-5 pixels, which ensures that the accuracy is not limited 

by the numerical optimization algorithm. The correlation coefficient is a centered normalized cross-

correlation. 

DIC algorithms are usually applied on images with random patterns, either artificial, like speckle 

painting, or natural. With a periodic pattern such as those used in so-called grid-methods, there are 

several optima of the correlation coefficient for the periodically-distributed values of the 

transformation parameters. In order to deal with such a situation, the DIC implementation has to be 

slightly adapted to avoid the selection of a wrong local minimum. This can for instance be performed 



 

by seeking the local displacement field with a propagation procedure. The detection of the 

translation components at a new position -- close to one or several already known positions -- is 

restricted to a domain where there is only one local optimum, the right one. The research domain is 

defined from the knowledge of the displacement at the neighboring positions -- assuming there is a 

local continuity of the transformation -- and limited by the periodicity of the pattern. Such a 

procedure has been successfully applied for years to quantify the deformation of materials at micro-

scale by means of micro-grids and in situ testing in a scanning electron microscope [29, 37]. It was 

applied without modification in the present study. It should be noted that with this approach no a 

priori  knowledge of the particular shape of the marking is used, and that the intermediate stage of 

phase retrieval is not required. 

In order to fit the conventions used within standard grid processing to define the displacement field – 

which are adopted in the present study -- the above presented DIC algorithm was applied by using 

the deformed images as reference images and vice-versa, and retaining the opposite of the DIC 

displacement field as the quantity to be compared to the prescribed displacements. With standard 

DIC procedures, the evaluated displacement is ( ) 010 rrrU
rrrr

−= , whereas ( ) ( )10011 rrrrrU
rrrrrr

−−=−=  is 

considered in the present study.  

 

4. Procedure to analyze the results 

Pairs of images were generated using prescribed procedure. Indeed, resulting images are synthetic 

images, this approach being believed to give a more general point of view on the metrological 

qualities of image processing algorithms. Synthetic images were analyzed by the seven partners with 

their own processing tools as described previously: Spectral Analysis (SA), Spatial Fourier 

Transform (SFT), Spatial Phase-Shifting (SPS), Modulated Phase Correlation (MPC) and Digital 



 

Image Correlation (DIC). Finally results for each processing tool are displacements or phase maps 

converted into displacements according to the equation: 

 �� =
��

�	

��
 (30)For each technique, the results are classified by their method’s name (SA, 

SFT…) following by the sizes of the used subset (vertical and horizontal) and if necessary the grid 

step. 

Displacement fields were obtained for all the points of the map (except at the border of the images, 

depending on the method used). They were analyzed using the following procedure: for each 

horizontal line (x=cst), i.e. for each spatial frequency, the best sine was extracted from experimental 

data points by using a minimization procedure. The relative difference between the extracted 

amplitude and the theoretical one is used as an error indicator, denoted ErrA. It can be presented as a 

function of the signal wavelength.  

Two typical behaviors are shown in Fig. 3.  

1. For the lowest signal wavelengths, the error is 100%. It decreases monotonically down to 

zero. In this case, the extraction algorithm always underestimates the amplitude. Because 

high frequencies are filtered out and lower frequencies are kept, the method behaves as a 

low-pass filter. Then, the slope of the second part of the curve – taken in a log-log 

representation – gives the order of the equivalent filter, i.e. its ability to reconstruct signals 

having a period higher that the cutting wavelength. 

2. The error is 100% for the lowest signal wavelengths. ErrA decreases strongly, 

overestimates the amplitude and finally ends tending toward the theoretical amplitude.  This 

behavior is well represented by a second order filter. It corresponds to SA, which has the 

particularity to extract directly the phase in the Fourier domain, with no explicit low-pass 

filter. SFT is working as well in the Fourier domain, but in a global manner, contrarily to 

SA, which is working with a small window, therefore close to the Nyquist frequency. Then, 



 

this behavior can be related to aliasing effects. Anyway, because high frequencies are 

poorly reconstructed, the method can still be characterized by a high cutting frequency. 

