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ABSTRACT
The need for higher level models during system design has
resulted in many different Electronic System Level (ESL)
formalisms that seldom succeeded in the past in the quest for
efficient top-down design methodologies. In this paper, we
propose a new working toolchain starting from UML specifi-
cations coupled to an industrial-level system-level synthesis
(SLS) tool. In order to isolate a maximum of concepts, we
resorted to state-of-the-art model-driven software engineer-
ing and strong models-of-computation (MoC). This tooling
allows for rapid prototyping of mixed hardware-software sys-
tems in line with the high degree of heterogeneity encoun-
tered in today embedded platforms.
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1. INTRODUCTION
Due to the sustained and exponential growth in complexity
in embedded systems, the need for abstraction is overwhelm-
ing. To be concrete, such a standard as H.264 in video com-
pression is considered eight times as complex as previous
MPEG2 standard to decode, but still no efficient method-
ologies have succeeded to handle the entire design flow of
associated integrated circuits. In 2012, new video compres-
sion algorithms are inevitably showing new promises in term
of compression ratio, but methodologies have not shown sig-
nificant advances in the meanwhile. As a consequence, de-
signers seem to reach their limits in term of productivity,
without any convincing help from tool chains. In the au-
tomotive industry, the rise of embedded systems have “the
potential to raise the bar for vehicle safety, as well as luxury
and convenience, but only if they work” [1]. In this field, the
safety critical aspects add a supplemental dramatical dimen-
sion in the problem. Some practitioners have proposed to
tackle this problem, using a software model-based approach.
In this view, UML remains a candidate of choice as a sys-
tem level visual language to support various tasks in the V-
model : analysis, specification, design, verification and vali-
dation. Moreover, UML can be extended in various ways for
customization: tag definitions, constraints, and stereotypes,
which are applied to elements of the model. This yields the

notion of profiles, that help tune the language for dedicated
purposes.

This trend has grown rapidly, to the extend that not only
software but even hardware code generation is now studied.
In this work, we propose an new toolchain that allows re-
fining UML specification down to hardware-software imple-
mentations. We used one of the more adopted UML 2.0
modeler, namely IBM Rhapsody, as front-end and Modaë
system-level synthesis (SLS) Compiler as backend. In order
to transform UML descriptions into suitable Modaë formal-
ism, we resorted to software model-driven technology, that
guided our work in the sense of elicitation of fundamental
communication concepts between UML components.

The rest of the paper is organized as follows. Next section
recalls the state of the art concerning the use of UML for em-
bedded system-level modeling, dedicated profiles and frame-
works, ending by a short survey on model-based high-level
synthesis. Section 3 presents our design flow, while section
4 depicts a concrete experiment using this design flow. We
conclude with a discussion on our future work.

2. STATE OF THE ART

2.1 ESL scopes
Electronic System Level (ESL) is technically rooted in EDA
(Electronic Design Automation), with the ambition to raise
the level of abstraction above RTL descriptions (register
transfer level) that characterize VHDL and Verilog. Dur-
ing the last decade, many new formalisms were proposed to
address the complexity of embedded systems. Their names
clearly reflect their orientation towards system-level descrip-
tions : SystemC, SpecC, HandelC, SystemVerilog,. . . . ESL
can be segmented into three distincts types of tools :

• High-level synthesis (HLS), that automatically trans-
lates sequential code into RTL, typical of top-down
strategies. SLS is an extension of HLS in that it can
operate on a network of such sequential algorithms,
and target both hardware and software.

• IP-based design, that focuses on reuse of intellectual
property blocks (IP), in a bottom-up strategy.



• Platform-based design, that is based on the configura-
tion and extension of generic hardware plateforms.

