Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Processing Interval Sensor Data in the Presence of Outliers, with Potential Applications to Localizing Underwater Robots

Abstract : Measurements are never absolutely accurate, the measurement result ex is, in general, different from the actual (unknown) values x of the corresponding quantity. In many practical problems, we only know upper bounds Δ on the measurement errors Δx def = ex x. In such situations, once we know the measurement result, the only conclusion that we can make about the actual value x is that this value belongs to the interval [exΔ; ex+Δ]. There exist many efficient algorithms for processing such interval data. However, these algorithms usually assume that all the measurement results are valid. In reality, due to factors such as sensor malfunction, some measurement results may be way off (outliers), for which the difference between ex and x is much larger than the upper bound Δ on the measurement error. In this paper, we overview the algorithmic problems related to processing interval sensor data in the presence of outliers. Our case study - for which we develop and analyze these algorithms - is localization of underwater robots, a problem in which a significant number of measurement results are outliers
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-ensta-bretagne.archives-ouvertes.fr/hal-00650333
Contributeur : Annick Billon-Coat <>
Soumis le : vendredi 9 décembre 2011 - 18:05:49
Dernière modification le : lundi 20 juillet 2020 - 11:24:14

Identifiants

  • HAL Id : hal-00650333, version 1

Citation

Jan Sliwka, Luc Jaulin, Martine Ceberio, Vladik Kreinovich. Processing Interval Sensor Data in the Presence of Outliers, with Potential Applications to Localizing Underwater Robots. IEEE SMC 2011, Oct 2011, Anchorage, United States. 978-1-4577-0653-0/11/©2011 IEEE p. 2333-2337. ⟨hal-00650333⟩

Partager

Métriques

Consultations de la notice

246