{figure 3 might be around here} 

Fig. 4 shows the systematic processing applied to ErrA vs spatial wavelength curves. In both cases, 

for the higher spatial frequencies, a first zone is described by a horizontal line characterized by 

ErrA=1. This indicates that such spatial wavelengths are strictly unreachable with the given image 

processing. The higher wavelength corresponding to this zone defines the ultimate spatial resolution 

(USR) of the given method: no localized information with a spatial wavelength lower than this USR 

can be detected. This gives a qualitative cutting frequency. In order to estimate a quantitative cutting 

frequency, it is possible to define another practical quantity corresponding to the maximal allowed 

error, for example 10%, denoted RS10%. 

 

The last interesting quantity is the root mean square (σU) between the measured signal and the 

interpolated sine curve. It provides an indication on the random error that corrupts the signal. It can 

be plotted as a function of the spatial period.  

{Figure 4 might be around here} 

 

5 Results and discussion 

Pure sine wave 

First, the results are shown in Fig. 5 to 8. The optical model is a pure sine wave, encoded over 8 bits, 

without any noise and with a constant illumination (i.e. constant intensity offset and constant 



 

contrast). The grid step varies from 5 to 8 pixels per fringe. The results presented here are obtained 

according to the common practice of each laboratory.  

 

Fig. 5 shows that spatial resolution at 10% error (SR10%) varies linearly with the ultimate spatial 

resolution (USR). Fig. 5 exhibits two groups of algorithm behaviors, indicated by slopes 1 and 2. 

This means that the low-pass filtering effects are not the same for all the demodulation techniques. 

The slope of SFT and SA algorithms is lower than the other ones: a local event would be rendered 

with a higher optical resolution with these methods compared to the other ones.  

 

{Figure 5 might be around here} 

 

In these two latter techniques, a rectangular window is directly applied in the Fourier domain, 

whereas, in the former ones, a rectangular (DIC) or triangular (SPS) window is applied in the real 

domain. The frequency filtering is different in these cases, as illustrated in Fig. 6: used in the Fourier 

domain, the rectangular window sharply rejects high frequencies; the two other windows present a 

continuous variation, indicating that the frequencies are biased by the filtering windows. In addition, 

the triangular window leads to a better high frequency rejection. Finally, image correlation 

techniques (using a rectangular window) behave roughly like spatial phase shifting techniques (using 

a triangular window. 

 

{Figure 6 might be around here} 

 

A better understanding on the USR can be found when it is plotted according to the characteristic 

typical length of the method, denoted DimY (Fig. 7), and which is defined by the dimension 

corresponding to the spectral bandwidth. It can be estimated using the following formula: 



 

 

 
minmax

1

ff
DimY

−
=  (29) 

where fmax and fmin are the cut-off frequencies as defined in section 3. 

In the cases of DIC, MPC and SPS, the cut-off frequencies are set to the first roots of the frequency 

spectrum (see Fig. 6). Note that the spectral length directly corresponds to the dimension of the 

subset in the case of a rectangular window (DIC, MPC), but is half the dimension subset in the case 

of the triangular window (SPS). 

 

The USR varies roughly linearly with the subset dimension, with some visible scatter. The 

practice among the laboratories is very different: in some cases, the subset dimension is calculated 

from the grid step; in others, the subset dimension is kept fixed. As a matter of fact, the spatial 

resolution may vary without any change in the subset dimension (see DIC, MPC 8×2 and 24×1 or 

SA results), but only because of the effect of the encoding grid step. For the SFT technique, the 

vertical dimension is adapted according to the estimation of the frequency peak in the Fourier 

spectrum. In this case, the lower the central frequency, the smaller the filtering window and hence 

the larger DimY.  

 

{Figure 7 might be around here} 

 

The random errors induced by all demodulation techniques vary approximately from 10-2 to 10-3 

pixel. There is no clear correlation between the random error and the USR, but with the subset area. 

Because, most of the methods are based on phase extraction, it seems reasonable to present the 

random error on the phase, σ/Pcar, i.e. the phase in fraction of 2π (Fig. 8). Of course, this 



 

representation does not fit very well with the DIC procedure. Even if this representation is not usual 

in the analysis of DIC errors, it does make sense as the accuracy of DIC is dependent on the intensity 

of gray level gradients in the correlation window, which is directly related in the current case to the 

pattern size [5]. 