2.2 UML profiles for ESL modeling
However, the classical ESL languages essentially still ex-
hibits concepts specific to the electronic industry, and re-
mains only attractive for the specialists of this industry.
The notion of system should encompass many other aspects
(software, mechanical parts, requirement engineering, etc).
In this regard, UML stand as more natural candidate [21] to
fulfill the need for “universal” formalism, understoodable by
the different actors of the industry and help improve cross-
disciplinary communication. It offers suitable means to de-
scribe concepts specific to dedicated domains : the notion of
profiles are especially invented as a generic extension mech-
anism for customizing UML models, while maintaining its
core notions. However, as explained by Schattkowsky [21],
its cannot be instantly applied to HW/SW codesign.

As soon as 2002, CATS, Rational, and Fujitsu proposed a
dedicated profile for System-On-Chip (SoC) [17]. OMG re-
leased it in 2006. It formalized many concepts of SystemC
and especially the transaction-level modeling that render
SystemC attractive for simulation speed [20]. Using such
a typical profile, the aforementioned pitfalls of dedicated
system-level languages are somehow hidden by UML. More
recently (2009), MARTE was proposed by the OMG as the
standard for modelling real-time and embedded applications
with UML2. It covers much more aspects of those applica-
tions [12],[24],[11], spanning from modeling of applications
to plateforms architectures (processors, DMA,...) known as
“Generic Resource Modeling”, offering various descriptions
of platform configurations [19]. Non-Functional Properties
can also be described, as well as rich timing constraints, in-
heriting much work from synchronous languages [15]. In the
same vein, Sysml offers modeling concepts [6], many of them
borrowed from UML 2.0 (seven out of thirteen UML 2 dia-
grams are present in SysML). SysML is however more ade-
quate for system engineering, with requirements capture ca-
pabilities, parametric diagrams and a more intuitive block-
diagram definition from classes.

2.3 Model-based toolchains
Mopcom is a french cooperative research project, lead by
Thales inc., that aims to leverage model-driven architecture
mapping concepts to SOPC development flows. Mopcom
methodology has been applied to different co-design exper-
iment like [14] and [26]. Three levels of abstraction are
proned here : abstract modeling level, execution modeling
level and detailed modeling level (AML, EML and DML, re-
spectively). AML level allows a designer to express its purely
functional application as concurrent entities. EML level rep-
resents this application mapped onto non-detailed architec-
tural elements (communication topology and abstract pro-
cessors). Finally DML is supposed to represent the same
platform at the RTL level. Schattkowsky describes a very
similar approach. Mopcom is similar to our present ap-
proach in that is relies on almost the same tooling, with
the exception of HLS that has not been used in Mopcom.
Instead direct RTL VHDL generation was ambitioned by
their flow, but remains unpractical.

The SATURN [18] design flow is also an important step in

the possible adoption of model-based toolchains : Saturn in-
troduces UML profiles for the co-modeling of SystemC and
C, with code generation support relying on Artisan Studio.
The later provides complete support for OMG UML and
SysML in a single, integrated toolset. The synergetic asso-
ciation of models, transformations and ESL objectives are
closed to our paper.

Coyle [4] also present MODCO, that handles XML state-
charts and generates VHDL. The approach is similar in that
Rhapsody is also used, with a MDD-like approach. However,
the author do not resort to any meta-modeling strategies.
Wood et al [27] can also be cited here, with the same limits.

2.4 Connections to high-level synthesis
Very few papers have made a convincing bridge between
system-level models and HLS/SLS technologies. The works
we already cited have instead tried to proceed using a sin-
gle step : from UML directly to RTL VHDL. The focus of
these papers if clearly on the translation of only statecharts
to RTL, with a very limited algorithmic scope. In our view
this seem contradictory with the ambition of high-level mod-
els. Model-based HLS seems a much more natural approach.
Our work can be best compared to commercial Axilica Fal-
conML tool : for instance, [25] describe the synthesis of
H.264/MPEG-4 AVC video decoder from UML.