The global trend is a decrease of σ/Pcar with the subset area, showing a classic averaging effect; 

the mean slope is very close to the expected value of -0.5. SA and SFT results will be commented 

further. Both are spectral methods and both present higher noise level. In the first case, the noise on 

SA 16 can be explained by the small size of the window compared with the encoding grid step: the 

frequency detection is at the limits given by the Nyquist–Shannon sampling theorem, stating that the 

reconstructed signal from sampled data cannot have any frequencies higher than one-half of the 

sampling frequency. In order to have a larger window in the vertical direction, a size of 32x8 pixels 

gives the same subset area but allows us to obtain better results. Another error source is due to the 

interpolation procedure given in Eq. 20 induces some problems, and the best results are obtained in 

the case of Pcar=8, because the interpolation has no effect (N/Pcar is close to an integer value) In the 

case of SFT, the larger the grid pitch, the smaller the frequency window in the Fourier domain. 

Consequently, some information contained in the rejected frequencies should have induced 

harmonics in the signal. Considering the estimation method used for the random noise, these 

harmonics should have increased its value. 

Last, for DIC, the error increases strongly if the correlation window size is less than half the pitch 

of the grid. This is essentially due to the correlation criterion used in these simulations, which is the 

Zero Centered Normalized Cross Correlation. Indeed, this criterion does not take into account either 

the average grey level in the window or its standard deviation. So, a too small window is unable to 

provide reliable information for a one-to-one spatial positioning. A similar trend was already 

observed for random patterns [5]. 



 

{Figure 8 might be around here} 

 

Parametric study 

The effects of the random noise and the intensity shape on the resolution and the spatial resolution 

are examined here. No typical trend on the spatial resolution is detectable, but it is very different on 

the resolution.  

In the case of a higher random noise in the intensity map, Fig. 9 shows that the random error is 

shifted over 1 decade compared to noiseless situation represented on Fig. 8. Indead the averaging 

effect is still the governing phenomenon. The noise level corresponds to the reasonable experimental 

values. Here, methods behave in the same way, with no significant changes. 

 

The square grids give the worst results. In Fig. 10, the typical noise level is close to 1×10-2, even 

if the signal-to-noise ratio SNR is 100. It is worth noting that using large subset areas is useless. This 

situation is particular: in practice, when using square grids, the image formation procedure tends to 

smooth out the grid boundaries. This case has to be considered as an asymptotic situation. 

Methods behave in a different way: spectral analysis is more sensitive than phase-shifting 

methods. Among the phase shifting methods, even if the theoretical basis is the same, the LMPF 

implementation – which was the best for the previous situations, see Fig. 8 – is in this one the worst, 

showing a higher dependency on the signal quality; nevertheless, this trend remains small compared 

to the global variations of Fig. 10. Last, because it does not include any assumption on the intensity 

shape, DIC seems more efficient than the other analyses, which instrinsically assume a sinusoidal 

signal intensity shape.  

 

{Figure 9 might be around here} 



 

{Figure 10 might be around here} 

 

6 Conclusions 

In this paper, a new procedure has been proposed to assess the metrological performance of various 

image analysis techniques to extract displacement fields from deformed fringe patterns with a special 

emphasis both on the measurand resolution and the spatial resolution. The studied algorithms using a 

single pair of images are used in various set-ups in experimental mechanics, in particular grid 

techniques, but also specific high speed implementations of interferometry, holography, moiré, 

fringe projection…  

The procedure proposed in this paper is based on the generation of a pair of synthetic images with a 

particular multi-frequency field. This field provides, within a single analysis, all the experimental 

errors on the spatial frequency of the measured signal. The result is given as a Bode diagram. This 

approach enables us to rigorously define the concept of the spatial resolution of a given image 

analysis technique. More precisely, two quantifications of the spatial resolutions have been 

proposed. First, the ultimate spatial resolution defines a detection level. Second, the obtained 

dependence of the measurement bias as a function of the frequency provides the spatial resolution 

associated with an error level which can be defined a priori (for instance 10%). In addition, as the 

procedure is rather fast, it is easy to investigate the influence of various image characteristics (pitch 

of the grid, image noise, shape of the fringe) and of the parameters of the image analysis techniques 

(window size, spectral bandwidth) on the quantities of interest.  

This methodology has been applied to several image analysis techniques based either on fringe 

demodulation algorithms, on Fourier transform or on image correlation. These techniques are widely 



 

used in the laboratories of the co-authors. This paper shows that these techniques share some 

common features but have also some specificities: 

- the bias varies as a power of the spatial wavelength of the measured signal; 

- the exponent of the power law depends on the algorithm. Correlation and phase shifting algorithms 

exhibit a similar response whereas Fourier-based algorithms have a stronger low pass filtering effect; 

- the spatial resolution mainly depends on the characteristic size of the windows (or the bandwidth 

used by the image processing). Both quantities are not exactly equal. Their ratio depends on the 

algorithm which is employed; 

- in the case of a sinusoidal fringe pattern, the random error is strongly governed by the number of 

pixels involved in the local analysis. The global trend is a decrease of the error with the number of 

pixels. This corresponds to a classic averaging effect; 

- this random error is very sensitive to the image noise level and to the profile of the simulated 

fringe. All algorithms behave similarly when sine-shaped fringes are considered, but significant 

differences are observed for rectangular profiles. This is due to the fact that some algorithms rely on 

an assumption on the fringe profile contrary to some others. 

The current procedure shows that an optimization of the window size and the pitch can potentially be 

obtained for each method depending on the field under study, especially its displacement or strain 

gradients. This will be the aim of further studies on this approach.  

The synthetic speckle images that were used to perform the simulations can be downloaded from the 

following website: http://gdr2519-images.mines-albi.fr/. The readers interested in assessing the 

metrological performance of their own software are invited to download these files, to use them as 

input data and to discuss matters related to their results with the authors. 
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Tables 

 Case 1 Case 2 Case 3 Case 4 

Variable data     

Pcar (pixel) 5, 6, 7, 8  5, 6, 7, 8  5, 6, 7, 8  5, 6, 7, 8  

frng function sine sine rectangular Rectangular 

SNR 100 30 100 30 

Fixed data     

xmax (pixel) 512 

ymax (pixel) 1024 

P (pixel) 5 

AU (pixel) 0.3 

Over-sampling 4×4 

I0 (GL) 128 

γ (GL) 0.59 

Encoding depth 

(bits) 

8 

Table 1. Parameters used for the round robin test 

  



 

 Case 5 Case 6 Case 7 

Pcar (pixel) 5, 6, 7, 8  5, 6, 7, 8  5 

frng function sine sine sine 

SNR 100 30 100 

xmax (pixel) 512 512 512 

ymax (pixel) 1024 1024 1024 

P (pixel) 5 5 5 

AU (pixel) 0.15 0.15 0.3 

Over-sampling 4×4 4×4 1×1 

I0 (GL) 128 128 128 

γ (GL) 0.59 0.59 0.59 

Encoding depth 

(bits) 

8 8 8 

Table 2. Parameters used for the check tests 

  



 

Figures 

 

 

(a) (b) 

Fig.1. Fringe generation in the case (a) of projected fringes (courtesy of EMSE) (b) of the grid method 

(courtesy of Arts et Métiers ParisTech) 



 

 

Fig.2. Example of displacement field (AU=0.3, P=5, ymax=1024 and xmax=512 in pixels) 
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Fig.3. Example of typical curves ErrA (in pixels)  vs spatial wavelength.(p=6 pixels) 
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Fig.4. Analysis of curves ErrA or σU vs spatial wavelength. 



 

 

Fig. 5. 10% Spatial Resolution vs ultimate Spatial Resolution 
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Fig. 6. Fourier Transform of the different windows, Pcar=8, vertical subset dimension 8 (rectangular), 

15 (triangular), 32 (spectral analysis). 
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   Fig. 7. Ultimate spatial resolution vs vertical subset dimension 
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Fig. 8. 

Random error vs subset dimension, SNR=100 

0,00001

0,0001

0,001

0,01

0,1

1
1 10 100 1000

σσ σσ/
P

ca
r

Subset area (pixel²)SNR100

DIC[5,1] DIC[9,1]
DIC[17,1] MPC[8,2]
MPC[p,16] MPC[p,1]
MPC[24,1] SPS1[p,2p]
SPS2[p,2p-1] SPS3[p,2p-1]



 

 

Fig. 9. Random error vs subset dimension, SNR=30  
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Fig. 10. Random error vs subset dimension, square grids  
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