HLS is an equivalent of traditional compiler technology, tar-
geted to hardware code generation (Register-transfer level,
expressed in hardware description language such as VHDL)
instead of assembly. The input code (such as ANSI-C or
derivatives like SystemC) is first transformed into a con-
trol/data flow graph (CDFG) by a front-end pass. This
CDFG acts as internal representation (IR) on which ev-
ery pass are applied. This early stage can benefits from
classical compiler-like optimizations (dead-code elimination,
constant propagation, common sub-expression elimination)
and –more importantly for hardware generation purposes–
such as loop unrolling, that exhibits the potential parallelism
of the application. Then specific transformations are ap-
plied on thir CDFG IR : scheduling, allocation, binding that
orient the process towards specific computing and routing
ressources utilization. Allocation and binding assign opera-
tions onto functional units, and variables and data structures
onto registers, wires, or memory locations. The HLS process
may depend on technological exact parameters (e.g a silicon
foundry library) or not (generic ressources modeling). Many
commercial HLS tools are now widespread [3] : CatapultC
by Mentor Graphics, Cynthesizer by Forte Design Systems,
Impulse CoDeveloper by Impulse Accelerated Technologies,
Synfony HLS by Synopsys, the C-to-silicon by Cadence, the
C to Verilog Compiler by C-to-Verilog, the AutoPilot by Au-
toESL, the PICO by Synfora, and the CyberWorkBench by
NEC System Technologies Ltd.

3. DESIGN FLOW

3.1 Overview
The overall toolchain presented here is depicted on figure 1
: the link between model-based capture and HLS in ensured
by MDD techniques.



Figure 1: Overview of our MDD toolchain : UML-
Rhapsody ensures capture of application, while MD-
Workbench is used for transformations of metamod-
els to Modaë HW/SW HLS. Xmi is transformed into
Ruby DSL thanks to ecore metamodels knowledge.

3.2 Rhapsody
Rational Rhapsody is a modeling environment based on UML.
Since 1996, Rhapsody acts as visual development environ-
ment for systems engineers and software developers. It is
mostly used to creating real-time or embedded systems and
software. It is used now to abstract complexity visually us-
ing industry standard languages (UML, SysML, AUTOSAR,
DoDAF, MODAF, UPDM). Its technological roots can be
found in David Harel [8] [9] early works on the notion of
statecharts at Weizmann Institute of Science. Statecharts
extend FSMs with many capabilities : events, conditions; hi-
erarchy (state nesting); concurrence, and history states. In
addition, as explained below, statecharts have built-in capa-
bilities for describing their interaction with multiple objects
in their environment. However, the Rhapsody tool has also
full UML as support for the description and specification of
systems : different types of diagrams can be used for the dif-
ferent design phases. For the functional specification phase,
the problems addressed are related to the description of the
structure, behavior (functionality) that makes the system,
and the types of data exchanged between entities. Rhap-
sody incorporates mainly two types of diagrams to achieve
these aspects : in this context, class diagrams and compos-
ite structure diagrams. As shown in figure (see fig), class
diagrams are used to describe functional entities meaning:
an atomic functionality of the system. The composite struc-
ture diagrams describe hierarchical entities that can contain
instances (parts) of the functional classes. Statecharts de-
scribe behaviors similar to those of Finite State Machine;
this behavior can be complemented by the definition of func-
tions or actions implemented from the action language. A
class can be defined as an active entity (concurrent), sequen-
tial (passive), or reactive. Communication between entities
is done by direct reference or through the use of commu-
nication port. The connection between entities is assumed
by the use of connector (Link). A composite structure can
also optionally have a global behavior as statecharts for the

control of sub-modules (units) therein.

3.3 MDD : model-driven development
The Rhapsody-Modaë toolchain has been designed using an
intermediate meta-model (figure 2) that render both the
structure of Modaë DSL and its channels semantics explicit.
It may be usefull to recall that a meta-model (model of
a model) is simply the expression of a set of concepts –
represented as class diagram– exhibiting their possible re-
lationships (inheritance,..) and hence allow the specifica-
tion of languages (DSL) as object-oriented structure models.
A model always conforms to a unique metamodel. Meta-
modeling is central to Model Driven Software Development
(MDSD). This approach is proned by OMG and technically
supported by many tools : in our case we used EMF (Eclipse
modeling framework, [22]) for the definition of the meta-
model and MDWorkbench for the transformations. MD-
Workbench has been incorporated within Rhapsody (and re-
named RulesComposer), in order to allow direct access and
manipulation of the internal Rhapsody UML metamodel,
which helps get complete control of the code generated in
Rhapsody.

Figure 2: Modaë metamodel enabling model-based
transformation engineering between Rhapsody and
HLS

3.4 Modaë DSL and SLS
Modaë SLS is an innovative system-level behavioral synthe-
sizer that takes DSL expressed in Ruby and Python inter-
pretated languages as input, contrary to classical approaches
that start with C language or its derivatives (like SystemC).
The DSL itself is an internal DSL that take avantage of the
host langage (e.g Ruby) for the expression of domain-specific
notions. In our case, these notions are limited to ports, chan-
nels, graph of blocks (known as process networks), absent
natively from the host language. A skeleton of such internal
block expressed in Ruby DSL is presented in figure 3. The



assembly and synthesis flow of such blocks is explained in in
figures 4 and 5.

Figure 3: Example of blocks expressed in Ruby DSL

Our DSL also allows the expression of exact information on
the types of variables, size of arrays, etc : they are used in
source-to-source transformations by our compiler.

Figure 4: Overall Modaë HLS flow.

The main reason why interpretated languages make sense in
the field of ESL is that algorithmicians tend to privilegiate
these languages for early explorations, due to their simplicity
and ease of use. Moreover they come with a growing set of
excellent dedicated scientific libraries, and vizualisation ca-
pabilities. In this view, Ruby and Python can be compared
to Matlab, with the supplemental advantages of being fully
open-source, free of charge, multi-paradigm, multi-domain
and multi-platform. With respect to HLS, they however
raise some supplemental technical problems : they resort

to many dynamic aspects, that are hard to deal with. To
solve this issue, Modaë HLS embedds two typing mecanisms
: static inference and probing. The former is performed
within the compiler, that propagates known types in its IR
(internal representation). The block-diagram oriented de-
sign methodology associated with Modaë studio facilitates
this propagation : at the higher level of the block-diagram
capture, the system has no inputs nor outputs. Dedicated
blocks need to be present to feed or retreive data, and, as
such, are also part of the system description. This typing
strategy works for class-level typing : variables types can
be found (Integer, Float, Arrays,...). For bit-level dimen-
sioning, we resort to dynamic probing during simulation in
order to detect variables ranges. Again, this is a rupture
with previous approaches, that separate the design phase
from simulation phase. We believe the huge effort made in
simulation (code coverage etc) can be avantageously used for
other purpose, like typing. HDL engineers are thus relieved
from the burden of bit-exact design.

3.5 Underlying models of computations
Models of computations (MoC), as studied for instance in
Ptolemy [5], describe the way concurrent processes (or“com-
ponents”) exchange with each other, via explicit access to
ports, and basically how their synchronisation system works.
Stated differently, it is the “set of rules that allows to com-
pute the behavior resulting from the composition of the
individual behaviors of the components” [7]. This simple
definition also implies that it is possible to isolate the syn-
chronization from the core algorithms of the processes : as
stated by Maraninchi [16], MoC allows engineers to “forget
as much as possible, as soon as possible”. Many recent works
take advantage of this separation of concerns, by providing
system-level specifications at abstract (untimed) levels, with
predefined MoCs (among others [23], [10] are applied to au-
tomotive). In Modaë block-diagram capture, several models
of communication between block ports can be choosen by
the user, through simple annotations 5.

A channel can behave as synchronous memory-less, func-
tioning as a rendez-vous, or asynchronous (implemented as
bounded FIFOs). Channels can be connected either one-to-
one or one-to-many (synchronous broadcast). Other mecan-
ims are available, but not used in this paper. During syn-
thesis, small distributed finite-state machines (FSM) asso-
ciated to each port and channel ensure the execution of
the intended semantics. For instance, a a one-to-many syn-
chronous channel needs as many FSMs as ports, plus a sup-
plemental FSM for the rendez-vous.

4. EXPERIMENT
In order to illustrate the use of the design flow, we choose
a simple abstract example. Our system is simply made of
three concurrent untimed entities named ’forProc’, ’whileProc’,
’untilProc’. Each of them perform a possibly data-dependent
computation and exchange data through ports : forProc”
computes the square of the first ten naturals 0..9, the second
one computes back the square root of these samples, using an
iterative algorithm, and finally the last one acts as a pure
sink (pumping the values from the second process). The
system has been modeled in Rhapsody as three instances
of classes (figure 6). Our MDD toolchain transforms the
UML 2 model, transform it into a model conforms to our



Figure 5: Network of communicating processes as-
sembled in Ruby DSL. Channels are tagged with a
dedicated MoC.

intermediate Modaë-compliant metamodel, and finally out-
puts a Ruby code, amenable to system-level synthesis. Once
read back by Modaë studio the Ruby code can also be sim-
ulated. Moreover, a recent work [13] showed a convincing
connection between Modaë models and formal verification
by model-checking, which is a supplemental path to verify
design correctness (verification of properties). In Modaë stu-
dio, a HW/SW partitionning has been precised, as well as
a target : Armadeus APF 51 embedding a ARM Cortex A8
and a Xilinx Spartan 6 FPGA.

Finally, the RTL VHDL code and multi-threaded has been
generated by Modaë synthesizer and compiled using classical
tools (gcc cross-compiler and Xilinx ISE logic synthesis).

5. DISCUSSION AND FUTURE WORK
Among the surprising outcome of this experimental toolchain,
we found it difficult to encode our algorithm into UML stat-
echarts, compared to the agile capabilities of Modaë Ruby
DSL : it may be easier to encode data-crunchy algorithms
easier in this DSL instead of statecharts. However, Rhap-
sody remains a solid and widespread tool for high-level cap-
ture. A further experiment will be conducted to benefit
from both tool during the first phase of the design, instead
of considering Ruby DSL as just a backend format. Another
interesting problem (not discussed here) relies on the correct

Figure 6: HW/SW codesign using Modaë Studio,
starting from UML 2 captured in IBM Rhapsody.
The hardware plaform embedds a ARM Cortex A8
and a Xilinx Spartan 6 FPGA

encoding of events and exchange mecanism present in Rhap-
sody : the transposition in a different tool is delicate. The
Rhapsody event-driven simulation mecanism (MoC) needs
to be better understood to ensure transformation correct-
ness. We notice that this effort in understanding an existing
tool is also cited for Simulink [2] : that probably reveals
that the underlying semantics of many tools make them un-
compatible with the idea of semantically-sound toolchains.
That problem is of utmost importance for society.

6. CONCLUSION
In this paper, we have proposed a system-level toolchain
starting from UML 2.0 formalism captured in IBM Rhap-
sody, coupled with Modäe high-level synthesizer. The coulp-
ing itself has been designed using mainstream software model-
driven tooling, based on metamodeling, which differ from
previous works in the area. This innovative toolchain allows
us to generate multithreaded embedded software and RTL
hardware for mixte processor-FPGA plateforms, as well as
communication links between both, which is a second dif-
ferentiation. The experiment has been applied to Armadeus
platforms showing the effectivness and usability of the ap-
proach. Our future work will focus on two aspects : new
experiments in particular engineering fields and optimiza-
tions of communcations.
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